

UNIVERSIDAD TÉCNICA PARTICULAR DE LOJA

La Universidad Católica de Loja

AREA BIOLÓGICA

TITULO DE INGENIERO EN GESTIÓN AMBIENTAL

Diversidad de sírfidos (Diptera: Syrphidae) en el Parque Nacional Podocarpus

TRABAJO DE TITULACIÓN.

AUTORA: Cueva Cuenca, Ximena Alexandra

DIRECTOR: Marín Armijos, Diego Stalin, Ing.

LOJA-ECUADOR

2016

Esta versión digital, ha sido acreditada bajo la licencia Creative Commons 4.0, CC BY-NY-SA: Reconocimiento-No comercial-Compartir igual; la cual permite copiar, distribuir y comunicar públicamente la obra, mientras se reconozca la autoría original, no se utilice con fines comerciales y se permiten obras derivadas, siempre que mantenga la misma licencia al ser divulgada. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Septiembre, 2016

APROBACIÓN DE LA DIRECTORA DEL TRABAJO DE TITULACIÓN

Ingeniero
Diego Stalin Marín Armijos
DOCENTE DE LA TITULACIÓN
De mi consideración:
El presente trabajo de titulación: Diversidad de sírfidos (Diptera: Syrphidae) en el Parque Nacional Podocarpus realizado por Cueva Cuenca Ximena Alexandra, ha sido orientado y revisado durante su ejecución, por cuanto se aprueba la presentación del mismo.
Loja, febrero de 2016
f)

DECLARACIÓN DE AUTORÍA Y CESIÓN DE DERECHOS

"Yo Cueva Cuenca Ximena Alexandra declaro ser autora del presente trabajo de titulación:

Diversidad se sírfidos (Diptera: Syrphidae) en el Parque Nacional Podocarpus, de la

Titulación de Gestión Ambiental, siendo Marín Armijos Diego Stalin director del presente

trabajo; y eximo expresamente a la Universidad Técnica Particular de Loja y a sus

representantes legales de posibles reclamos o acciones legales. Además certifico que las

ideas, conceptos, procedimientos y resultados vertidos en el presente trabajo investigativo,

son de mi exclusiva responsabilidad.

Adicionalmente declaro conocer y aceptar la disposición del Art. 88 del Estatuto Orgánico de

la Universidad Técnica Particular de Loja que en su parte pertinente textualmente dice:

"Forman parte del patrimonio de la Universidad la propiedad intelectual de investigaciones,

trabajos científicos o técnicos y trabajo de fin de titulación que se realicen a través, o con el

apoyo financiero, académico o institucional (operativo) de la Universidad"

f.....

Autora: Cueva Cuenca Ximena Alexandra

Cédula: 1900635655

iii

DEDICATORIA

El presente trabajo de fin de titulación representa todo mi esfuerzo y dedicación para lograr culminarlo con éxito el cual quiero dedicar:

A mi Dios Amado, quien me ha concedido la vida y me ha guiado para cumplir cada una de las metas propuestas.

A mis abuelos, por su gran ejemplo de amor que aunque no me acompañen más, sus recuerdos siguen viviendo, y es lo que me anima a seguir adelante.

A mi padre Ángel Cueva, por su apoyo, cariño, paciencia y comprensión.

A mi madre Marcia Piedad, por su amor incondicional, preocupación, y consejo.

A mis hermanos Rocío, Luis y Danny por su atención, apoyo, y generosidad.

A mis amigos Verónica y Anthony por su preocupación, cariño y confianza.

A todas las personas que colaboraron en las salidas de campo, para los muestreos. Pasamos momentos muy agradables, los cuales se convirtieron en experiencias realmente enriquecedoras.

Ximena A. Cueva C.

AGRADECIMIENTO

Agradezco a la Universidad Técnica Particular de Loja, por haber contribuido en mi formación profesional en la carrera de Gestión Ambiental.

Al Ing. Diego Marín por su ayuda y colaboración para la culminación del presente estudio. A las personas que conforman el Museo de Colecciones Biológicas de la UTPL, espacio donde pude realizar el tratamiento y montaje de los especímenes.

A mi familia, por su gran consideración, apoyo y compañía en el desarrollo de este trabajo. Al Ministerio del Ambiente, por haberme otorgado los permisos pertinentes para realizar esta investigación.

Ximena A. Cueva C

INDICE DE CONTENIDOS

CARATULA	i
APROBACIÓN DE LA DIRECTORA DEL TRABAJO DE TITULACIÓN	ii
DECLARACIÓN DE AUTORÍA Y CESIÓN DE DERECHOS	iii
DEDICATORIA	iv
AGRADECIMIENTO	v
INDICE DE CONTENIDOS	vi
RESUMEN	1
ABSTRACT	2
INTRODUCCIÓN	3
CAPITULO I	6
MATERIALES Y MÉTODOS	6
1.1 Área de estudio	7
1.2 Especie de Estudio	8
Técnicas de muestreo 1.3.1. Listado de las especies de Syrphidae citadas para Ecuador 1.3.2. Riqueza y abundancia de Syrphidae en los tres tipos de bosque	9
1.4 Análisis de datos	10
CAPITULO II	12
RESULTADOS Y DISCUSIÓN	12
2.1 Listado Taxonómico	13
2.2. Riqueza y abundancia de Syrphidae en los tres tipos de bosque	18
CONCLUSIONES	22
RECOMENDACIONES	23
BIBLIOGRAFÍA	24
ANEXOS	29

ÍNDICE DE TABLAS

TABLA 1. LISTADO DE ESPECIES SYRPHIDAE PARA EL ECUADOR	13
Tabla 2. Riqueza y abundancia de especies registradas en los tres tipos de bosque	19
TABLA 3. ESTIMADORES NO PARAMÉTRICOS DE RIQUEZA EN LOS TRES TIPOS DE BOSQUE	20
Tabla 4. Resultados de los Modelos Lineales Generalizados	21
INDICE DE FIGURAS	
FIGURA 1. UBICACIÓN DE LOS TRES BOSQUES EN EL PNP	7
FIGURA 2 RANGO DE ABUNDANCIA	21

RESUMEN

Se realizó estudios de campo y de laboratorio sobre la familia Syrphidae (moscas de las

flores) en el Parque Nacional Podocarpus. Se ubicaron 15 estaciones de muestreo

representando tres formaciones vegetales en zonas representativas del PNP de mayo a julio

de 2015. Los adultos fueron colectados con Trampas Malaise y red entomológica, en tres

tipos de bosque.

Los adultos recolectados fueron montados, etiquetados y depositados en el Museo de

Colecciones Biológicas de la UTPL. Adicionalmente, se realizó una lista de especies

Syrphidae citadas para el Ecuador registrándose un total de 151 especies, pertenecientes a

28 géneros distribuidos en las cuatro regiones naturales del Ecuador.

En cuanto a la riqueza y abundancia de sírfidos, se colectaron un total de 159 individuos,

pertenecientes a 11 géneros y 35 especies. Para la zona de Bombuscaro se llegó a

registrar el 45 % de la fauna de sírfidos, siendo mayor el registro para San Francisco y

Cajanuma entre el 60 % y 57 % respectivamente. La comunidad de sírfidos en cuanto a su

riqueza, diversidad sobretodo abundancia se ven influenciadas positivamente por el tipo de

bosque.

Palabras claves: Diptera, Syrphidae, Biodiversidad, Indicador biológico, Trampa Malaise.

1

ABSTRACT

A study on the family Syrphidae (flower flies) in the Podocarpus National Park. For the study

15 sampling stations representing three plant formations in representative areas of the PNP

were located was performed. Adults were collected with Malaise traps and entomological

network, these three types of forest.

The collected adults were assembled, labeled and deposited at the Museum of Biological

Collections of UTPL. Additionally, a list of hoverfly species cited was conducted for Ecuador

recorded a total of 151 species belonging to 28 genera distributed in the four natural regions

of Ecuador.

As for the richness and abundance of hoverflies, a total of 159 individuals belonging to 11

genera and 35 species were collected. For Bombuscaro area it was reached record 45%

syrphid wildlife, being higher registration to San Francisco and Cajanuma between 60% and

57% respectively. Syrphid community in their richness, diversity especially wealth are

positively influenced by the type of forest.

Keywords: Diptera, Syrphidae, Biodiversity, Biological indicator, Malaise Trap.

2

INTRODUCCIÓN

Las áreas protegidas, son consideradas como espacios que se deben gestionar de la manera más adecuada posible para conservar, en condiciones óptimas, los hábitats en los que tienen lugar los procesos ecológicos que implican a toda la comunidad biológica, así mismo el conocimiento de las especies que intervienen en dichos procesos (Madsen, 1989).

La posición geográfica de Ecuador, y una serie de elementos bióticos y abióticos han dado lugar a una extraordinaria diversidad biológica. Considerado como un país megadiverso (Mittermeier & Mittermeier, 1997). Ecuador aparece en el primer lugar en el ranking mundial basada en el número de especies por unidad de área de plantas vasculares, mamíferos, aves, reptiles y anfibios (Brehm, Homeier, Fiedler, Kottke, Illig, Noske, Nuevo México, Werner, & Breckle 2008).

Dentro de ésta diversidad, se nombran a los insectos. Este grupo animal es considerado el más rico en especies. Constituyen, junto con el resto de invertebrados, el componente más importante de la diversidad biológica de cualquier ecosistema y alcanzan la máxima representatividad entre los artrópodos (Engel, & Grimaldi 2004).

Polo tanto, los insectos se han constituido a lo largo del tiempo como uno de los grupos más exitosos de los seres vivos en nuestro planeta en número de especies y diferentes historias naturales que exhiben. De las especies conocidas en la Tierra, 1.5-1.7 millones (entre 60 y 70%) son insectos, los órdenes que constituyen más del 80% de las especies son: Coleoptera, Lepidoptera, Diptera e Hymenoptera (Adler & Foottit, 2009).

Dentro del orden díptera, se incluyen las moscas y mosquitos, es uno de los órdenes más diversos, con más de 153.000 especies descritas (alrededor del 12% de la diversidad del planeta) y con una taza de nuevas especies descritas de casi 1.000 especies por año (Pape & Thompson, 2010). Este orden no es solo rico en número de especies, sino también en cuanto a estructura y morfología, uso de habitas e interacciones humanas (Courtney *et al.*, 2009). Este grupo también desempeña un papel crucial en la descomposición de la materia orgánica, sirven como modelos genéticos y fisiología (*Drosophila melanogaster*), útiles en la ciencia forense y por ser importantes polinizadores entre otras muchas actividades (Pape, 2009).

Syrphidae es una familia importante dentro de los dípteros, por este motivo los sírfidos son considerados como importantes polinizadores de hierbas, arbustos y plantas arbóreas en los ecosistemas naturales (Marinoni & Thompson, 2003). Son conocidos por sus roles funcionales como polinizadores en estado adulto de ecosistemas naturales e intervenidos y

en estado larval son excelentes controladores biológicos (Marinoni & Thompson, 2003). Las plantas pueden beneficiar a los insectos ofreciéndoles recursos (néctar, polen, alimento para estados inmaduros) y/o servicios (sitios de cópula o hábitat) y el insecto puede beneficiar a la planta como alimento de un insecto benéfico para la planta, como vector de polen y/o como enemigo natural de un insecto que afecte el crecimiento de la planta (Muñoz, 2005).

Una familia importante, dentro de los dípteros por sus roles funcionales como polinizadores en estado adulto de ecosistemas naturales e intervenidos y, en estado larval son excelentes controladores biológicos (Greco, 1998).

La importancia ecológica de los grupos funcionales viene dada por la capacidad que tienen las especies pertenecientes al mismo grupo de reemplazar sus papeles ecológicos ante una pérdida de especies dentro del mismo grupo (Yachi & Loreau, 1999). Así, un alto número de especies en cada grupo funcional aseguraría el funcionamiento del ecosistema ante cualquier alteración de los usos del territorio, facilitando la sostenibilidad a largo plazo (Tscharntke, Klein, Kruess, Steffan & Thies, 2005).

Debido a las funciones, que presentan sus estados inmaduros los sírfidos han venido siendo objeto de estudio, en las evaluaciones de biodiversidad y también como bioindicadores (Tscharntke *et al.*, 2005).

Los saprófagos explotan condiciones húmedas o acuáticas en un amplio rango de hábitats: en exudados de savia de árboles, madera o vegetación en descomposición (Ricarte & Marcos-García, 2008).

Muchos saprófagos saproxílicos son raros y se encuentran en peligro de extinción, siendo precisamente objeto de conservación, así como también en ser importantes indicadores de la calidad de los bosques. En los bosques del Neotrópico, este grupo podría considerarse de alto valor para la evaluación de la biodiversidad, tal es el caso de que se consideran como valiosos indicadores del calentamiento climático; esto se debe a que, varias especies ricas en linajes de sírfidos parecen haberse diversificado en relación con el sitio de desarrollo larval, en donde las plantas tenían condiciones óptimas mojadas o húmedas. Estos hábitats acuáticos formados naturalmente por las plantas, se conoce como fitotelmata (Srivastava et al., 2004) y son, probablemente muy sensibles a los efectos de sequía del cambio climático (Benzin, 1998).

Otros saprófagos, como los de cola larga son útiles indicadores de la calidad del agua y potenciales depuradores de aguas contaminadas. Las larvas de algunos Eristalini pueden producir miasis intestinal en humanos (James, 1948) y también usarse en el reciclado de

basura o como fuentes proteicas (Larde, 1989). Los sírfidos afidófagos son importantes en el control de sus presas sobre plantas cultivadas (Thompson & Rotheray, 2010).

Es importante conocer los ciclos de vida de las especies, ya que la supervivenvia de la mismas, por lo general, está ligada a la de otras con las que mantienen relaciones antagónicas o mutualistas (depredación, fitofagia, polinización, etc), cuyo conocimiento es necesario para entender el funcionamiento de los ecosistemas (Morales & Wolff, 2010).

Se clasifican en 180 géneros con más de 6.000 especies descritas y la tercera más diversa en número de especies en la Región Neotropical (Thompson *et al* 2010). Sin embargo, en Ecuador existen pocos estudios sobre la familia Syrphidae (Montoya *et al.*, 2012), la mayoría de estudios se han centrado en taxonomía (Thompson *et al.*, 1976, Thompson 1999, Brown *et al.*, 2009, Hippa & Thompson 1983, Gerdes 1974, López & Maza 2013, Sinclair 2014, Boada 2005).

El conocimiento de la distribución y la composición de Syrphidae permanecen lejos de ser completa. La taxonomía de Syrphidae no se ha logrado entender bien, en la región Neotropical y muchas nuevas especies aún no se han descrito (Mengual & Thompson, 2008). Desde esta perspectiva, la ausencia de información principalmente de claves de identificación para las especies neotropicales dificulta la elaboración de listas de verificación regionales o el descubrimiento de nuevas especies para la ciencia (Thompson *et al.*, 2010).

La provincia de Zamora Chinchipe, ubicada al suroriente de la Amazonía ecuatoriana es considerada como una de los "Hot spot" de diversidad biológica, varios estudios han demostrado que esta zona guarda un patrimonio natural de incalculable valor (Brehm., *et al* 2008), razón por la cual, en la actualidad se está llevando a cabo la iniciativa "Smart land" a cargo de la Universidad Técnica Particular de Loja (UTPL) el cual, es una iniciativa que amplía el concepto de "Smart Cites", con el propósito de contribuir al desarrollo inteligente de un territorio; tiene como objetivo implementar una plataforma de monitoreo, colección de datos y generación de modelos predictivos que apoyen la toma de decisiones para la gestión inteligente del territorio, con énfasis en la región Sur del Ecuador.

Tomando en cuenta esta iniciativa, nos hemos planteado generar información acerca de la diversidad de la familia Syrphidae. Planteando los siguientes objetivos: 1) Realizar un listado de las especies de Syrphidae citadas para Ecuador, y 2) Determinar la abundancia y riqueza de Syrphidae en el sector Bombuscaro, Cajanuma, y San Francisco del Parque Nacional Podocarpus.

CAPITULO I MATERIALES Y MÉTODOS

1.1 Área de estudio

El Parque Nacional Podocarpus (PNP) (Figura 1), es una de las áreas protegidas del SNAP (Sistema Nacional de Áreas Protegidas) de mayor importancia en el país, por su alta biodiversidad y por su calidad escénica, ocupa alrededor de 146.280 has. Se encuentra ubicado en el límite fronterizo entre las provincias de Loja y Zamora Chinchipe; en un rango de 900 a 1 600 m s.n.m. (Zona baja) y 1600 – 3600 m s.n.m. (Zona alta). La temperatura varía según la altitud. Oscila entre los 6 – 22 °C. La precipitación varía de acuerdo a la zona bioclimática, oscila entre 1500 – 3000 mm. La topografía corresponde a valles y laderas escarpadas y un relieve muy irregular formado por montañas y colinas.

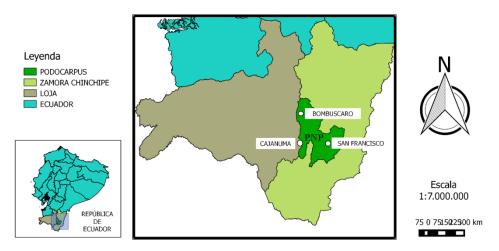


Figura 1. Ubicación de los tres bosques en el PNP

Para el estudio se ubicaron 15 estaciones de muestreo (Figura 1) representando tres formaciones vegetales en zonas representativas del PNP ubicadas a tres altitudes (1000, 2000 y 3000 m s.n.m) dentro del PNP:

1) Bombuscaro (Bosque muy pre montano), ubicado en la provincia de Zamora Chinchipe, sector Bombuscaro a 1000 m s.n.m. (-4.113 S, -78.964 O). Según Sierra (1999) pertenece a la formación vegetal de bosque muy húmedo premontano (bmh-PM). Bombuscaro, se encuentra ubicado a 8 km de la ciudad de Zamora, en la zona se diferencian dos periodos de tiempo, uno relativamente seco de agosto a octubre y un húmedo de noviembre a julio. La precipitación media anual es de 2000 mm, con una temperatura promedio de 25°C.

- 2) San Francisco (Bosque siempreverde montano), ubicado en la provincia de Zamora Chinchipe a 2000 m s.n.m (-3.988 S, -79.093 O). Según Sierra (1999) pertenece a la formación vegetal de bosque Siempreverde Montano. Se encuentra ubicada a 30 Km de la ciudad de Loja, en el límite norte del PNP en el cantón Zamora, caracterizada por la presencia de árboles nudosos, cubiertos de musgos, bromelias y orquídeas. Posee una extensión aproximada de 1000 y 2000 ha (Riera, 2006), una pluviosidad promedio anual de 2500 mm y temperatura anual promedio de 15 17 °C (Bussmann, 2005).
- 3) Cajanuma (Bosque nublado páramo), ubicado en la provincia de Loja, sector Cajanuma a 3000 m s.n.m. (-4.112 S, -79.176 O). Según Sierra (1999) pertenece a la formación vegetal de bosque nublado y páramo, entre los cuales se forman zonas de transición con formaciones vegetales achaparradas únicas, que son determinadas por las condiciones climáticas edáficas y ecológicas de bosque nublado. La temperatura máxima corresponde a 10°C y la mínima de 0-3°C; la precipitación fluctúa entre 2 000 a 4 000 mm (Madsen, 1989). Tiene una extensión menor a 1000ha puesto que posee limites naturales con el páramo en la parte alta y, limites antropogénicos como cultivos y potreros en el resto de flancos (Cisneros *et al.*, 2004).

1.2 Especie de Estudio

Syrphidae es una familia de gran variabilidad morfológica y ecológica. El tamaño de los adultos puede variar de 4 a 25 mm, el cuerpo puede ser delgado o robusto. Exhiben una amplia gama de colores que van desde el negro hasta el amarillo y naranja brillante, incluyendo tonos iridiscentes (Sarmiento, Ramirez, & Contreras 2010). La superficie del cuerpo puede estar cubierta con densos pelos cortos; los ojos son desnudos o pilosos, generalmente holópticos en machos, y dicópticos en hembras; las piezas bucales están modificadas para succionar fluidos; las antenas son cortas. El abdomen es variable en forma, de ancho a muy delgado (Sarmiento et al., 2010).

Los sírfidos están entre los dípteros más abundantes y conspicuos; la mayoría de especies exhiben una alta maniobrabilidad durante el vuelo e incluso poseen la capacidad de permanecer estáticos, por lo cual también son conocidas como "Hover flies" (Sarmiento et al., 2010).

Los adultos generalmente se encuentran sobre las flores o en vuelo suspendido en lugares soleados, de ahí que se los denomine comúnmente moscas de las flores o "flower flies" (Sarmiento et al., 2010).

Los adultos de las subfamilias Syrphinae y Eristalinae se encuentran generalmente asociados a flores, siendo néctar y polen los principales componentes de su dieta. Esto los convierte en importantes polinizadores de muchas plantas y quizás ha favorecido la selección de mimetismo con grupos de Aculeata (Hymenoptera) en estas subfamilias (Hippa & Stahl, 2005). Esta clase de mimetismo es más frecuente y desarrollado en Syrphidae que en cualquier otra familia de Diptera (Vockeroth & Thompson, 1987).

Las larvas de Syrphidae, presentan una amplia variedad son muy variables en estructura, hábitos y modos de alimentación encontrándose en diversos hábitats, como por ejemplo cuerpos fructíferos de hongos, colonias de himenópteros, materia vegetal en descomposición o cursos de agua. Algunas especies son saprófagas, otras pueden minar hojas y tallos vegetales y otras son depredadores de diversos artrópodos (áfidos, moscas blancas, orugas, larvas de otros dípteros o escarabajos), por lo que algunas especies se usan para el control biológico de plagas (Vockeroth & Thompson 1987).

Según el tipo de alimentación de las larvas, se pueden distinguir tres grupos funcionales principales (Speight & Castella, 2006): depredadores, con larvas que se alimentan de artrópodos, generalmente de homópteros de cuerpo blando (Rojo et al., 2003); fitófagos, con larvas que se desarrollan en tejidos vegetales (hojas, tallos, bulbos, tubérculos, etc); finalmente están los saprófagos, con larvas que se nutren de microorganismos de materia en descomposición (Speight & Castella, 2006).

La característica más fuerte, para diferenciar esta familia de otras se da en la venación alar, y es la presencia de la *vena Spuria* que corre a lo largo de las celdas, dirigido fuertemente hacia un margen del ala (Thompson, 1999).

1.3 Técnicas de muestreo

1.3.1. Listado de las especies de Syrphidae citadas para Ecuador.

A partir de la revisión bibliográfica de artículos y catálogos sobre la familia Syrphidae en: (Thompson et al., 1976, Thompson 1999, Hippa & Thompson 1983, Gerdes 1974, Marcos-García & Louis 2001; Brown et al., 2009; López & Maza 2013) se presentó una lista de especies de sírfidos para Ecuador.

1.3.2. Riqueza y abundancia de Syrphidae en los tres tipos de bosque.

Se instalaron cinco trampas Malaise en cada estación de muestreo, las mismas estuvieron activas por un mes alternando en cada tipo de bosque de mayo a julio de 2015 y se revisaron semanalmente. La efectividad de estas trampas depende de su ubicación

(Townes, 1972), por lo que fueron ubicadas en lugares abiertos dentro de cada bosque. Las muestras colectadas fueron identificadas a nivel de especie y morfoespecie en el Museo de Colecciones Biológicas de la UTPL a través de claves taxonómicas y comparación con colecciones de referencia.

Adicionalmente, en cada estación de muestreo se realizaron barridos semanales durante un mes con red entomológica sobre la vegetación, durante las horas de mayor actividad entre 10H00 – 14H00 (Ricarte *et al.*, 2011). La captura del sírfidos se realizó mientras estaban en vuelo, alimentándose o reposando sobre la vegetación o el suelo (Galante, 2004; Galante & Marcos-García, 2004).

1.4 Análisis de datos

Para determinar la riqueza y la estructura de la comunidad de sírfidos se utilizaron estimadores no paramétricos de riqueza: Jacknife 1 y 2, los cuales consideran el número de especies esperadas que solamente ocurren en una muestra. ACE e ICE son estimadores que se utilizan cuando se obtienen abundancias, no suponen ningún tipo de distribución, ni se ajusta a un modelo determinado y únicamente requiere datos de presencia (Dufrene & Legendre, 1997; Colwell, 2002). Chao 1, estima el número de especies esperadas considerando la relación entre el número de especies representadas por un individuo y el número de especies representadas por dos individuos en las muestras (Dufrene & Legendre, 1997).

La diversidad la medimos utilizando el índice de Simpson, el cual manifiesta la probabilidad de que dos individuos, dentro de su hábitat, seleccionados al azar pertenezcan a la misma especie. Está fuertemente influido por la importancia de las especies más dominantes (Magurran, 2001).

También se aplicaron curvas de rango-abundancia para determinar cómo se distribuyen las abundancias y su equitatividad. Según Magurran (2004); este análisis provee una mayor descripción de la comunidad. Para este análisis se utilizó el paquete Vegan, función radfit (R Development Core Team 2013).

La abundancia y su distribución se analizó a través de curvas de rango-abundancia con la finalidad de establecer cómo se encuentra tomando en cuenta su identidad y secuencia (Feinsinger, 2001) y fue usada para comparar las estaciones de muestreo.

Para determinar el efecto de la zona de estudio sobre la abundancia, riqueza y diversidad se utilizaron modelos lineales generalizados (GLMs), familia Poisson (R Development Core Team, 2013).

CAPITULO II RESULTADOS Y DISCUSIÓN

2.1 Listado Taxonómico

Según los datos recogidos y bibliográficos, la fauna Syrphidae ecuatoriana está representada por 151 especies, pertenecientes a 28 géneros. Los sírfidos, registrados se distribuyen en las cuatro regiones naturales del Ecuador.

A continuación se presenta la lista de 151 especies de Syrphidae para Ecuador señalando la provincia, localidad y la altitud donde fueron colectados. Además, se ofrece una referencia relevante para el taxón en cuestión.

Tabla 1. Listado de especies Syrphidae para el Ecuador

Especie	Provincia	Altitud m snm
Allograpta alta Curran, 1936	El Oro	1600
Allograpta altissima Fluke, 1942	Pastaza	924
Allograpta annulipes Macquart, 1850	Pastaza	800
Allograpta argentipila Fluke, 1942	Pastaza	924
Allograpta armillata Fluke, 1942	Bolívar	3116
Allograpta browni Fluke, 1942	Imbabura	3200
Allograpta bullaephora Shannon, 1927	Tungurahua	3200
Allograpta colombia Curran, 1925	Tungurahua	3200
Allograpta falcata Fluke, 1942	Bolívar	3116
Allograpta fasciata Curran, 1932	El Oro	1600
Allograpta fascifrons Macquart, 1846	Tungurahua	3200
Allograpta imitator Curran, 1925	Bolívar	3116
Allograpta latifacies Shannon, 1927	Tungurahua	3200
Allograpta lucifera Hull, 1943	El Oro	1600
Allograpta luna Fluke, 1942	Tungurahua	3200
Allograpta micrura Osten Sacken, 1877	Bolívar	3116
Allograpta neotropica Curran, 1936	Bolívar	3116
Allograpta remigisFluke, 1942	Tungurahua	3200
Allograpta roburoris Fluke, 1942	Bolívar	3116
Allograpta splendens Thompson, 1869	Galápagos	600
Allograpta splendens Thompson, 1897	Galápagos	640
Allograpta splendens Thompson, 1897	Galápagos	864
Allograpta splendens Thompson, 1897	Galápagos	800
Allograpta splendens Thompson, 1897	Galápagos	730
Allograpta splendens Thompson, 1897	Galápagos	907
Allograpta splendens Thompson, 1897	Galápagos	777
Allograpta splendens Thompson, 1897	Galápagos	344
Allograpta splendens Thompson, 1897	Galápagos	259
Allograpta tectiforma Fluke, 1942	Imbabura	3200
Allograpta teligera Fluke, 1942	Pastaza	800
Baccha clavata Fabricius, 1794	Galápagos	640

Baccha clavata Fabricius, 1794	Galápagos	907
Baccha clavata Fabricius, 1775	Galápagos	730
Baccha clavata Fabricius, 1775	Galápagos	800
Carposcalis chalconota Philippi, 1865	Chimborazo	2700
Carposcalis ecuadoriensis Fluke, 1945	Imbabura	3200
Carposcalis inflatifrons Fluke, 1945	Bolívar	3100
Carposcalis punctulata Wulp, 1888	Bolívar	2100
Carposcalis saltana Enderlein, 1938	Pichincha	3163
Carposcalis scutigera Fluke, 1945	Pichincha	3163
Ceriana sp. Rafinesque, 1815	Orellana	220
Copestylum beatricea Hull, 1950	Orellana	220
Copestylum bulbosum Fluke, 1951	Tungurahua	3200
Copestylum camposi Curran, 1939	Guayas	253
Copestylum cf. viridana Townsend, 1897	Galápagos	864
Copestylum currani Fluke, 1951	Pichincha	2900
Copestylum currani Fluke, 1951	Azuay	2650
Copestylum ecuadorea Fluke, 1951	Azuay	2650
Copestylum ecuadorea Fluke, 1951	Azuay	2650
Copestylum hambletoni Fluke, 1951	Pichincha	2900
Copestylum multipunctatum Rotheray & Hancock, 2009	Pichincha	2900
Copestylum otongaensis Rotheray et al., 2007	Cotopaxi	2300
Copestylum placivum Hull, 1943	Pichincha	1300
Copestylum sica Curran, 1953	Pichincha	2900
Copestylum sica Curran, 1953	Tungurahua	1800
Copestylum tarsalis Rotheray & Hancock, 2007	Cotopaxi	2300
Copestylum viridigaster Hull, 1943	Cotopaxi	2300
Dasysyrphus dasysyrphus Enderlein, 1938	Orellana	220
Dolichogyna mulleri Fluke, 1951	Azuay	2500
Eristalis bogotensis Macquart, 1842	Orellana	220
Eupeodes rojasi Marnef, 1943	Tungurahua	1800
Leucopodella asthenia Hull, 1948	Tungurahua	1800
Leucopodella boadicea Hull, 1943	El Oro	1506
Leucopodella delicatula Hull, 1943	Tungurahua	1800
Leucopodella zenilla Hull, 1943	Bolivar	3100
Mallota nigra Shannon, 1927	Pichincha	1300
Mallota rubicunda Curran, 1940	Tungurahua	2800
Melanostoma altissimus Fluke, 1945	Imbabura	3200
Melanostoma bolivariensis Fluke, 1945	Bolivar	3100
Melanostoma browni Fluke, 1945	Bolivar	3100
Melanostoma fervida Fluke, 1945	Bolívar	3100
Melanostoma inflatifrons Fluke, 1945	Bolívar	3100
Melanostoma luculentum W.C Macintyre, 1939	Tungurahua	2300
Melanostoma palliatus Fluke, 1945	Tungurahua	3200
Melanostoma rex Fluke, 1945	Bolívar	3100
Melanostoma scutigera Fluke, 1945	Pichincha	2700
Melanostoma tropicum Curran, 1973	Tungurahua	2300
	-	

Meromacrus laconicus Walker, 1852	Guayas	253
Meromacrus pratorum Fabricius, 1775	Tungurahua	2300
Meropidia rufa Hippa & Thompson, 1983	Ecuador	900
Mesogramma antiopa Hull, 1951	Chimborazo	3650
Mesogramma antiopa Hull, 1951	Bolívar	3100
Mesogramma crockeri Curran, 1934	Galápagos	640
Mesogramma crockeri Curran, 1934	Galápagos	730
Mesogramma crockeri Curran, 1934	Galápagos	800
Mesogramma crockeri Curran, 1934	Galápagos	907
Mesogramma crockeri Curran, 1934	Galápagos	800
Mesogramma crockeri Curran, 1934	Galápagos	864
Mesogramma cyrilla Hull, 1951	Morona Santiago	1000
Mesogramma duplicata Wiedemann, 1830	Galápagos	907
Mesogramma eurydice Hull, 1951	Pastaza	1200
Mesogramma idalia Hull, 1951	Pastaza	1000
Mesogramma ultima Hull, 1951	Pichincha	2700
Microdon aureus Hull, 1944	Napo	600
Microdon guianicus Curran, 1925	Napo	600
Microdon oligonax Hull, 1944	Napo	600
Mixogaster thecla Hull, 1954	Napo	600
Ocyptamus adspersus Fabricius, 1805	Orellana	220
Ocyptamus aeolus Hull, 1943	Pastaza	450
Ocyptamus anona Hull, 1943	Pastaza	800
Ocyptamus cereberus Hull, 1943	Imbabura	3200
Ocyptamus cultratus Austen, 1893	Ecuador	
Ocyptamus cymbellina Hull, 1944	Sto. Domingo de los T	635
Ocyptamus eblis Hull, 1943	Bolívar	3100
Ocyptamus elnora Shannon, 1927	Tungurahua	2300
Ocyptamus flavipennis Austen, 1893	El Oro	1506
Ocyptamus flukei Curran, 1941	Tungurahua	1800
Ocyptamus nerissa Hull, 1943	El Oro	1506
Ocyptamus niobe Hull, 1943	Manabí	400
Ocyptamus opacus Fluke, 1950	Tungurahua	2800
Ocyptamus phobifer Hull, 1943	Pastaza	924
Ocyptamus princeps Hull, 1944	Pastaza	800
Ocyptamus princeps Hull, 1944	Pastaza	924
Ocyptamus pteronis Fluke,1942	Tungurahua	2800
Ocyptamus saffrona Hull, 1943	Manabí	400
Ocyptamus satyrus Hull, 1943	Manabí	400
Ocyptamus scintillans Hull, 1943	Guayas	2400
Ocyptamus trabis Fluke, 1942	Tungurahua	2800
Ocyptamus virga Fluke, 1942	Imbabura	3200
Ocyptamus volcanus Fluke, 1942	Tungurahua	2800
Ocyptamus wulpianus Lynch, 1891	Pastaza	800
Ocyptamus zilla Hull, 1943	Imbabura	3200
Ornidia major Curran, 1930	Ecuador	

Ornidia obesa Fabricius, 1775	Galápagos	730
Ornidia obesa Fabricius, 1775	Galápagos	800
Ornidia obesa Fabricius, 1775	Galápagos	864
Palpada cosmia Schiner, 1868	Napo	600
Palpada erratica Curran, 1930	Pichincha	2700
Palpada fasciata Wiedemann, 1819	Pichincha	2900
Palpada funerea Rondani, 1850	Napo	600
Palpada macula Sack, 1941	Pichincha	2700
Palpada pusilla Macquart, 1842	Pichincha	2700
Palpada pusio Wiedemann, 1830	Pichincha	2900
Palpada quitensis Macquart, 1855	Pichincha	2900
Palpada ruficeps Macquart, 1842	Pichincha	2900
Palpada rufiventris Macquart, 1846	Pichincha	2900
Palpada suprarufa Thompson, 1999	Pichincha	2900
Palpada testaceicornis Macquart, 1850	Pichincha	2900
Palpada urotaenia Curran, 1930	Pichincha	2900
Palpada vinetorum Fabricius, 1798	Galápagos	864
Platycheirus punctulata Wulp, 1976	Pichincha	2900
Platycheirus saltana Enderlein, 1938	Tungurahua	2800
Pseudodoros clavatus Fabricius, 1794	Galápagos	640
Rhingia longirostris Fluke, 1943	Bolívar	3100
Rhinoprosopa lucifera Hull, 1943	El Oro	1600
Rhinoprosopa nasuta Bigot, 1884	Carchi	2000
Rhopalosyrphus ecuadoriensis Reemer, 2013	Orellana	250
Rhysops agonis Walker, 1849	Galápagos	640
Rhysops altissimus Fluke, 1945	Imbabura	3200
Rhysops bolivariensis Fluke, 1945	Bolívar	3100
Rhysops browni Fluke, 1945	Bolívar	3100
Rhysops festiva Fluke, 1945	Tungurahua	1800
Rhysops longicornis Walker, 1837	Tungurahua	1800
Rhysops luculentus Fluke, 1945	Tungurahua	1800
Rhysops opaca Fluke, 1945	Chimborazo	3650
Rhysops rex Fluke, 1945	Bolívar	3100
Rhysops tropicus Curran, 1937	Bolívar	3100
Salpingogaster browni Curran, 1941	Tungurahua	2800
Salpingogaster liposeta Fluke, 1937	Guayas	253
Scaeva melanostoma Macquart, 1842	Azuay	2500
Sphaerophoria sulphuripes Thompson, 1869	Tungurahua	1800
Sphaerophoria splendens Thompson, 1868	Galápagos	907
Sphaerophoria splendens Thompson, 1868	Galápagos	640
Sterphus telus Thompson, 1973	Bolívar	3100
Syrphus albomaculatus Smith, 1877	Galápagos	640
Syrphus shorae Fluke, 1950	Tungurahua	1800
Talahua fervida Fluke, 1945	Bolívar	3116
Toxomerus anthrax Schiner, 1868	Tungurahua	1800
Toxomerus antiopa Hull, 1951	Chimborazo	2000

Toyomorus aquilinus Sack 1041	Morona Santiago	1020
Toxomerus aquilinus Sack, 1941 Toxomerus arcifer Loew, 1866	Morona Santiago Pastaza	1020
Toxomerus basilaris Hull, 1943	Tungurahua	1800
Toxomerus brevifacies Hull, 1943	Tungurahua	1800
Toxomerus claracuneus Hull, 1942	Pastaza	800
Toxomerus confusus Schiner, 1868	Tungurahua	1800
Toxomerus crockeri Curran, 1934	Galápagos	864
Toxomerus cyrillus Hull, 1951	Morona Santiago	1020
Toxomerus dispar Fabricius, 1794	Tungurahua	1800
Toxomerus ecuadoreus Hull, 1943	Pichincha	2700
Toxomerus elongatus Hull, 1941	Tungurahua	1800
Toxomerus eurydice Hull, 1951	Pastaza	1000
Toxomerus flavus Hull, 1941	Tungurahua	1800
Toxomerus hieroglyphicus Schiner, 1868	Tungurahua	1800
Toxomerus idalus Hull, 1951	Pastaza	924
Toxomerus insignis Schiner, 1868	Morona Santiago	1020
Toxomerus mulio Hull, 1941	Tungurahua	1800
Toxomerus manutus Sack, 1941	Pichincha	2800
Toxomerus nitidiventris Curran, 1930	Pichincha	2700
Toxomerus nymphalius Hull, 1942	Pastaza	1250
Toxomerus pichinchae Gerdes, 1974	Pichincha	2700
Toxomerus piculus Mengual, 2011	Orellana	200
Toxomerus politus Say, 1823	Galápagos	640
Toxomerus porticola Thompson, 1869	Guayas	253
Toxomerus productus Curran, 1930	Orellana	200
Toxomerus saphiridiceps Bigot, 1884	Tungurahua	1800
Toxomerus slossonae Curran, 1930	Morona Santiago	1020
Toxomerus steatogaster Hull, 1941	Orellana	200
Toxomerus steatornis Hull, 1943	Morona Santiago	1000
Toxomerus sylphus Hull, 1943	Tungurahua	1800
Toxomerus sylvaticus Hull, 1943	Tungurahua	1800
Toxomerus tubularius Hull, 1942	Tungurahua	1800
Toxomerus ultimus Hull, 1951	Pichincha	2700
Toxomerus watsoni Curran, 1930	Pichincha	2700
Tuberculanostoma anntenatum Fluke, 1943	Bolívar	3100
Tuberculanostoma browni Fluke, 1943	Chimborazo	3650
Tuberculanostoma cilium Fluke, 1943	Tungurahua	3200
Tuberculanostoma pectinis Fluke, 1943	Bolívar	3100
Xanthadrus agonis Walker, 1849	Galápagos	864
Xanthadrus agonis Walker, 1849	Galápagos	640
Xanthadrus agonis Walker, 1849	Galápagos	800
Xanthadrus agonis Walker, 1849	Galápagos	777
Xanthandrus albomaculatus Smith, 1877	Galápagos	640
Xanthandrus palliatus Fluke, 1945	Tungurahua	3200
Xanthandrus smithi Van Der Goot, 1964	Galápagos	640
Administration of Structure Vall Del Goot, 1904	Jaiapayus	040

La fauna Neotropical de este grupo es poco conocida y menos de un tercio de sus especies han sido identificadas (Brown et al., 2009). En Ecuador, existe poca información sobre la sirfidofauna presente y en menor medida con respecto a su distribución. Según el último Catálogo de Syrphidae de la Región Neotropical de Thompson et al. (1976) y trabajos como el de Montoya et al. (2012), en nuestro país se registran alrededor de 128 especies.

De igual forma, trabajos como el de Sinclair *et al.*, (2014) Checklist of Galapagos flies, y Boada (2005) Insectos asociados a plantas en peligro de extinción en las Islas Galápagos, han sido una contribución importante de sírfidos presentes en esta región. Otras listas de especies se han publicado para Ecuador (Linsley & Usinger, 1966; Linsley, 1977) lo cual, sirvió también para realizar el presente listado. A pesar de los esfuerzos de recolección, la fauna es todavía poco conocida.

El mayor número de especies de moscas de las flores en Ecuador corresponde a los géneros *Palpada* Macquart, *Ocyptamus* Hull, *Copestylum* Macquart, *Toxomerus* Macquart, *Melanostoma* Fluke y *Allograpta* Osten Sacken. Cuyos géneros están ampliamente distribuidos en la Región Neotropical. *Tuberculanostoma*, es un género exclusivo que habita en el páramo de Ecuador, Colombia, Perú y Venezuela (3000 m s.n.m). Sin embargo, el conocimiento de la distribución y composición de Syrphidae permanece aún lejos de ser completa (Montoya et al., 2012).

A pesar de la alta biodiversidad Neotropical de sírfidos el número de estudios faunísticos publicados es baja y el conocimiento de la fauna es pobre en comparación con otras regiones del mundo (Thompson, 1981).

2.2. Riqueza y abundancia de Syrphidae en los tres tipos de bosque.

Se colectaron un total de 159 individuos, pertenecientes a 11 géneros y 35 especies (Tabla 2). La especie más abundante en el sector de Bombuscaro corresponden a dos: *Palpada sp1 y Toxomerus politus* con 3 individuos y las menos abundantes fueron *Allograpta falcata*, *Allograpta sp1, sp2, Metasyrphus rojasi,* y *Toxomerus saphiridiceps* teniendo solamente un individuo. La especie más abundante en el sector de San Francisco corresponde a *Salpingogaster sp1* con 12 individuos y las menos abundantes fueron *Allograpta sp4, sp7, Copestylum sp3, Melanostoma sp2, Ocyptamus sp1, Salpingogaster sp1, sp2, Sterphus sp1,* y *Toxomerus sp1* teniendo solamente un individuo. La especie más abundante en el sector de Cajanuma corresponde a *Allograpta neotrópica* con 59 individuos y las menos abundantes fueron *Allograpta sp1, sp2, sp4, sp6, Copestylum sp2, sp3, sp4, sp5, Melanostoma sp2, Metasyrphus rojasi, Ocyptamus sp1, sp2, sp3, Platycheirus sp2, <i>Salpingogaster sp2, sp3, sp5, sp6, y Sterphus sp1* teniendo solamente un individuo.

Respecto a la riqueza y diversidad San Francisco registró la mayor cantidad con 17 especies (Tabla 2).

Tabla 2. Riqueza y abundancia de especies registradas en los tres tipos de bosque

Especies	Bombuscaro	San Francisco	Cajanuma
Allograpta			
centropogonis	0	0	2
Allograpta falcata	1	0	3
Allograpta neotrópica	0	0	59
Allograpta sp1	1	0	0
Allograpta sp2	1	0	0
Allograpta sp3	0	5	0
Allograpta sp4	0	1	0
Allograpta sp5	0	4	0
Allograpta sp7	0	1	0
Copestylum sp1	2	0	0
Copestylum sp2	0	0	1
Copestylum sp3	0	1	0
Copestylum sp4	0	0	1
Copestylum sp5	0	0	1
Leucopodella sp 1	0	2	0
Melanostoma sp2	0	1	0
Metasyrphus rojasi	1	0	0
Ocyptamus sp 1	0	1	0
Ocyptamus sp6	1	0	0
Ocyptamus sp9	0	0	1
Palpada sp1	3	0	0
Palpada suprarufa	0	0	2
Platycheirus sp2	0	0	1
Salpingogaster sp1	0	12	0
Salpingogaster sp3	0	0	1
Salpingogaster sp5	0	0	1
Salpingogaster sp6	0	3	1
Salpingogaster sp8	0	1	0
Salpingogaster sp9	0	1	0
Sterphus sp1	0	1	0
Toxomerus politus	3	2	0
Toxomerus	1	0	16
saphiridiceps			
Toxomerus sp2	0	1	8
Volucella sp1	2	3	0
Xanthandrus sp1	0	4	1
Abundancia	16	44	99
Riqueza	10	17	15
Diversidad (Simpson)	0.875	0.8781	0.6095

Para la zona de Bombuscaro se llegó a registrar el 45 % de la fauna de sírfidos, siendo mayor el registro para San Francisco y Cajanuma entre el 60 % y 57 % respectivamente (Tabla 3).

A través de la riqueza podemos determinar que cada bosque presenta una riqueza diferenciada, lo cual podría estar atribuido al tipo de bosque (Amorim, 2009). La altitud es otro factor limitante en la distribución de muchos organismos, constituyéndose como la variable ambiental más fuerte (Nishida, Rotheray & Thompson, 2002). En altitudes elevadas, una fauna muy especializada está presente que pueden toleran las determinadas variaciones climáticas En zonas bajas, existen condiciones más estables y por ende más especies (Guerrero & Sarmiento, 2010). De acuerdo a nuestro estudio los géneros Allograpta, Copestylum, Toxomerus, Salpingogaster, y Ocyptamus están presentes a lo rango de este rango altitudinal (0-3 000 m s.n.m) es decir, desde tierras bajas hasta el Páramo.

Tabla 3. Estimadores no paramétricos de riqueza en los tres tipos de bosque

	Bombuscar	0	San Francis	sco	Cajanuma	
Estimadores	Especies Estimadas	Especies Observadas	Especies Estimadas	Especies Observadas	Especies Estimadas	Especies Observadas
ACE	17.51		27.6		44.21	
ICE	50		38.47		30.6	
CHAO1	13.62		28.73		26.88	
CHAO2	22.3	10	27.69	17	25.69	15
JACK1	16.6		26.5		24.5	
JACK2	22.95		32.94		30.94	
BOOTSTRAP	11.99		21.04		19.03	

Las comunidades de San Francisco y Cajanuma muestran una mayor equitatividad en relación a Bombuscaro, igualmente ambas zonas presentan la mayor cantidad de especies únicas o raras (Gráfico 2). Sin embargo tomado en cuenta la distribución de las abundancias y la curva de mejor ajuste, la zona de San Francisco presenta la mayor equitatividad de todas.

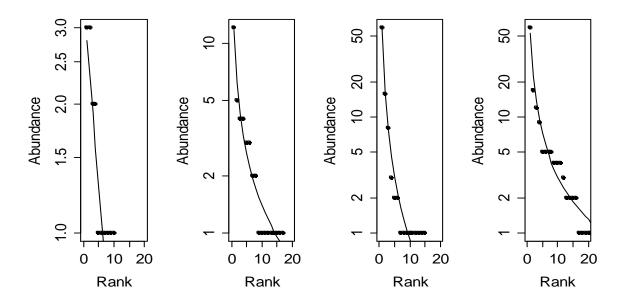


Figura 2. Rango de abundancias: a) Bombuscaro, b) San Francisco, c) Cajanuma, d) Todas las zonas.

La comunidad de sírfidos en cuanto a su riqueza, diversidad sobretodo abundancia se ven influenciadas positivamente por el tipo de bosque (Tabla 4). Sin embargo no se ve ningún efecto sobre la equitatividad de la comunidad (Tabla 4).

Tabla 4. Resultados de los Modelos Lineales Generalizados testando el efecto del bosque (Bombuscaro, San Francisco, Cajanuma) sobre la Riqueza, Abundancia, Diversidad y Equitatividad de moscas Syrphidae. Los valores significativos están en negrita.

	Bombuscaro		San Francisco		Cajanuma	
Efecto	Parameter value	Pr (> Z)	Parameter value	Pr (> Z)	Parameter value	Pr (> Z)
Riqueza	2.615	0.009	2.392	0.017	0.957	0.338
Abundancia	4.653	<0.001	3.465	<0.001	6.764	<0.001
Diversidad	2.192	0.028	1.931	0.054	-0.229	0.819
Equitatividad	0.447	0.655	1.194	0.232	0.277	0.782

Los géneros *Copestylum* y *Allograpta*, son los más conocidos, abundantes y diversos (Thompson,1981) y la mayor parte de esta diversidad se produce dentro de los bosques tropicales, esto debido a la alta frecuencia de sitios húmedos donde pueden desarrollarse (Rotheray et al., 2007). Según Montoya 2012, en la región amazónica los géneros con mayor representatividad corresponden a: Copestylum, Ocyptamus, Palpada, Toxomerus y Allograpta. Estos cinco géneros son los más ampliamente distribuidos en la región Neotropical.

CONCLUSIONES

A pesar de la alta biodiversidad Neotropical de sírfidos el número de estudios faunísticos publicados es baja y el conocimiento de la fauna aún es pobre en comparación con otras regiones del mundo. El orden Diptera representado por el 2.50% de especies para Ecuador, es poco representativo a nivel mundial, debido a la falta de estudios y taxónomos especializados en este grupo.

La diversidad de Sírfidos para el Ecuador podría ser mayor sí, la cantidad de investigaciones fueran múltiples El número de especies para Ecuador, debería ser mucho mayor de acuerdo al reportado en el *Checklist*, ya que una parte muy significativa de esta fauna aún sin descubrir debe estar compuesta por especies endémicas.

De los tres tipos de bosque estudiados, San Francisco es el más rico y diverso, es decir, la diversidad y abundancia de sírfidos se ve influenciada positivamente por el tipo de bosque, donde la diversidad se produce precisamente en los bosques tropicales.

RECOMENDACIONES

Realizar más estudios sobre esta familia (Diptera: Syrphidae) dentro del Parque Nacional Podocarpus, y demás áreas protegidas de nuestro país que son sitios prioritarios de estudio. Así como también en zonas intervenidas puesto que este grupo ha poblado también dichas zonas.

De acuerdo a los resultados obtenidos, se podría realizar estudios de taxonomía, y calidad ambiental de este importante grupo dentro de las zonas no intervenidas del Parque Nacional Podocarpus.

Incrementar el número y tiempo de muestreo en diferentes gradientes altitudinales, para conocer la diversidad y el comportamiento de la comunidad de Sírfidos en los tres tipos de bosque del Parque Nacional Podocarpus.

BIBLIOGRAFÍA

- Adler, P.H., & Foottit, R.G. (2009). Introducción. En: Foottit, R.G., Adler, P.H. (Eds.), Biodiversidad de Insectos: Ciencia y Sociedad. Blackwell Publishing, Oxford, 1-6 pp.
- Amorim, D. (2009). Neotropical Diversidad Diptera: riqueza, patrones y perspectivas.
 En: Pape, T., Bickel, D., Meier, R. (Eds.), diversidad Diptera: estado, desafíos y herramientas. Brill, Leiden, 71-97.
- Brehm, G., Homeier, J., Fiedler, K., Kottke, I., Illig, J., Noske, Nuevo México, Werner, FA, Breckle, S.W (2008). Los bosques de montaña de lluvia en el sur de Ecuador como un Hotspot de Biodiversidad Limitado conocimiento y patrones divergentes. En: Beck, E. et al. (Eds.), Los gradientes de un Ecosistema de Montaña Tropical del Ecuador. Estudios Ecológicos, vol. 198. Springer, Berlin, pp 15-23.
- Brown, B.V., Borkent, A., Cumming, J.M., Wood, D.M., Woodley, N.E. & Zumbado,
 M.A. (Eds). (2009). Manual of Central American Diptera. Vol. 1. NRC Press, Ottawa,
 714 pp.
- Colwell, R. (2002). EstimateS: statistical estimation of species richness and shared species from samples. Versión 5. Departament of Ecology and Evolutionary Biology,
 University of Connecticut, U.S.A. Accesible en internet: http://viceroy.eeb.uconn.edu/estimates
- Courtney, GW, Pape, T., Skevington, JH, Sinclair, BJ (2009). Biodiversidad de Diptera. En: Foottit, R.G., Adler, P.H. (Eds.), Biodiversidad de Insectos: Ciencia y Sociedad. Blackwell Publishing, Oxford, pp 185-222.
- Dufrene M, & Legendre, P. (1997). Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs 67:345-366.
- Feinsinger, P. (2001). Designing field studies for biodiversity conservation. Island Press.

- Engel, M. & Grimaldi, D. (2004). New light shed on the oldest insect. Nature 427: 627-630.
- Galante, E., & Marcos-García, M.A., (2004). Decomposer Insects. In: Capinera, J.L. (Ed.), Encyclopedia of Entomology. Kluwer Academic Publisher, USA, pp. 664e674.
- Gerdes, C. (1974). A New Species of Ecuadorean Toxomerus (Diptera: Syrphidae).

 Entomologycal News 85: 279-283: http://biostor.org/reference/77477.
- Greco, C. (1998). Sírfidos afidófagos (Diptera, Syrphidae): identificación rápida a campo de estados preimaginales y lista de enemigos naturales de las especies más frecuentes en cereales y forrajes en la provincia de Buenos Aires (Argentina). Acta Entomológica Chilena 22: 7-11.
- Guerrero, R.J., & Sarmiento, C.E. (2010). Distribución altitudinal de Hormigas (Hymenoptera, Formicidae) en la vertiente Noroccidental de la Sierra Nevada de Santa Marta (Colombia). Acta Zool Mex (ns) 26 (2):279–302.
- Hippa H, & Thompson F.C (1983). Meropidia a new genus of flower flies (Diptera:
 Syrphidae) from South America. Pap Avulsos Zool 35:111–115
- Hippa, H. & Stahl, G. (2005). Los caracteres morfológicos de adultos Syrphidae:
 descripciones y utilidad filogenética. Acta Zoologica Fennica 215, 1-72.
- Linsley, E.G & Usinger, R.L. (1966). Insects of the Galapagos Islands. Proc Calif Acad Sci 33:113–196.
- Linsley, G. (1977). Insects of the Galápagos (Supplement). Occas Pap Calif Acad Sci 125:1–50.
- López, G. & Maza, N. (2013). Lista de sírfidos afidófagos y primeros registros de Pseudodoros clavatus y Eupeodes rojasi (Diptera: Syrphidae), potenciales agentes de control biológico en la provincia de Mendoza, Argentina. Revista de la Sociedad Entomológica Argentina 72(3-4): 237-240. ISSN.

- Madsen, J. E. (1989). Aspectos Generales de la Flora y Vegetación del Parque Nacional Podocarpus En Boletín Informativo sobre la Biología, Conservación y Vida Silvestre (pp 59-74). Loja-Ecuador.
- Magurran, E. (2001). Ecological diversity and its measurement. Princeton University
 Press, New Jersey, 179 pp
- Magurran, A. E (2004). Explaining the excess of rare species in natural species abundance distributions *Nature* 422, 714-716.
- Marinoni, L. & F.C. Thompson. (2003). Flower flies of southeastern Brazil (Diptera: Syrphidae) Part I. Introduction and new species. Stud. Dipterol. 10(2): 565–578.
- Mengual, X. & Thompson. F. C. (2008). A taxonomic review of the *Palpada ruficeps* species group, with the description of a new flower fly from Colombia (Diptera: Syrphidae). Zootaxa. ISSN.
- Mittermeier, P. R., & Mittermeier, C. G. (1997). Megadiversidad. Los Países biológicamente más ricos del Mundo. CEMEX y Agrupación Sierra Madre. México.
- Montoya, A. L., Pérez, S.P & Wolff, M. (2012). The Diversity of Flower Flies (Diptera: Syrphidae) in Colombia and Their Neotropical Distribution. *Neotropical Entomology* 41:46–56.
- Muñoz, A. (2005). Polinización de los cultivos. Ediciones Mundi-prensa. 38-39 pp.
- Nishida, K., Rotheray, G., & Thompson, F.C. (2002). First non-predaceous syrphine flower fly (Diptera: Syrphidae): a new leaf-mining Allograpta from Costa Rica. Studia dipterologica 9:421–436.
- Pape, T. (2009). Importancia económica de Diptera. En: Brown, BV, Borkent, A.,
 Cumming, JM, madera, DM, Woodley, NE, Zumbado, MA (eds.), Manual de
 Centroamérica Diptera, Volumen 1. NRC Research Press, Ottawa, 65-77 pp.
- Pape, T. & Thompson, F.C. (2010). Systema Dipterorum, Versión 1.0. http://www.diptera.org/, consultado el 12/09/2012.

- Ricarte, A., & Marcos-García. M.A. (2008). Los sírfidos (Diptera: Syrphidae) del Parque Nacional de Cabañeros (España): una herramienta para la gestión. Bol Asoc esp Entomol. 32: 19-32.
- Ricarte, A., Marcos-García M. A., & Moreno. C. E (2011). Assessing the effects of vegetation type on hoverfly (Diptera: Syrphidae) diversity in a Mediterranean landscape: implications for conservation. J. Insect Conserv. 15: 865 - 877.
- Rojo, S., Gilbert, F., Marcos-García, M. A., Nieto, J., & Mier, M. (2003). A world review of predatory hoverflies (Diptera, Syrphidae: Syrphinae) and their prey. CIBIO (Centro Iberoamericano de la Biodiversidad), Universidad de Alicante, Sapin. 319 p.
- Rotheray, G.E., Hancock, E.G., Marcos-García, M.A. (2007). Neotropical Copestylum
 (Diptera, Syrphidae) breeding bromeliads (Bromeliaceae) including 22 new species.
 Zool J Linn Soc 150:267–317.
- Sinclair, B. (2012). CDF Checklist of Galapagos Flies.
- Speight, M.C. & Castella. E. (2006). An approach to interpretation of lists of insects using digitised biological information about the species. *J. Insect Conservation* 5, 131-139.
- Srivastava, D., Kolasa, J. Bengtsson, A. González, S., Lawler, T., Miller, P. Munguia,
 T. Romanuk, D., Schneider, C., & Trzcinski, M. (2004). Are natural microcosms useful
 model systems for ecology? Trends Ecol. Evol. 19: 379-384.
- Thompson F.C, Vockeroth J.R, & Sedman Y.S (1976). Family Syrphidae. Catalogue of the Diptera of America south of the United States 46: 195p.
- Thompson F.C. (1981). The flower flies of the West Indies (Diptera: Syrphidae). Mem Entomol Soc Wash 9:1–200.
- Thompson, F.C. (1999). A key to the genera of the flower flies (Diptera: Syrphidae) of the Neotropical region including descriptions of new genera and species and a glossary of taxonomic terms. Contrib. Entomol. Int. 3(3): 322-378.

- Thompson, F.C & Rotheray, G. E (2010). Syrphidae (flower flies). In: B.V. Brown et al. Manual of Central American Diptera. Vol. 2. NRC Research Press. Ottawa. pp. 763-792.
- Thompson F.C, Rotheray G.E, & Zumbado M.A (2010). Syrphidae. In: Brown (ed)

 Manual of Central American Diptera: Volume 2. NRC, Ottawa, ON, Canada, p 728.
- Tscharntke, T., Klein, A., Kruess, A., Steffan, D., & Thies, C. (2005). Landscape perspectives on agricultural intensification and biodiversity ecosystem service management. Ecology. 8: 857-874.
- Townes, H. (1972). A ligth-weight Malaise trap. Entomol News. 64: 253-262.
- Vockeroth, J. R., & F. C. Thompson. (1987). Syrphidae, pp. 713-743. Manual of Neartic Diptera, vol. 2. Agriculture Canada Research, Otawa, Canada.
- Yachi, S. & Loreau, M. (1999). Biodiversity and ecosystem productivity in a fluctuating environment. Proc National Academy of Sciences of the United States of America PNAS, Ecology. 96(4): 1463-1468.

ANEXOS

Anexo 1. Parque Nacional Podocarpus, Bombuscaro 2015.

Anexo 2. Estación Científica San Francisco, 2015.

Anexo 3. Índice de Simpson

	Bombuscaro	San Francisco	Cajanuma
Taxa_S	10	17	15
Individuals	16	44	99
Dominance_D	0,125	0,1219	0,3905
Simpson_1-D	0,875	0,8781	0,6095
Shannon_H	2,187	2,459	1,488
Evenness_e^H/S	0,8911	0,6876	0,2951
Brillouin	1,606	2,028	1,315
Menhinick	2,5	2,563	1,508
Equitability_J	0,9499	0,8678	0,5493
Berger-Parker	0,1875	0,2727	0,596
Chao-1	15	29	27