

TRABAJO DE FIN DE CARRERA PREVIA A LA OBTENCIÓN DEL TITULO DE INGENIERO CIVIL.

TEMA:

"AUTOMATIZACION DE LAS HERRAMIENTAS DE CÁLCULO PARA EL ANALISIS Y DISEÑO DE ENCAUZAMIENTO DE RIOS — IMPLEMENTACION EN EL LABORATORIO VIRTUAL DE HIDROLOGIA (HYDROVLAB)"

Autor: Mario Germán Ordóñez Gonzaga.

Director: Dr. Fernando Rodrigo Oñate Valdivieso.

LOJA - ECUADOR

2010

Cesión de Derechos

Yo, Mario Germán Ordóñez Gonzaga declaro ser el autor del presente trabajo y eximo expresamente a la Universidad Técnica Particular de Loja y a sus representantes legales de posibles reclamos o acciones legales.

Adicionalmente declaro conocer y aceptar la disposición del Art. 67 de Estatuto Orgánico de la Universidad Técnica Particular de Loja que en su parte pertinente textualmente dice: "Forman parte del patrimonio de la Universidad la propiedad intelectual de investigaciones, trabajos científicos o técnicos y tesis de grado que se realicen a través, o con apoyo financiero, académico o institucional (operativo) de la Universidad".

Mario German Ordóñez Gonzaga

Certificación

Dr. Fernando Rodrigo Oñate Valdivieso.

DOCENTE INVESTIGADOR DE LA UNIVERSIDAD TÉCNICA PARTICULAR DE LOJA, ESCUELA DE INGENIERÍA CIVIL.

CERTIFICO:

Haber efectuado la revisión y corrección de la Tesis "AUTOMATIZACION DE LAS HERRAMIENTAS DE CÁLCULO PARA EL ANALISIS Y DISEÑO DE ENCAUZAMIENTO DE RIOS – IMPLEMENTACION EN EL LABORATORIO VIRTUAL DE HIDROLOGIA (HYDROVLAB)." la misma que cumple con las recomendaciones y sugerencias; razón por la cual autorizo la presentación de la misma para los fines legales pertinentes.

Por lo expuesto autorizo su presentación, disertación y defensa.

Loja, 20 de Agosto del 2010

Dr. Fernando Rodrigo Oñate Valdivieso.

DIRECTOR

Autoría

La originalidad de la investigación, procesamiento de la información, obtención de resultados, discusión, conclusiones y recomendaciones, así como la metodología manejada en la presente Tesis de grado: "AUTOMATIZACION DE LAS HERRAMIENTAS DE CÁLCULO PARA EL ANALISIS Y DISEÑO DE ENCAUZAMIENTO DE RIOS – IMPLEMENTACION EN EL LABORATORIO VIRTUAL DE HIDROLOGIA (HYDROVLAB)." es de exclusiva responsabilidad del autor.

Mario Germán Ordóñez Gonzaga.

Agradecimiento

Mediante el presente dejo constancia de mi agradecimiento a:

A Dios y a mis Padres por haberme dado el valor y apoyo suficiente para seguir adelante para culminar de buena manera la carrera de ingeniería Civil.

A la Universidad Técnica Particular de Loja, en sus Autoridades, a los docentes de la Escuela de Ingeniería Civil, quienes han hecho posible que llegue a formarme como un verdadero profesional.

Mi agradecimiento a todos quienes conforman la Escuela de Ingeniería Civil, a mis apreciados amigos y compañeros.

El Autor

					4				
11	e	\sim	10	2	•	\mathbf{a}	۲ı	2	
ш		u	L	a	L			\boldsymbol{a}	_

Dedico el presente trabajo a Dios, a mis padres Alonso Ordóñez y Flor Gonzaga quienes han sido los cimientos en mi formación.

A mis hermanos Francisco y Jenny, A mi sobrina Johanna que me han brindado su compañía, me apoyaron e incentivaron para seguir adelante.

Mario Ordóñez

Índice - Contenido

1.	GE	NER	ALIDADES	15
	1.1.	Intr	oducción	15
	1.2.	Intr	oducción a la ingeniería fluvial	16
	1.3.	Obj	etivos y efectos de encauzamiento	17
	1.4.	Cor	ndicionantes de un cauce estable	19
	1.5.	Est	abilidad de cauces	20
	1.5.	1.	Variables y condiciones de diseño	21
	1.6.	Obj	etivos	22
	1.6.	1.	Objetivo general	22
	1.6.	2.	Objetivos específicos	22
2.	MA	TER	IALES Y MÉTODOS	24
2	2.1.	Ma	teriales en cauces	24
	2.1.	1.	Análisis de granulometría para el material de lecho de fondo	24
	2.1.	2.	Determinación del peso específico.	25
2	2.2.	Mé	todos de simulación	25
	2.2	.1.	Variables de diseño	25
	2.2.	2.	Estudio de transporte de sedimentos	28
	2.2.	3.	Metodologías para el cálculo de estabilidad de cauces	35
	2.2.	4.	Obras civiles	76
3.	IMF	PLEN	MENTACIÓN DE LA APLICACIÓN	92
;	3.1.	Lab	oratorio virtual de hidrología (HYDROVLAB)	92
;	3.2.	Apl	icación en Microsoft VisualStudio.net	93
;	3.3.	Dia	grama de flujo general para la aplicación	94
;	3.4.	Inte	erface del usuario	101
	3.4.	1.	Variables de entrada	101
	3.4.	2.	Variables de salida	109
	3.4.	3.	Interpretación de los resultados	113
(3.5.	Lim	nitaciones y desventajas de la aplicación	117
;	3.6.	Ver	ntajas de la aplicación	117
4.	AN	ALIS	IS Y COMPARACIÓN DE RESULTADOS	119

4.1. Int	roducción	119
4.2. Eje	emplo 1	119
4.2.1.	Datos de entrada	120
4.2.2.	Cálculo de la curva de remanso mediante Leach	123
4.2.3.	Control vertical, Método de Altunin.	125
4.2.4.	Control horizontal	130
4.2.5.	Profundidades medias y máximas	131
4.2.6.	Socavación en tramos rectos, material no cohesivo	132
4.2.7.	Cuadro de resumen de resultados	133
4.2.8.	Obras transversales	134
4.3. Eje	emplo 2	141
4.3.1.	Datos de entrada	142
4.3.2.	Control vertical, Maza y Cruickshank	142
4.3.3.	Obras transversales	145
4.4. Eje	emplo 3	146
4.4.1.	Datos de entrada	146
4.4.2.	Control vertical, Blench	147
4.4.3.	Socavación de tramos rectos, material cohesivo	148
4.5. Sir	mulación y comparación de resultados	149
4.5.1.	Ejemplo 1	150
4.5.2.	Ejemplo 2	153
4.5.3.	Ejemplo 3	153
5. CONCI	LUSIONES Y RECOMENDACIONES	155
5.1. Co	onclusiones	155
5.2. Re	ecomendaciones	156
Referencia	Bibliográfica	157

Índice – Figuras

Figura 2.1. Coeficientes de χ y de τ_o para la aplicación de la fórmula de DUBOYS	32
Figura 2.2. Esquema de curva sinusoidal	64
Figura 2.3. Espigones formados por pilotes metálicos	77
Figura 2.4. Diques transversales	77
Figura 2.5. Recubrimiento de márgenes	. 78
Figura 2.6. Obras transversales en forma escalonada	80
Figura 2.7. Umbral de fondo	81
Figura 2.8. Azud	86
Figura 2.9. Dique de retención	90
Figura 3.1. Página de inicio del laboratorio virtual de hidrología	92
Figura 3.2. Diagrama de flujo general de la aplicación	95
Figura 3.3. Diagrama de flujo de la curva de remanso	96
Figura 3.4. Diagrama de flujo de Altunin	97
Figura 3.5. Diagrama de flujo de Maza y Cruickshank	98
Figura 3.6. Diagrama de flujo de Blench	98
Figura 3.7. Diagrama de flujo del cálculo del control horizontal	99
Figura 3.8. Diagrama de flujo del cálculo de socavación en tramos rectos	99
Figura 3.9. Diagrama de flujo de profundidades medias y máximas	100
Figura 3.10. Diagrama de flujo del cálculo del perfil rectificado	100
Figura 3.11. Cuadro de texto habilitados para "LECHO GRANULAR"	103
Figura 3.12. Cuadro de texto habilitados para "LECHO ARENOSO"	103
Figura 3.13. Cuadro de texto habilitados para "LECHO COHESIVO"	104
Figura 3.14. Perfil transversal de la abscisa longitudinal 0+ 010	105
Figura 3.15. Datos del perfil transversal de la abscisa longitudinal 0+ 010	106

Figura 3.16. Hoja de excel con los datos de los perfiles transversales	106
Figura 3.17. Guardar el texto (delimitado por tabulaciones)	107
Figura 3.18. Formato del archivo "XXXXXperfiles.txt"	107
Figura 3.19. Formato del archivo "XXXXXcurvas.txt"	108
Figura 3.20. Archivos "XXXXXperfiles.txt" y "XXXXXcurvas.txt" subidos correctamente	108
Figura 3.21. Perfil longitudinal	109
Figura 3.22. Perfil transversal de la abscisa 1+ 000	110
Figura 3.23. Datos para la colocación de obras transversales	111
Figura 3.24. Perfil rectificado con traviesas	112
Figura 3.25. Perfil rectificado con azudes	112
Figura 3.26. Cuadro de resultados	113
Figura 3.27. Formato tipo para curvas	114
Figura 3.28 Resultados de obras transversales	116
Índice – Gráficos	
Gráfico 4.1. Sección transversal de la abscisa 0+ 028.72	120
Gráfico 4.2. Perfiles del cauce, abscisa 0+ 28.72 – 0+ 939.38, Q =15.63 m ³ /s	135
Gráfico 4.3. Perfil Creager en la abscisa 0+ 420	137
Figura 3.18. Formato del archivo "XXXXXperfiles.txt"	146
Índice – Tablas	
Tabla 2.1 Coeficientes de K ₁ , K ₂ , K ₄	42
Tabla 2.2 Valores de m y A	44
Tabla 2.3. Agrupación de las ecuaciones y su aplicación	53
Tabla 2.4. Valores de k_t y e_1	66
Tabla 2.5. Valores e_2	66
Tabla 2.6: Valores del coeficiente β que depende de la frecuencia de la avenida	71

Tabla 2.7: Valores de x y 1/(x+1) para suelos cohesivos y no cohesivos	72
Tabla 2.8 Valores de Ψ	72
Tabla 2.9. Valores de μ	72
Tabla 3.1. Formato de la tabla de resultados	115
Tabla 4.1. Trascripción de abscisas	120
Tabla 4.2. Datos de la sección transversal de la abscisa 0+028.72	121
Tabla 4.3. Caudales de aporte de cada quebrada	122
Tabla 4.4. Granulometría de la abscisa 2+240	122
Tabla 4.5. Datos del perfil Creager	137
Tabla 4.6. Comparación de resultados	150
Tabla 4.7. Comparación de relaciones hidráulicas	151
Tabla 4.8. Comparación de coeficientes en los tramos	152

Glosario de Términos

Método racional.

 $Q = \text{Caudal en } (\text{m}^3/\text{s}).$

 $A = \text{Área de la cuenca (Km}^2).$

I = Intensidad de la tormenta (mm/h).

C =Coeficiente de escurrimiento, toma valores de 0 a 1.

Método de Ven Te Chow.

 $Q_p = \text{Caudal de Punta } (\text{m}^3/\text{s}).$

 P_e = Es la precipitación efectiva, estimada con el número de la curva (mm).

A =Área de la cuenca en Km^2 .

de = Duración en exceso (horas).

Z = Es un factor de reducción de pico, (a dimensional).

tr = Tiempo de retraso (horas).

L =Longitud del cauce principal (m).

S = Pendiente del cauce (%).

Método para estimar la velocidad de caída de las partículas, Hallermeier (1981).

d = Diámetro de la partícula en (m).

 Re_p = Número de Reynolds de la partícula.

 w_s = Velocidad de caída de las partículas (m/s).

v = Viscosidad cinemática del fluido en (m^2/s) .

g = Aceleración de la gravedad (m/s²).

 $\Delta =$ Densidad relativa de los sedimentos.

 D_{ar} = Parámetro a dimensional

 γ_s = Peso específico de las partículas

 γ = Peso específico del agua

Ecuación de DUBOYS (1879).

 q_{sf} = Carga unitaria de sedimento de fondo, [Kg/s/m]

 $\chi =$ Coeficiente en función del diámetro de las partículas (ver figura 2.1)

 $\tau_o =$ Fuerza tractiva de la corriente [Kg/m²]

 $\tau_c =$ Fuerza tractiva crítica [Kg/m²]

 $\tau =$ Fuerza tractiva [Kg/m²]

 γ = Peso específico del agua [Kg/m³]

R =Radio hidráulico de la sección [m]

I = Pendiente de la corriente [m/m]

Ecuación de Meyer - Peter y Mueller.

 $Q_B =$ Carga unitaria de sedimento de fondo, [Kg/s/m]

 γ_s = Peso específico del material de fondo [Kg/m³]

g = Aceleración de la gravedad [m/s²]

 $\Delta =$ Densidad relativa

 $D_m =$ Diámetro medio de las partículas, [m]

n' = Coeficiente de rugosidad debida a las partículas,

n = Coeficiente de rugosidad de Manning.

 $\tau = Fuerza tractiva [Kg/m²]$

 $D_{90} =$ Diámetro de las partículas al 90% [mm]

Ecuación de Engelund - Hansen.

 Q_{BT} = Transporte total obtenido para agua clara [Kg/s/m]

 γ_s = Peso específico del material de fondo [Kg/m³]

U = Velocidad media [m/s]

 $\tau_* = Valor de tensión de Shields$

g = Aceleración de la gravedad [m/s²]

 $\Delta =$ Densidad relativa

 $D_{50} =$ Diámetro de las partículas al 50% [mm]

 γ = Peso específico del agua[Kg/m³]

R =Radio hidráulico [m]

S = Pendiente de la corriente [m/m]

Trazado del eje del río.

 $L_i =$ Longitud en el tramo j [m]

Abcs(i + 1) = Valor de la abscisa en el punto (i + 1) [m]

Abcs(i) = Valor de la abscisa en el punto (i) [m]

 $S_i =$ Pendiente en el tramo j [m]

Cota(i + 1) = Valor de la abscisa en el punto (i + 1) [m. s. n. m.]

Cota(i) = Valor de elevación en el punto (i) [m. s. n. m.]

 $S_m =$ Pendiente media [m]

Cota(1) = Valor de la abscisa en el punto (1) [m. s. n. m.]

Cota(n) = Valor de elevación en el punto (n) [m. s. n. m.]

Abcs(1) = Valor de la abscisa en el punto (1) [m]

Abcs(n) = Valor de la abscisa en el punto (n) [m]

L = Longitud total del tramo [m]

Cálculo de la curva de remanso mediante Leach.

 $K_d =$ Capacidad de conducción.

n = Coeficiente de rugosidad de Manning

A =Área hidráulica [m²]

R =Radio hidráulico [m]

Q = Caudal de diseño [m³/s].

S = Pendiente del cauce [m/m]

 $Z_{(i+1)} =$ Cota de energía en el punto (i+1) [m].

 $Cota_1 = Valor de elevación en el punto (1) [m. s. n. m]$

 $y_1 =$ Tirante de agua en el punto (1) [m].

 $Z_{(i)}$ = Cota de energía en el punto (i + 1) [m].

 $Cota_2$ = Valor de elevación en el punto (2) [m. s. n. m]

 $y_2 =$ Tirante de agua en el punto (2) [m].

 $k_{d1} =$ Capacidad de conducción para la sección 1

 k_{d2} = Capacidad de conducción para la sección 2

L = Longitud del tramo [m]

Teoría de régimen.

U = Velocidad media de la sección en [m/s]

y = Tirante de la sección [m]

C = Coeficiente que varia 0.67 a 0.95 (Lacey) ; 0.25 a 1.2 (otros autores)

m = Exponente que varia 0.52 a 0.64 (Lacey); 0.61 a 0.73 (otros autores)

Método de Simons y Albertson.

 $B_m =$ Ancho medio [m]

Q = Caudal de diseño [m³/s]

 K_1 = Coeficiente que depende del material de fondo (ver tabla 2.1)

y = Tirante de agua [m]

A =Área hidráulica [m²]

 K_2 = Coeficiente que depende del material de fondo (ver tabla 2.1).

U = Velocidad media de la sección en [m/s]

S = Pendiente del cauce [m/m]

g = Aceleración de la gravedad [m/s²]

v = Viscosidad de la mezcla agua – sedimento en $[m^2]$

 K_4 = Coeficiente que depende del material de fondo (ver tabla 2.1).

Método de Altunin.

m =Exponente que depende de la morfología, ecuación (2.35)

R = Radio hidráulico [m].

 $D_m =$ Diámetro medio de partículas [m].

S = Pendiente del cauce.

A =	Coeficiente que depende de la morfología de río, ecuación (2.3	36)

n = Coeficiente de rugosidad de Manning

K = Coeficiente que depende de la resistencia de las orillas

Densidad relativa de los sedimentos

 $B_r =$ Ancho regulado del cauce [m].

Q =Caudal de diseño [m³/s].

 $\Delta =$

S = Pendiente en prueba [m/m].

 H_{mr} = Tirante medio regulado del cauce [m].

 $H_{mn} =$ Tirante medio natural del cauce [m].

V = Velocidad media del tramo [m/s].

 $B_n =$ Ancho natural del cauce [m].

 V_{mc} = Velocidad media del torrente regulado[m/s].

 P_r = Capacidad de transporte del cauce regulado

w = Velocidad de caída de las partículas

 P_n = Capacidad de transporte del cauce natural

 V_{or} = Velocidad de arrastre del torrente en el cauce regulado [m/s]

 d_m = Es el diámetro medio de las partículas del cauce[m]

 V_{on} = Velocidad de arrastre del torrente en el cauce natural [m/s]

 q_{fr} = Capacidad de arrastre de los sedimentos de fondo del cauce regulado

 q_{fn} = Capacidad de arrastre de los sedimentos de fondo del cauce natural

 $V_m =$ Es la velocidad media del cauce [m/s]

 Q_{fr} = Caudal de sedimentos del fondo regulado

K1 = Coeficiente del ancho activo del movimiento de los sedimentos de fondo.

 Q_{fn} = Caudal de sedimentos del fondo natural

q = Caudal unitario [m³/s/m]

 V_{ls} = Velocidad límite superior [m/s]

 $V_f =$ Velocidad de fondo [m/s]

Método de Maza y Cruickshank.

 α = Coeficiente que se describe en la ecuación (2.57)

 w_{50} = Velocidad de caída de las partículas con D_{50} [m/s]

Δ= Densidad relativa de los sedimentos expresada en la ecuación (2.9)

 D_{84} = Diámetro de las partículas al 84% [m]

Q =Caudal de diseño [m³/s].

Tirante de agua [m] y =Ancho medio del cauce [m] $B_m =$ S =Pendiente [m/m] Coeficiente de rugosidad de Manning n =Coeficiente de simplificación $\epsilon =$ Aceleración de la gravedad [m/s²] g =Densidad relativa $\Delta =$ Diámetro medio de las partículas [m] $D_m =$ Coeficiente de simplificación N =n' =Coeficiente de rugosidad debido a las partículas; ver ecuación (2.16) Valor de tensión de Shields; ver ecuación (2.18) $\tau_* =$ $\beta =$ Coeficiente de simplificación Diámetro de las partículas al 35% [m] $D_{35} =$ Ancho medio regulado del cauce [m] B =Exponente que depende de la morfología, ecuación (2.35) m =K =Coeficiente que depende de la resistencia de las orillas H =Calado del cauce regulado [m] S =Pendiente del cauce [m] Transporte de sedimentos calculada con (2.15) $Q_B =$

Es un constante que depende del exponente m,(2.72)

Método de Blench.

 $Q_{BT} =$

w =

Transporte de sedimentos

Factor de fondo,
Factor de orilla,
Concentración del material arrastrado en la capa de fondo $[ppm]$
Se obtiene de la ecuación (2.74)
Diámetro medio de las partículas de fondo $[m]$
Se obtiene al utilizar la ecuación (2.73). Pero sustituyendo en ella el diámetro del
material de las orillas, cuando es arena
Viscosidad de la mezcla agua sedimento [m²/s]
Tirante de la corriente medida del fondo a la superficie, $[m]$
Velocidad media de la corriente [m/s].
Pendiente en prueba [m/m].

g = Aceleración de la gravedad [m/s²]

A =Área hidráulica $[m^2]$

 b_m = Ancho medio de la sección. Cumple con la relación mostrada en (2.79)

K = Agrupa a las principales constantes, ecuación (2.83)

k = Talud de las orillas

Control horizontal del cauce.

R = Radio de la curva. [m]

 $B_r = Ancho del cauce regulado [m]$

 $B_c = Ancho de la curva. [m]$

 $K_1 =$ Coeficiente que depende del ángulo de deflexión

 $\theta =$ Ángulo de deflexión

x_o = Longitud máxima en x de la curva medida desde el PI (figura 2.2)

y_o = Longitud máxima en y de la curva medida desde el PI (figura 2.2)

Cálculo de profundidades medias y máximas (socavación en tramos curvos).

 $H_{max(r)} = \text{Profundidad máxima regulada [m]}.$

 H_{mr} = Es la profundidad media regulada obtenida por el método de Altunin, Maza y Cruickshank o Blench.

K = Coeficiente que depende del tipo del río. Para ríos montañosos y sub montañosos (1.6 – 1.4).

 $K_t =$ Coeficiente que depende de la relación R/B. (tabla 2.4).

R = Radio hidráulico media del tramo [m].

B = Ancho medio [m].

 $H_{maxc(r)} = \text{Profundidad máxima de la curva} [m].$

 $e_1 =$ Coeficiente que depende de la relación R/B. (tabla 2.4).

 $e_2=$ Coeficiente que depende de la pendiente de los taludes. (tabla 2.5).

Cálculo de la profundidad de la socavación en suelos homogéneos.

 $V_r =$ Velocidad de la corriente [m/s].

 $\alpha =$ Es una constante para cualquier río dada por la ecuación (2.97).

 $H_o =$ Profundidad antes de la erosión [m].

 $H_s =$ Tirante considerado donde se desea conocer el valor de V_e [m].

	_		- 0	-
0 —	Coudala	do dicoño	lm3/	۸I
0 =	Caudai G	de diseño	1111 / /	SI.

 $H_m =$ Tirante medio medido entre la superficie del agua al pasar la avenida y el fondo original. Se obtiene de dividir el área hidráulica en el ancho de la superficie libre.

 β = Coeficiente que depende de la frecuencia con se presente la avenida: (ver tabla 2.6) o ecuación (2.98) (Hernandez, Molina, & Salatiel)

 $\mu =$ Coeficiente que depende la contracción del cauce (tabla 2.9)

S = Pendiente del cauce [m/m].

n = Coeficiente de rugosidad de Manning.

 $T_r =$ Periodo de retorno.

 $V_e = Velocidad erosiva [m/s].$

 γ_d = Peso volumétrico del material seco que se encuentra a la profundidad H_s .

x =Exponente variable que está en función del peso volumétrico γ_d . (ver tabla 2.7).

 $\Psi =$ Coeficiente que depende de la concentración del material transportado (ver tabla 2.8).

 d_m = Diámetro medio de las partículas de fondo [m].

Socavación del régimen

 R_s = Radio hidráulico del régimen.

f =Factor de sedimentación de Lacey dada con (2.106).

Q = Caudal de máxima crecida [m³/s].

q = Caudal unitario [m³/s/m].

 $d_m =$ Diámetro medio de las partículas [mm].

B = Ancho mínimo estable [m].

Umbrales de fondo.

 $H_0 =$ Tirante de agua sobre el vertedero [m].

Q = Caudal de diseño [m³/s].

m = Coeficiente de gasto, según la ecuación (2.109).

e = Coeficiente de contracción según la ecuación (2.110).

k = Coeficiente de sumergimiento = 1 por que la estructura se encuentra totalmente sumergida.

b = Ancho del vertedero [m].

P =Altura del vertedero o umbral de fondo [m].

 h_{cr} = Altura crítica del agua para sección rectangular [m].

UNIVERSIDAD TÉCNICA PARTICULAR DE LOJA La Universidad Católica de Loja

g =Aceleración de la gravedad [m/s²].

 h_{ct} = Altura crítica del agua para sección trapezoidal [m].

S = Factor a dimensional. Se obtiene de la ecuación (2.113).

 $V_{cr} =$ Velocidad crítica [m/s].

 $h_{cr} =$ Altura crítica del agua [m].

 $Y_1 =$ Conjugado menor [m].

 F_1 = Número de Froude.

 $V_1 = Velocidad del agua [m/s].$

 $Y_2 =$ Conjugado mayor [m].

n = Coeficiente de rugosidad de Manning.

 Y_3 = Calado aguas debajo de la estructura [m]

 $L_s =$ Longitud del resalto hidráulico [m]

r = Profundidad de revestimiento [m]

q = Caudal unitario $[m^3/s/m]$

Z = Coeficiente estimado con la expresión (2.123)

Azud

H = Altura de la lamina de agua [m]

Q = Caudal de diseño [m³/s].

m = 1,84 para vertederos de pared gruesa o azud trapezoidal [m]

b = Es el ancho del vertedero. [m].

X = Coordenadas en X [m].

Y = Coordenadas en Y [m].

 $H_d =$ Tirante de agua [m].

Q =Caudal de diseño [m³/s].

C = Coeficiente que depende del vertedero (pared ancho, delgada).

L =Ancho de la estructura [m].

 $V_1 =$ Velocidad del agua [m/s].

g = Aceleración de la gravedad [m/s²].

Z =Altura de la lamina de agua más la altura de la estructura [m].

 $Y_1 =$ Conjugado menor [m].

 $Y_2 =$ Conjugado mayor [m].

F = Número de Froude.

h = Altura del dintel [m].

L = Longitud del pozo de amortiguamiento [m].

CAPÍTULO I

1. GENERALIDADES

1.1. Introducción

El control de los ríos ha sido objeto de estudio desde la antigüedad y fue tal su importancia que un ingeniero hidráulico llegó a ser emperador de China. El emperador Yau había ordenado la regulación de los ríos en China. El hombre encargado de esto, después de construir diferentes obras durante 12 años. Este fue incapaz de dar la protección esperada y cayó en desgracia. Pero su hijo Yu, continúo este esfuerzo. La historia dice que Yu tuvo éxito después de ocho años de trabajo en controlar no sólo el río Hwang Ho sino también el río Yangtse Kiang. Yu fue nombrado emperador en 2278 A.C. El gran Yu hablo de sí mismo como el hombre que guió nueve ríos hacia el mar. Los historiadores chinos escribieron "la regulación de cada río de acuerdo con Yu, fue de manera que cada río se trato de acuerdo con sus propiedades". Estos ríos permanecieron en sus cauces por casi 1,700 años". (Delgadillo Pelcastre & Lopez Orozco, 2009).

Los ríos son canales naturales que drenan el agua de una determinada cuenca. Hay diversos ríos dependiendo en donde se formen. Los ríos se clasifican en ríos de montaña, intermedios y de planicie.

La variación de caudal en un rio depende de la precipitación, infiltración, evapotranspiración y que ha ocurrido en un determinado tiempo. Es decir de la morfología de la cuenca. (Maza, 1967).

El caudal formativo de un cauce corresponde a un período de retorno de 1.4 años, ya que este caudal es que se encuentra la mayor parte del año. (Nava & Cortes Bow, 2006).

El caudal formativo es pequeño por lo que la velocidad y la pendiente son bajas. Por lo tanto el río tiende a formar curvas denominadas "meandros". Esto incrementa la longitud de recorrido y disminuye la pendiente del cauce. (Martin Vide, 2003).

En épocas de lluvia, el caudal aumenta. Este caudal se le denomina caudal de agua altas. El caudal de agua altas y el de avenida, tratan de pasar lo más recto posible por el cauce. Por lo que destruye los meandros existentes en el río. Esto trae problemas a la sociedad que se encuentra cerca del cauce. Cuando se presenta un caudal de avenida puede producir daños a las obras existentes o inunda zonas habitadas. Produciendo pérdida material y en los peores casos pérdidas humanas. (Martin Vide, 2003).

El natural y continuo desarrollo de las poblaciones y de sus economías han llevado a las ciudades a un crecimiento tal, que fenómeno fluvial extremo implica mayores riesgos para sus habitantes, así como para la infraestructura habitacional, vial, industrial, telecomunicaciones y agrícolas. Por lo que es necesario controlar dichos cauces por medio de obras civiles. Es necesario el conocimiento de las características de flujo de los cauces naturales.

Si bien la generalidad de los criterios básicos para la estimación de los parámetros de la hidráulica fluvial no han cambiado de forma significativa. Los equipos que se utilizan en la medición, adquisición y procesamiento de datos han mejorado notablemente. Ahora se tienen condiciones para lograr una mayor eficiencia y confiabilidad en el diseño de estas obras (ejemplo: espigones, muros marginales). (Nava & Cortes Bow, 2006).

1.2. Introducción a la ingeniería fluvial

Se considera como uno de sus grandes compromisos la planeación estratégica de obras hidráulicas y acciones no estructurales. Estas obras ayudan a evitar o minimizar los riesgos de daño por fenómenos fluviales a las poblaciones. Así como a la infraestructura de las ciudades. (Olguín Gómez, 2009).

La implementación de obras hidráulicas y la utilización del caudal de los ríos han hecho más complejas las obras de protección y control de cauces. Se registra cada vez un mayor número de asentamientos en las riveras de los ríos. Lo que ha provocado que los daños ocasionados por sus crecidas se hayan incrementado. Y lo

que es más grave. Aumenta el peligro de pérdidas de vidas humanas. Estas circunstancias hacen cada vez más necesarias las medidas de protección y control de cauces. (Nava & Cortes Bow, 2006)

La hidráulica fluvial tiene métodos empíricos y semi empíricos para la modelación física de cauces (ejemplo; método de Altunin). Por lo que es necesario realizar una medición y estimación de los parámetros físicos de manera confiable. Como la tecnología avanza se ha visto la necesidad de implementar una herramienta de cálculo que permita a la comunidad analizar y diseñar el control de torrentes.

1.3. Objetivos y efectos de encauzamiento según (Martin Vide, 2003)

El encauzamiento significa poner en un cauce. El cauce es el espacio ocupado por el río, en sentido natural, o el espacio destinado al río tras una intervención del hombre (Martin Vide, 2003).

Los objetivos posibles de un encauzamiento son:

- La protección frente a inundaciones. A conseguir este objetivo pueden contribuir otras medidas u obras de lucha o control frente a avenidas.
- Protección de las márgenes del río.
- La fijación de un cauce estable para un río. Es decir, poder asegurar que el río discurrirá en el futuro de modo permanente por dicho cauce.
- La mejora de la condiciones de evacuación. En particular el aumento de la capacidad de desagüe.
- La formación o fijación de un canal navegable.
- Recuperación de los valores naturales de un río. Es decir, conseguir que el río vuelva a tener unos espacios de valor natural o recreativo.

Hay obras de encauzamiento determinadas por condiciones o circunstancias no hidráulicas (ejemplo desvíos y nuevos cauces). Pero también muchos nuevos cauces artificiales se han realizado con el fin de controlar inundaciones.

Al lado de los objetivos antes mencionados se debe indicar los efectos. Para entender los efectos hay que comprender que los ríos son sistemas dinámicos. Los cambios de los ríos a corto y largo plazo se dan porque los contornos aluviales no son fijos tanto en sentido vertical como horizontal.

El río lleva consigo caudal líquido y caudal sólido (arrastre de sedimentos). Cuando el caudal sólido no se encuentra en equilibrio produce sedimentación o erosión. En consecuencia cambian el contorno aluvial. Estos cambios son reajustes hacia un nuevo equilibrio.

Los efectos del encauzamiento son:

- Protección frente a inundaciones en regiones llanas próximas a la desembocadura. La tendencia secular del río es a formar un delta y con ello incrementar su longitud. Esto disminuye la pendiente, baja la velocidad y se produce sedimentación. Por lo que el fondo del río sube y la posibilidad de desbordamiento es mayor.
- Estabilizar y hacer navegable un cauce trenzado. Para estabilizar un cauce y aumentar su calado, se fuerza al agrupamiento o concentración de los brazos.
 Esto provoca la erosión del cauce principal, por lo que se obtienen los siguientes efectos negativos.
 - Pérdida de la inundación de llanuras, que se hace más infrecuente (Altera el ecosistema).
 - Descenso del nivel freático.
 - Pérdida del ecosistema ribereño, como consecuencia de lo anterior.
 - Fragilización de las orillas del cauce.

1.4. Condicionantes de un cauce estable según (Martin Vide, 2003)

Los factores físicos que hay que prestar atención son dos: el régimen hidrológico y la sinuosidad.

Con respecto al régimen hidrológico se indica el caudal del río el cual siempre es variable. La mayor parte del año se da un caudal pequeño o mediano (caudal de aguas bajas) en una franja de variación relativamente estrecha. Mientras que un reducido número de días se observan caudales elevados (caudal de aguas altas). Por otra parte existen los caudales extraordinarios (caudal de avenidas).

La circulación del caudal de aguas bajas y altas es la responsable de la forma del cauce principal. Ya que este caudal se presenta todos los años. Un encauzamiento se define como aquel por el que circulan las aguas bajas y altas.

Durante la circulación de una avenida en el cauce se pueden presentar una mayor velocidad y así constituirse en una especie de "eje" del río. En ríos aluviales, las erosiones y deposiciones de una crecida pueden desbaratar o colmatar un cauce preexistente y originar uno nuevo. Para entender esto se pueden aportar varios argumentos.

- La dirección de una avenida es más recta que el cauce. Esto produce que el caudal entre a colisionar con el cauce preexistente y pueda transformarlo.
- La crecida tiene una mayor capacidad de transporte sólido de fondo. Como consecuencia presentan una erosión general.
- Si la crecida llega anular la diferencia entre el cauce principal preexistente y el resto o zona de inundación. Esto puede provocar la incisión de otro u otros pequeños cauces.
- Si no se llega a anular la diferencia entre cauces y llanuras, el flujo puede causar erosión lateral. Particularmente la progresión de los meandros.

La sinuosidad es el segundo factor importante para la concepción de encauzamiento. Es importante por cuanto aspira a definir un cauce estable.

El hecho fundamental es que los ríos en estado natural no son rectos. Un encauzamiento en planta, no es capaz de conducir las aguas en línea recta sino que desarrolla una inestabilidad lateral.

La morfología fluvial nos dice que al crecer el caudal por causa hidrológica también crece el caudal sólido. Las formas sinuosas se hacen mayores, sin variar la sinuosidad y por otro lado la pendiente resultante se haría siempre menor

Las crecidas, las aguas bajas y altas difieren por su sinuosidad. Las crecidas tienen a una menor sinuosidad que las aguas altas y bajas. Análogamente las aguas altas tienen a una menor sinuosidad que las aguas bajas.

Dar al cauce principal una traza sinuosa. Puede ser útil la fijación de un cauce de aguas bajas, si estas amenazan por erosión lateral la integridad del cauce principal.

1.5. Estabilidad de cauces

Para un caudal dado existe, un ancho, calado y pendiente del cauce para el cual existe equilibrio entre la capacidad de arrastre de sedimentos y deposición de los mismos. A esto le decimos que es un cauce estable (Delgadillo Pelcastre & Lopez Orozco, 2009).

El grado de libertad de un escurrimiento es el número de parámetros que puede ajustarse libremente (Maza Álvarez & García Flores, 1993).

1.5.1. Variables y condiciones de diseño según (Delgadillo Pelcastre & Lopez Orozco, 2009)

Las variables pueden agruparse en cuatro categorías:

- <u>Variables del flujo</u>. Caudal de diseño (Q_d) , caudal sólido (Q_{BT}) , Velocidad media (U), tirante del canal (y), pendiente del cauce (S), coeficiente de rugosidad de Manning (n).
- <u>Variables del sedimentos</u>.- Diámetro medio de las partículas (D_m) , peso específico (γ_s) , densidad relativa (Δ) .
- Variables del fluido. Densidad especifica (γ) , viscosidad cinemática (ϑ) .
- <u>Variables de la geometría del canal</u>.- Ancho medio (B_m) , perímetro mojado (P).

Estas variables son parámetros de la ecuación de continuidad, ley de resistencia, ley de transporte de sedimento, relaciones para anchos o perímetros estables y condición de estabilidad de las orillas. Cualquier método racional de diseño debe proporcionar las relaciones necesarias.

El diseño de canales estables generalmente se hace para condiciones ideales, por lo que se ignora la influencia de muchos factores. Sin embargo, en el caso de diseño de canales en condiciones complejas. El diseñador debe conocer el papel que juegan todas las variables que influyen en la estabilidad del canal y que muchas veces no se consideran en el diseño.

1.6. Objetivos.

1.6.1. Objetivo general

Automatizar el cálculo para análisis y diseño de encauzamientos de ríos mediante una aplicación en Microsoft Visual Studio e implementarlo al laboratorio virtual de Hidrología (HYDROVLAB).

1.6.2. Objetivos específicos

El presente trabajo tiene por objeto determinar las variables y modelos físicos que intervienen en la estabilidad de cauces. Esto nos permitirá conocer las dimensiones estables que dependen principalmente de las características del material de fondo. Los modelos físicos nos permitirán obtener una herramienta de cálculo para la determinación de las dimensiones estables del cauce.

- Determinar las variables que intervienen en la modelación física del encauzamiento de ríos y control de torrentes.
- Determinar los diferentes procedimientos para la estabilización de cauces naturales, mediante modelos físicos.
- Implementación de la aplicación para el cálculo del análisis y diseño del encauzamiento de ríos y control de torrentes.
- Comprobación y Validación de la aplicación obtenida en el programa Microsoft Visual Studio.
- Elaboración de la guía del usuario para el uso del programa.

CAPÍTULO II

2. MATERIALES Y MÉTODOS

2.1. Materiales en cauces

El material del lecho de fondo en un cauce natural es variable y depende de la morfología del río.

El primer tramo y el tramo medio corresponde a los ríos denominados montañosos y sub montañosos. A este tipo de ríos corresponde un lecho de fondo de material grueso. Esto se debe a que las pendientes son mayores, la velocidad del río es fuerte. La erosión y el y transporte de sedimentos domina sobre la deposición de sedimentos.

Para un tramo bajo la tendencia del lecho de fondo es un material arenoso. Esto se debe a que las pendientes son menores y la velocidad del flujo es baja. La deposición de sedimentos domina sobre la erosión y arrastre de sedimentos.

2.1.1. Análisis de granulometría para el material de lecho de fondo

El análisis granulométrico es una medición en laboratorio. La cual tiene como objetivo determinar la distribución del tamaño de las partículas de un material (Norma ASTM D 422).

Dicho ensayo es realizado por medio de los tamices los cuales tienes aberturas normadas. Se obtiene una curva semilogarítmica denominada curva granulométrica. De dicha curva se obtienen datos necesarios para el cálculo de la producción de sedimentos como D_{90} , D_{84} , D_{50} .

Las variables D_{90} , D_{84} y D_{50} son diámetros de las partículas correspondientes al 90, 84 y 50% respectivamente. Esto significa que el diámetro de las partículas es mayor al 90, 84 y 50% de la muestra.

2.1.2. Determinación del peso específico Según (AASHTO T 100)

El Peso específico es la relación entre el peso seco en el aire de un cierto volumen de sólidos a una temperatura dada y el peso en el aire del mismo volumen de agua destilada, a la misma temperatura.

2.2. Métodos de simulación

2.2.1. Variables de diseño

2.2.1.1. Período de diseño Según (Oscar & Victor, 1993)

El período de diseño es el tiempo medido en años para el cual la obra cumplirá con su función. Con el parámetro se puede determinar las dimensiones de las estructuras hidráulicas.

El período de diseño se estima de acuerdo a la población a servir y sus características socio económicas.

2.2.1.2. Período de retorno

El período de retorno de una tormenta es el tiempo en años para que un evento sea igualado o superado (Aparicio Mijares, 1992).

Este período se toma en consideración la importancia de la obra y la seguridad que se le quiere dar a la estructura. Según (Fuentes Mariles & Franco, 1993) se debe considerar:

- Los beneficios que se esperan obtener con la construcción de la obra.
- Los problemas constructivos que influyen particularmente en la protección de zonas agrícolas y/o urbanas.
- Los beneficios por la disminución en las pérdidas materiales y humanas.

2.2.1.3. Caudal de diseño

Para la estimación del caudal se lo realiza por métodos empíricos, los cuales son aplicables para condiciones específicas.

2.2.1.3.1. Método racional según (Aparicio Mijares, 1992)

Este es el primer método cuyas unidades de las variables coinciden con el caudal. El método racional depende de la intensidad de la lluvia (I), del área de la cuenca (A), y de un coeficiente (C) que depende del tipo del suelo y del uso que se le da.

El coeficiente (*C*) de este método es utilizado para modelar el escurrimiento total sobre la cuenca. No toda la precipitación se convierte en escurrimiento superficial. Parte de la precipitación se infiltra o es obstruida por los diferentes tipos de uso del suelo en la cuenca (ejemplo: la vegetación).

Este método es recomendable para cuencas pequeñas áreas menores a 15 Km^2 .

La fórmula general de escribe.

$$Q = CxIxA (2.1)$$

Donde:

 $Q = \text{Caudal en } (m^3/s).$

 $A = \text{ Área de la cuenca } (Km^2).$

I = Intensidad de la tormenta <math>(mm/h).

C =Coeficiente de escurrimiento, toma valores de 0 a 1.

2.2.1.3.2. Método de Ven Te Chow

El método de Ven Te Chow considera que la precipitación es uniforme en toda el área de la cuenca. El caudal de la avenida es estimada a través de la precipitación efectiva, calculada con el número de la curva (Aparicio Mijares, 1992).

Este método es recomendado para áreas menores o iguales a 25 Km^2 .

$$Q_p = \frac{0.278 \times P_e \times A}{de} \times Z \tag{2.2}$$

Donde:

 $Q_p = \text{Caudal de Punta } [m^3/s].$

 P_e = Es la precipitación efectiva, estimada con el número de la curva [mm].

 $A = \text{ Área de la cuenca en } [Km^2].$

de = Duración en exceso [horas].

Z =Es un factor de reducción de pico.

Para determinar el valor a dimensional de Z, se procede como sigue.

$$tr = 0.005 x \left(\frac{L}{\sqrt{S}}\right)^{0.64}$$
 (2.3)

$$0.05 \le \frac{de}{tr} < 0.4 \; ; \quad Si: \quad Z = 0.73 \times \left(\frac{de}{tr}\right)^{0.97}$$
 (2.4)

$$0.4 \le \frac{de}{tr} \le 2$$
; $Si: Z = 1.89x \left(\frac{de}{tr}\right)^{0.23} - 1.23$ (2.5)

$$\frac{de}{tr} > 2 \; ; \quad Si: Z = 1 \tag{2.6}$$

Donde:

tr = Tiempo de retraso [horas].

L = Longitud del cauce principal [m].

S =Pendiente del cauce [%].

Las demás variables son descritas en ecuaciones anteriores (ver índice)

2.2.1.3.3. Hidrograma unitario según (Aparicio Mijares, 1992)

El hidrograma representa la variación del caudal en el tiempo, durante el paso de una tormenta.

El hidrograma unitario es el hidrograma de escorrentía directa. Es el resultado de un milímetro de precipitación, generado uniformemente sobre una cuenca, a una tasa constante a lo largo de una duración efectiva.

El hidrograma unitario esta basa en las siguientes hipótesis:

- a. <u>Tiempo de base constante</u>.- Para una cuenca dada, la duración total de escurrimiento directo es la misma para todas las tormentas con la misma duración de lluvia efectiva. Todo hidrograma unitario está ligado a una duración de lluvia en exceso.
- b. <u>Linealidad y proporcionalidad</u>.- Las ordenadas de todos los hidrogramas de escurrimiento directo con el mismo tiempo base, son directamente proporcionales al volumen de escurrimiento directo.
- c. <u>Superposición de causas y efectos</u>.- El hidrograma que resulta de un período de lluvia puede superponerse al hidrograma resultante de períodos de lluvia precedentes.

2.2.2. Estudio de transporte de sedimentos

Del estudio de transporte de sedimentos depende el análisis y diseño para estabilizar un cauce.

Con este valor podemos saber si un cauce es estable o si en él se produce erosión o deposición de sedimentos.

2.2.2.1. Producción de sedimentos

La producción de sedimentos es un análisis muy complejo el cual actualmente se refiere a métodos empíricos (ejemplo: Meyer – Perter y Mueller, Engelund – Hansen, etc) basados en mediciones de campo. Estos métodos estiman la

producción de sedimentos que existe en un cauce con características dadas. (Rocha Felices, 1998)

2.2.2.2. Clasificación de transporte de sedimentos según (Oñate)

<u>Transporte de Fondo</u>.- El transporte del material de fondo del cauce es equivalente al transporte de las partículas existentes en una capa del doble de D_{65} .

<u>Transporte de material de lavado</u>.- Material que proviene de la escorrentía de la lluvia formado por partículas muy finas (limos y arcillas) por lo general en suspensión. Tienen diámetros $\Phi \approx 0.062$ mm.

<u>Transporte de sedimentos en suspensión del material de fondo</u>.- Cuando existe turbulencia. Las partículas gruesas (D \geq 5 mm) se levantan del lecho del cauce y son transportadas

<u>Transporte en suspensión</u>.- Es el transporte total de las partículas que estas en suspensión, por su poco peso y turbulencia.

2.2.2.3. Método para estimar la velocidad de caída de las partículas, Hallermeier (1981)

Con base en el análisis de diferentes estudios experimentales para partículas de sedimentos naturales (arenas). Hallermeier (1981) establece tres ecuaciones (2.10), (2.11), (2.12) que describen la relación entre la velocidad de caída y el índice de flotación de Arquímedes. Cada ecuación es válida para un cierto número de Reynolds de la partícula (Re_p) . El cual se define en la ecuación (2.7). (Salinas, Garcia, & Diaz, 2008).

$$Re_p = \frac{w_s \times d}{v} \tag{2.7}$$

Donde:

d = Diámetro de la partícula en <math>(m).

 Re_p = Número de Reynolds de la partícula.

 w_s = Velocidad de caída de las partículas (m/s).

v = Viscosidad cinemática del fluido en (m^2/s) .

Se puede notar que las ecuaciones están expresados como una función del tamaño de la partícula y a un parámetro a dimensional (D_{gr}), definido por la ecuación (2.8). (Salinas, Garcia, & Diaz, 2008)

$$D_{gr} = d^3 x \sqrt{\frac{g x \Delta}{v^2}}$$
 (2.8)

Donde:

 $g = Aceleración de la gravedad <math>(m/s^2)$.

 Δ = Densidad relativa de los sedimentos.

 D_{gr} = Parámetro a dimensional.

Las demás variables son descritas en ecuaciones anteriores (ver índice).

$$\Delta = \frac{\gamma_s - \gamma}{\gamma} \tag{2.9}$$

Donde:

 $\gamma_s =$ Peso específico de las partículas.

 γ = Peso específico del agua.

Las demás variables son descritas en ecuaciones anteriores (ver índice)

$$Re_p = \frac{D_{gr}^3}{18}$$
 Si: $(D_{gr} \le 3.42)$ (2.10)

Hellermeier (1981)
$$Re_p = \frac{D_{gr}^{2.1}}{6} Si: (D_{gr} = 3.42 - 21.54)$$
 (2.11)

$$Re_p = 1.05 D_{gr}^{1.5} \quad Si: \left(D_{gr} \ge 21.54\right)$$
 (2.12)

Las variables son descritas en ecuaciones anteriores (ver índice).

Para la aplicación de estas fórmulas, es necesario considerar sus limitaciones. Particularmente al aplicarse a sedimentos naturales, Según (Salinas, Garcia, & Diaz, 2008) las ecuaciones (2.10, 2.11 y 2.12) se han propuesto al considerar:

- Partículas de diámetro uniforme.
- Flujos en reposo.
- En grupo con aplicación para arenas.

2.2.2.4. Métodos de cálculo para estimar la capacidad de transporte del sedimento

Los métodos que se presentan a continuación son métodos empíricos del transporte total de sedimentos.

2.2.2.4.1. Ecuación de DUBOYS (1879)

DUBOYS consideró que el transporte de fondo se producía por medio de capas. El espesor de las capas era del mismo orden de magnitud que el diámetro de las partículas constituyentes del lecho. Consideró también que las distribuciones verticales de velocidades y de corte eran lineales (Rocha Felices, 1998).

DUBOYS introdujo el concepto de fuerza tractiva crítica. La ecuación que obtuvo fue:

$$q_{fs} = \chi x \, \tau_o x (\tau_o - \tau_c) \tag{2.13}$$

Donde:

 $q_{sf} = \text{Carga unitaria de sedimento de fondo } [Kg/s/m].$

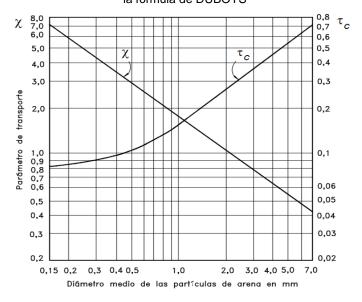
 $\chi =$ Coeficiente en función del diámetro de las partículas (ver figura 2.1).

 $\tau_o = \text{Fuerza tractiva de la corriente } [Kg/m^2].$

 τ_c = Fuerza tractiva crítica $[Kg/m^2]$.

$$\tau = \gamma x R x I \tag{2.14}$$

Donde:


 $\tau = \text{Fuerza tractiva } [Kg/m^2].$

 $\gamma =$ Peso específico del agua $[Kg/m^3]$.

R = Radio hidráulico de la sección <math>[m].

I =Pendiente de la corriente [m/m].

Figura 2.1. Coeficientes de χ y de τ_o para la aplicación de la fórmula de DUBOYS

Fuente: (Rocha Felices, 1998)

Los valores de χ y de τ_o fueron obtenidos por STRAUB en 1935. La fórmula de DUBOYS no se usa en la actualidad. La mencionamos por su valor histórico y teórico. (Rocha Felices, 1998)

2.2.2.4.2. Ecuación de Meyer – Peter y Mueller (1883-1969) según (Rocha Felices, 1998)

Con base de sus experimentos Meyer – Peter y Mueller (1883-1969) determinó la existencia de dos parámetros gasto específico (q_s) y el gasto de sólido específico (t_f) .

Meyer – Peter y Mueller (1883-1969) introdujo el concepto de (q_s) , como parte del gasto que determina el transporte sólido de fondo.

Cuando Meyer – Peter (1883-1969) realizó sus experiencias tuvo en cuenta que la rugosidad de las paredes y las del fondo del canal eran diferentes. Parte del gasto líquido (Q_s) , transforma su energía al friccionar con el fondo y las paredes.

La ecuación final de las experiencias de Meyer – Peter y Mueller (1883-1969) es:

$$Q_B = 8x\gamma_s x \left(gx\Delta x D_m^3\right)^{1/2} \left[\left(\frac{n'}{n}\right)^{3/2} x\tau - 0.047 \right]^{3/2}$$
 (2.15)

Donde:

 $Q_B = \text{Carga unitaria de sedimento de fondo } [Kg/s/m].$

 γ_s = Peso específico del material de fondo $[Kg/m^3]$.

 $g = Aceleración de la gravedad [m/s^2].$

 $\Delta =$ Densidad relativa.

 D_m = Diámetro medio de las partículas, [m]

n' = Coeficiente de rugosidad debida a las partículas.

n = Coeficiente de rugosidad de Manning.

 $\tau = \text{Fuerza tractiva } [Kq/m^2].$

$$n' = \frac{D_{90}^{\frac{1}{3}}}{26} \tag{2.16}$$

 D_{90} = Diámetro de las partículas al 90% [mm]

2.2.2.4.3. Ecuación de Engelund – Hansen según (Rocha Felices, 1998)

La ecuación final de Engelund – Hansen es para estimar la carga total de sedimentos. La ecuación trabaja bien para valores de tensión de Shields (τ_* es el esfuerzo de corte a dimensional ec. 2.18) menores a 1.5. (Rocha Felices, 1998).

Esta condición normalmente se sostiene para el gasto formativo de la mayoría de ríos y canales (Rocha Felices, 1998).

$$Q_{BT} = 0.05 x \gamma_s x U^2 x \tau_*^{3/2} \left(\frac{D_{50}}{g x \Delta}\right)^{1/2}$$
 (2.17)

Donde:

 Q_{BT} = Transporte total obtenido para agua clara [Kg/s/m].

 γ_s = Peso específico del material de fondo [Kg/m³].

U = Velocidad media [m/s].

 $\tau_* = Valor de tensión de Shields.$

g = Aceleración de la gravedad [m/s²].

 $\Delta =$ Densidad relativa.

 $D_{50} = Diámetro de las partículas al 50% [mm].$

$$\tau_* = \frac{\gamma x R x S}{(\gamma_s - \gamma) x D_{50}} \tag{2.18}$$

Donde:

 γ = Peso específico del Agua[Kg/m³].

R = Radio Hidráulico [m].

S =Pendiente de la corriente [m/m].

2.2.3. Metodologías para el cálculo de estabilidad de cauces

2.2.3.1. Trazado del eje del río

El trazado del eje del río, corresponde normalmente a la topografía de la cuenca. Con estas condiciones se trabaja. El cauce es formado por el caudal formativo. El cual pasa permanentemente por el cauce y ha determinado su forma.

El trazado del eje del río nos sirve para:

- a. Trazado del perfil longitudinal.
- b. Determinación de los tramos. Se dividirá el río para efectos del cálculo.

(Quezada Poma, 2004) recomienda realizar la división de tramos por medio de la semejanza de pendientes. Luego de la división se calculan los siguientes parámetros para cada tramo.

$$L_{i} = Abcs(i+1) - Abcs(i)$$
(2.19)

Donde:

 $L_j =$ Longitud en el tramo j [m].

Abcs(i + 1) = Valor de la abscisa en el punto (i + 1) [m].

Abcs(i) = Valor de la abscisa en el punto (i) [m].

$$S_{j} = \frac{Cota(i+1) - Cota(i)}{L_{i}}$$
 (2.20)

Donde:

 $S_i =$ Pendiente en el tramo j [m].

Cota(i + 1) = Valor de la abscisa en el punto <math>(i + 1) [m.s.n.m.].

Cota(i) = Valor de elevación en el punto (i) [m. s. n. m.].

$$S_{m} = \frac{\text{Cota}(1) - \text{cota}(n)}{\text{Abcs}(n) - \text{Absc}(1)}$$
(2.21)

 $S_m =$ Pendiente media [m].

Cota(1) = Valor de elevación en el punto (1) [m. s. n. m.].

Cota(n) = Valor de elevación en el punto (n) [m.s.n.m.].

Abcs(1) = Valor de la abscisa en el punto (1) [m].

Abcs(n) = Valor de la abscisa en el punto (n) [m].

$$L = \sum_{j=1}^{n} L_{j}$$
 (2.22)

Donde:

L = Longitud Total del Tramo [m].

Las demás variables son descritas en ecuaciones anteriores (ver índice).

2.2.3.2. Dibujo de perfiles transversales

2.2.3.2.1. Cálculo de la curva de remanso mediante Leach Según (Quezada Poma, 2004)

El cálculo de la superficie libre del cauce, se lo realiza mediante el método de Leach. El cual utiliza la ecuación de Manning y el concepto de capacidad de conducción (k_d) .

$$k_d = \frac{1}{n} x A x R^{2/3} \tag{2.23}$$

Donde:

 K_d = Capacidad de conducción.

n = Coeficiente de rugosidad de Manning.

A =Área hidráulica $[m^2]$.

R = Radio hidráulico [m].

$$Q = k_d x S^{1/2} (2.24)$$

$$k_d = \frac{Q}{S^{1/2}} \tag{2.25}$$

 $Q = \text{Caudal de diseño } [m^3/s].$

S =Pendiente del cauce [m/m].

Las demás variables son descritas en ecuaciones anteriores (ver índice).

Se comienza calculando desde el último perfil transversal (última abscisa) y se termina en el primer perfil transversal (primera abscisa). El orden de las abscisas es en sentido del movimiento del agua en el cauce. Para estimar el calado de la última abscisa se sigue los siguientes pasos.

- i. Calcula la pendiente entre la penúltima y última abscisa.
- ii. Determina la capacidad de conducción (k_d) con (2.25).
- iii. De la cota de fondo del penúltimo perfil transversal (penúltima sección)
 resta la cota fondo del último perfil transversal (última sección).
- iv. Suponga un calado, el cual será el calado de la penúltima sección. El calado de la última sección será igual al calado de la penúltima sección más el valor obtenido en el ítem iii.
- v. Determinar las propiedades hidráulicas de las secciones (área, perímetro mojado, Manning).
- vi. Sumar las aéreas y los perímetros. Promediar el coeficiente de rugosidad de Manning.
- vii. Calcular la capacidad de conducción K_d con (2.23) y los parámetros obtenidos en el ítem v.
- viii. Comparar el (K_d) calculado en el ítem vii con el del ítem i. Si el primero es mayor entonces disminuimos el calado y procedemos a repetir el

procedimiento desde el ítem iii. Caso contrario, aumentamos el calado y repetimos el procedimiento desde el ítem iv. Se realiza hasta que el $(K_{d\ (vii)} \approx K_{d\ (iii)})$, siendo $(K_{d\ (vii)})$ mayor que $(K_{d\ (iii)})$.

Para el resto de secciones se sigue:

i. De la última sección se obtienen los valores de calado (y_1) y capacidad de conducción (k_{d1}) . Calcular el valor de $Z_{(i+1)}$ con (2.26)

$$Z_{(i+1)} = Cota_1 + y_1 (2.26)$$

Donde:

 $Z_{(i+1)} =$ Cota de energía en el punto (i+1) [m].

 $Cota_1 = Valor de elevación en el punto (1) [m.s.n.m]$

 $y_1 =$ Tirante de agua en el punto (1) [m].

- ii. Los datos obtenidos en el ítem i permanecen constantes.
- iii. Se atribuye un calado para la sección que se encuentra en análisis (y_2) . Para este calado se calcula el valor de Z_i con (2.27).

$$Z_{(i)} = Cota_2 + y_2 (2.27)$$

Donde:

 $Z_{(i)}$ = Cota de energía en el punto (i + 1) [m].

 $Cota_2 = Valor de elevación en el punto (2) [m.s.n.m]$

 $y_2 =$ Tirante de agua en el punto (2) [m].

 iv. Determina las características hidráulicas de la sección (área, perímetro Mojado, coeficiente de rugosidad de Manning). v. Calcula la capacidad de conducción k_{d2} con (2.23) y $\left(1/K_d^2\right)$ con (2.28).

$$\frac{1}{K_d^2} = \frac{1}{2} x \left(\frac{1}{k_{d1}^2} + \frac{1}{k_{d2}^2} \right)$$
 (2.28)

Donde:

 k_{d1} = Capacidad de conducción para la sección 1.

 k_{d2} = Capacidad de conducción para la sección 2 (sección en análisis).

Las demás variables son descritas en ecuaciones anteriores (ver índice).

vi. Determina la cota de energía (Z_{i+1}) de la sección en análisis con la siguiente expresión.

$$Z_{i+1} = Z_i - \frac{L \times Q^2}{K_d^2} \tag{2.29}$$

Donde:

L = Longitud del tramo [m].

Las demás variables son descritas en ecuaciones anteriores (ver índice).

vii. Compara el valor de Z_{i+1} de (2.26) con (2.29). Si el valor de (2.29) es menor que la cantidad de (2.26) se aumenta el calado y se sigue el procedimiento descrito desde el ítem iii. Se realiza esta iteración hasta que se igualen los valores de las ecuaciones (2.26) y (2.29).

2.2.3.3. Control vertical, ancho y profundidad estables

2.2.3.3.1. Teoría de régimen

Kennedy (1895) fue el primero en proponer una ecuación para diseñar una red de canales alineados. Hizo el diseño de acuerdo con la fórmula de Kutter. Kennedy (1895) eligió anchos y pendientes arbitrariamente. Después que se ajustaron los tres grados de libertad, (ancho, pendiente y tirante). Kennedy seleccionó los canales con secciones permanentes, sin socavación ni deposición de sedimentos. Con estos datos propuso una relación empírica entre la velocidad media (U) y el tirante medio (y) como se muestra a continuación: (Delgadillo Pelcastre & Lopez Orozco, 2009) y (Maza Álvarez & García Flores, 1993).

$$U = Cxy^m (2.30)$$

Donde:

U = Velocidad media de la sección en [m/s].

y =Tirante de la sección [m].

C =Coeficiente que varia 0.67 a 0.95 (Lacey); 0.25 a 1.2 (otros autores).

m = Exponente que varia 0.52 a 0.64 (Lacey); 0.61 a 0.73 (otros autores).

Lindley (1919) fue quien utilizo por primera vez la palabra régimen. Indicó que un canal esta en régimen cuando su sección y pendiente están en equilibrio con el gasto transportado. Si el gasto aumenta o disminuye. El ancho y tirante se modifica en función de este valor. (Maza Álvarez & García Flores, 1993).

La teoría del régimen es aplicable con material cohesivo y arenoso. Los datos adquiridos para la obtención de estos métodos han sido canales con fondo y orillas cohesivas. Esta teoría tiene gran utilidad para estos materiales (Maza Álvarez & García Flores, 1993).

2.2.3.3.2. Método de Simons y Albertson (1960)

Simons (1957) y Simons y Albertson (1960) analizaron canales en régimen a partir de datos obtenidos en los Estados Unidos, Punjab y Sind. Las ecuaciones de régimen modificadas tienen mayor aplicabilidad. La principal aportación de este estudio fue conocer la validez de las ecuaciones desarrolladas en la India. Según (Delgadillo Pelcastre & Lopez Orozco, 2009) las ecuaciones del régimen modificadas son válidas para los siguientes casos:

- Canales formados de material de cuarzo no cohesivo con una concentración por peso menor de 500 ppm.
- Canales con fondo y orillas arenosas con concentración de sedimento en peso menor de 500 ppm.
- Canales con fondo arenoso y orillas ligeramente cohesivas a cohesivas. Se obtienen buenos resultados cuando la concentración en peso es < 500 ppm, y resultados cualitativos si la concentración en peso >500 ppm.
- Canales con fondo y orillas cohesivas con concentración en peso <500 ppm

Las fórmulas para el diseño se pueden resumir en:

$$B_m = 0.9 x K_1 x Q^{0.512} (2.31)$$

Donde:

 $B_m = \text{Ancho medio } [m].$

Q =Caudal de diseño $[m^3/s]$.

 K_1 = Coeficiente que depende del material de fondo (ver tabla 2.1).

$$y = \frac{A}{B_m} = 1.21 \text{x} K_2 \text{x} Q^{0.361}$$
 (2.32)

Donde:

y = Tirante de agua [m].

A =Área hidráulica $[m^2]$.

 K_2 = Coeficiente que depende del material de fondo (ver tabla 2.1).

Según (Maza Álvarez & García Flores, 1993) la ecuación (2.32) es útil cuando el radio hidráulico (R) es menor o igual 2.60 m. Para valores mayores a 2.60 se utiliza la ecuación (2.33)

El radio hidráulico (R) es la relación entre el área hidráulica y el perímetro mojado (parámetros de la sección transversal).

$$y = 0.61 + 0.93xK_2xQ^{0.36}$$
 (2.33)

Donde:

Las variables son descritas en ecuaciones anteriores (Ver índice)

Para la pendiente, Simons y Albertson (1960) propusieron una fórmula empleada por Blench:

$$\frac{U^2}{gxyxS} = K_4 x \left(\frac{UxB_m}{v}\right)^{0.37} \tag{2.34}$$

Donde:

U = Velocidad media de la sección en [m/s]

S = Pendiente del cauce [m/m]

g = Aceleración de la gravedad [m/s²]

v = Viscosidad de la mezcla agua – sedimento en [m²]

 K_4 = Coeficiente que depende del material de fondo (ver tabla 2.1).

Las variables son descritas en ecuaciones anteriores (ver índice)

Tabla 2.1 Coeficientes de K1, K2, K4

Materiales	K_1	K_2	K_4
Arenoso en orillas y fondo	6.303	0.410	0.324
Orillas cohesivas y fondo arenoso	4.740	0.475	0.525
Orillas y fondo cohesivo	4.630	0.560	0.885
Orillas y fondo de material grueso	3.440	0.270	

Fuente: (Delgadillo Pelcastre & Lopez Orozco, 2009)

En este método no se considera explícitamente el tamaño del sedimento como variable. Simons y Albertson (1960) propusieron que el número de Froude debe ser menor que 0.3. (Delgadillo Pelcastre & Lopez Orozco, 2009)

El número de Froude representa la relación entre las fuerzas inerciales y las fuerzas gravitaciones de un flujo. Una de las expresiones para estimar el número de Froude se muestra en la ecuación (2.117).

2.2.3.3.3. Método de Altunin (1962)

Este método fue desarrollado a partir de la observación de ríos con material granular. Se analiza la estabilidad para velocidades cercanas a la crítica. Si se aplica a cauces arenosos los resultados son sobrevaluados. (Delgadillo Pelcastre & Lopez Orozco, 2009).

Para conocer la estabilidad de un cauce. Altunin (1962) tomó en cuenta, además de las variables ya indicadas, la mayor o menor resistencia de las orillas a la erosión y la zona del río donde se encuentra el tramo en estudio. Con ello clasifico:

- Tipo a.- Las orillas son difícilmente erosionables (materiales muy cohesivos).
- Tipo b.- Las orillas son fácilmente erosionables (materiales sin cohesión).

Altunin (1962) distingue tres zonas principales a lo largo del río: montañosa, intermedia y plana o deltaica. Propuso ecuaciones para obtener los tres grados de libertad (Maza Álvarez & García Flores, 1993).

Altunin (1962) introdujo dos variables (exponente m y coeficiente A). Estas variables dependen de la morfología del cauce. Se muestran en la tabla 2.2 o se pueden estimar mediante (2.35) y (2.36) (Maza Álvarez & García Flores, 1993).

El valor del coeficiente (K) es de 3.0 a 4.0 si la resistencia del material es muy resistente del (tipo a), de 16.0 a 20.0 si el material es fácilmente erosionable (tipo b), y para un material aluvial de 8.0 a 12.0. (Maza Álvarez & García Flores, 1993)

Tabla 2.2 Valores de m y A

Zona de río y condición del	Número	Parámetro A		Valor del exponente m cuando K=10	
cauce	de Froude	Tipo de Sección		Tipo de Sección	
	rioude	а	В	а	В
Zona alta de montaña. Cauce rocoso cubierto de piedras.	1	0.5	0.75	-	1
Zona de montaña. Cauce formado con cantos rodados boleo y guijarros. Rápidas y pendiente cercana a la crítica.	1.0-0.5	0.75	0.9	1	0.8
Zona en las faldas de la montaña. Llegada del río al valle. Cauce formado por guijarros, grava y arena. Corriente tranquila.	0.5 - 0.2	0.9	1	0.8	0.75
Zona intermedia Cauce formado por arena gruesa, media y fina. Corriente tranquila.	0.2 - 0.04	1	1.1	0.75	0.7
a) Río Caudaloso.	0.2 - 0.02	1.1	1.3	0.75	0.7
b) Río poco Caudaloso.	0.3 - 0.2	1.3	1.7	0.6	0.5

Fuente: (Delgadillo Pelcastre & Lopez Orozco, 2009)

El exponente (m) se lo determina según (2.35). Se estima el valor de la velocidad de caída de partículas por medio del método de Hallermeier (1981) descrito en el apartado 2.2.2.3

$$m = 0.72 \times \left(\frac{\Delta \times D_m}{R \times S}\right)^{0.1} \tag{2.35}$$

Donde:

m = Exponente que depende de la morfología del río.

R = Es el radio hidráulico[m].

 $D_m = Es el radio hidráulico[m].$

S = Pendiente del cauce.

 Δ = Densidad relativa de los sedimentos.

El valor de (A) se lo determina con la ecuación (2.36)

$$A = \left(nxK^{5/3}\right)^{3/(3+5m)} \tag{2.36}$$

Donde:

A =Coeficiente que depende la morfología del río.

n = Coeficiente de rugosidad de Manning.

K =Coeficiente que depende de la resistencia de las orillas.

<u>Procedimiento de cálculo para determinar las dimensiones estables de un cauce</u> según (Quezada Poma, 2004)

i. Imponer una pendiente (*S*), a la cual determinaremos un ancho estable y un calado. Utilice las siguientes expresiones en el orden que se presentan.

$$B_r = \frac{A \times Q^{0.5}}{S^{0.2}} \tag{2.37}$$

Donde:

 B_r = Ancho regulado del cauce [m].

 $Q = \text{Caudal de diseño } [\text{m}^3/\text{s}].$

S = Pendiente en prueba [m/m].

Las demás variables son descritas en ecuaciones anteriores (ver índice).

$$H_{mr} = \left(\frac{Q \times n}{B_r \times S^{0.5}}\right)^{0.6} \tag{2.38}$$

Donde:

 H_{mr} = Tirante medio regulado del cauce [m].

$$H_{mn} = \left(\frac{Vxn}{S^{0.5}}\right)^{3/2} \tag{2.39}$$

 H_{mn} = Tirante medio natural del cauce [m].

Velocidad media del tramo [m/s].

Las demás variables son descritas en ecuaciones anteriores (ver índice).

$$B_n = \frac{Q}{V \times H_{mn}} \tag{2.40}$$

Donde:

 B_n = Ancho natural del cauce [m].

Las demás variables son descritas en ecuaciones anteriores (ver índice).

Realice la primera comparación. Este primer indicador es la ecuación de ii. Gluschkov's

$$B^m = KxH_{mr} (2.41)$$

Donde:

Las variables son descritas en ecuaciones anteriores (ver índice).

iii. Si cumple la primera condición se continúa el cálculo con las siguientes expresiones. Si no cumple la condición, aumentamos el valor de la pendiente y comenzamos una nueva iteración

$$V_{mc} = \frac{Q}{B_{\rm r} x H_{\rm mr}} \tag{2.42}$$

Donde:

 V_{mc} = Velocidad media del torrente regulado[m/s].

$$P_{\rm r} = 0.022 x \left(\frac{V_{\rm mc}}{w}\right)^{3/2} x (H_{\rm mr} x S)^{0.5}$$
 (2.43)

 P_r = Capacidad de transporte del cauce regulado.

w = Velocidad de caída de las partículas.

Las demás variables son descritas en ecuaciones anteriores (ver índice).

$$P_{n} = 0.022x \left(\frac{V}{w}\right)^{3/2} x (H_{mn}xS)^{0.5}$$
 (2.44)

Donde:

 P_n = Capacidad de transporte del cauce natural.

Las demás variables son descritas en ecuaciones anteriores (ver índice).

iv. Debe cumplirse la segunda condición.

$$P_r \ge P_n \tag{2.45}$$

v. Si cumple la segunda condición seguimos con el procedimiento de cálculo.
 Caso contrario aumentamos la pendiente y realizamos una nueva iteración

$$V_{\rm or} = 3.83 \text{xd}_{\rm m}^{1/3} \text{xH}_{\rm mr}^{1/6} \tag{2.46}$$

Donde:

 V_{or} = Velocidad de arrastre del torrente en el cauce regulado [m/s].

 d_{m} = es el diámetro medio de las partículas del cauce [m].

$$V_{\rm on} = 3.83 \text{xd}_{\rm m}^{1/3} \text{xH}_{\rm mn}^{1/6} \tag{2.47}$$

 V_{on} = Velocidad de arrastre del torrente en el cauce natural [m/s].

Las demás variables son descritas en ecuaciones anteriores (ver índice).

$$q_{fr} = 0.95 x d_m^{0.5} x \left(\frac{V_{mc}}{V_{or}}\right)^3 x (V_{mc} - V_{or}) x \left(\frac{d_m}{H_{mr}}\right)^{1/4}$$
(2.48)

Donde:

 $q_{fr}=\,$ Capacidad de arrastre de los sedimentos de fondo del cauce regulado.

Las demás variables son descritas en ecuaciones anteriores (ver índice).

$$q_{fn} = 0.95xd_{m}^{0.5}x\left(\frac{V_{m}}{V_{on}}\right)^{3}x(V_{m} - V_{on})x\left(\frac{d_{m}}{H_{mn}}\right)^{1/4}$$
(2.49)

Donde:

 $q_{fn} = \mbox{ Capacidad de arrastre \ de los sedimentos de fondo del cauce natural}$

 V_m = Es la velocidad media del cauce [m/s].

Las demás variables son descritas en ecuaciones anteriores (ver índice).

$$Q_{fr} = q_{fr} x B_r x K_1 \tag{2.50}$$

Donde:

Q_{fr} = Caudal de sedimentos del fondo regulado

 K_1 = Coeficiente del ancho activo del movimiento de los sedimentos de fondo.

$$Q_{fn} = q_{fn} x B_n x K_1 \tag{2.51}$$

 $Q_{\text{fn}} = \text{Caudal de sedimentos del fondo natural.}$

Las demás variables son descritas en ecuaciones anteriores (ver índice).

vi. Verifique que se cumpla la tercera condición.

$$Q_{fr} \ge Q_{fn} \tag{2.52}$$

vii. Si se cumple la tercera condición continuamos con el cálculo. Si no cumple la condición se aumenta la pendiente y realizamos una nueva iteración.

$$q = H_{mr}xV_{mc} \tag{2.53}$$

Donde:

 $q = Caudal unitario [m^3/s/m].$

Las demás variables son descritas en ecuaciones anteriores (ver índice).

$$V_{ls} = 6xd_{m}^{1/3}xH_{mr}^{1/6}$$
 (2.54)

Donde:

 V_{ls} = Velocidad límite superior [m/s].

$$V_{f} = \frac{1.25xq}{H_{mr}x \log \left(6.15x \frac{H_{mr}}{d_{m}}\right)}$$
(2.55)

 V_f = Velocidad de fondo [m/s].

Las demás variables son descritas en ecuaciones anteriores (ver índice).

viii. Compruebe que se cumpla con la cuarta condición.

$$V_f < V_{ls} \tag{2.56}$$

ix. Si no cumple la cuarta condición se disminuye la pendiente del cauce y se realiza una nueva iteración.

2.2.3.3.4. Método de Maza y Cruickshank (1973) según (Delgadillo Pelcastre & Lopez Orozco, 2009)

Este método fue propuesto en 1973 y se basa en el concepto de los grados de libertad. En este método se toman en cuenta las tres ecuaciones (una de resistencia al flujo, otra referida al transporte de sedimento y una tercera a la resistencia de las márgenes) necesarias para obtener el ancho, tirante y la pendiente de un cauce estable.

Las fórmulas de fricción que se utilizan son:

- 1. Fórmula de Manning.
- 2. Fórmula de Maza y Cruickshank.

En este método se distinguen los tipos de régimen del flujo; el régimen inferior, el régimen superior y el de transición entre ellos. Debido a que en cauces estables no se trabaja con gastos máximos sino con gastos formativos. *El régimen es inferior* y las fórmulas se presentan para esta condición.

Con objeto de reducir el número de variables, se agrupan valores de algunas constantes y variables que dependen de las características del material en una nueva variable. Como se muestra a continuación: (Delgadillo Pelcastre & Lopez Orozco, 2009) y (Maza Álvarez & García Flores, 1993)

$$\alpha = 7.58x \frac{w_{50}}{D_{84}^{0.634} x \Delta^{0.456}}$$
 (2.57)

Donde:

 α = Coeficiente que se describe en la ecuación (2.57).

 w_{50} = Velocidad de caída de las partículas con D_{50} [m/s].

 Δ = Densidad relativa de los sedimentos expresada en la ecuación (2.9).

 D_{84} = Diámetro de las partículas al 84% [m].

La ecuación de continuidad queda expresada como:

$$Q = \alpha x B_m x y^{1.634} x S^{0.456}$$
 (2.58)

Donde:

Q = Caudal de diseño [m³/s].

y = Tirante de agua [m].

 B_m = Ancho medio del cauce [m].

S = Pendiente [m/m].

Las demás variables son descritas en ecuaciones anteriores (ver índice).

La fórmula de Manning se expresa:

$$Q = \frac{1}{n} x B_m x y^{5/3} x S^{1/2}$$
 (2.59)

Donde:

n = Coeficiente de rugosidad de Manning.

Las fórmulas de transporte de sedimentos que se utilizan son:

- 1. Ecuación de Meyer Peter y Mueller; ecuación (2.15).
- 2. Ecuación de Engelund Hansen; ecuación (2.17).

La ecuación de Meyer – Peter y Mueller es expuesta en el apartado 2.2.2.4.2 y la ecuación de Engelund – Hansen en el apartado 2.2.2.4.3.

Cuando se sigue este procedimiento se consideran nuevas variables para ordenar y simplificar las expresiones. Estas nuevas variables consideradas son: (Delgadillo Pelcastre & Lopez Orozco, 2009) y (Maza Álvarez & García Flores, 1993).

$$\epsilon = 8x(gx\Delta xD_m)^{-1/2} \tag{2.60}$$

Donde:

 $\epsilon =$ Coeficiente de simplificación.

 $g = Aceleración de la gravedad [m/s^2].$

 Δ = Densidad relativa.

 D_m = Diámetro medio de las partículas [m].

$$N = \left(\frac{n'}{n}\right)^{1.5} \times \left(\frac{1}{\Delta \times D_m}\right) \tag{2.61}$$

Donde:

N = Coeficiente de simplificación.

n' = Coeficiente de rugosidad debido a las partículas; ecuación (2.16).

$$\beta = \frac{0.04}{\Delta^2 \times g^{0.5} \times D_{35}} \tag{2.62}$$

 β = Coeficiente de simplificación.

 D_{35} = Diámetro de las partículas al 35% [m].

Las demás variables son descritas en ecuaciones anteriores (ver índice).

Con las ecuaciones del (2.60) al (2.62) se puede extender la aplicación del método a un gran número de materiales y de condiciones de transporte de sedimentos.

Relación de la resistencia de las orillas.

Se emplea la fórmula de Gluschkov's; ecuación (2.41).

Las ecuaciones antes mencionadas, se pueden agrupar en tres grupos las cuales se puede ver en la tabla 2.3.

Tabla 2.3. Agrupación de las ecuaciones y su aplicación

Grupo	Ecuaciones			Anliagaián	
Grupo	Fricción	Transporte	Resistencia	Aplicación	
1	Manning	Meyer - Peter y	Gluschkov	Canales con transporte de fondo o sin	
	Marining	Mueller		transporte.	
	Chuickshank	Engelund –	Gluschkov	Canales arenosos con trasporte de	
"	- Maza	Hasen		sedimentos.	
111	Chuickshank	Meyer - Peter y	Clucobkov	Ríos arenosos con cualquier condición	
III	- Maza Mueller	Gluschkov	de transporte de sedimentos.		

Fuente: (Delgadillo Pelcastre & Lopez Orozco, 2009)

Las fórmulas del grupo I se aplican a un amplio rango de materiales de fondo.

Éstas funcionan para cualquier clase de material con o sin transporte de sedimentos. Sólo requieren de ajustar el coeficiente de rugosidad de Manning (n). Estas ecuaciones son implícitas para las dimensiones estables (B, HyS) y su solución se obtiene por prueba y error.

Cuando el número de Shields (τ_*) es igual 1.5, es mejor usar las fórmulas del grupo II. Porque parte del transporte es en suspensión y la fórmula de Meyer-Peter y Müller no considera esta condición. Las ecuaciones del grupo II son explícitas. Se usan en casos de cauces arenosos y cuando se tiene transporte de sedimentos.

En las planicies por lo general los canales pueden diseñarse con las ecuaciones del grupo III. Porque son útiles cuando el material transportado es poco y el material es arenoso. Los grupos II y III tienen una ventaja sobre el grupo I, por qué no se requiere la estimación o suposición de ningún coeficiente de rugosidad para la fórmula de fricción.

Las fórmulas resumidas de cada uno de los grupos para el cálculo del ancho estable, calado y pendiente (B, H y S) se escriben en las ecuaciones del (2.63) al (2.71) (Delgadillo Pelcastre & Lopez Orozco, 2009)

<u>Grupo I.</u>- Ecuaciones de diseño para material granular (D \geq 8 mm) y cualquier condición de transporte de sedimentos (cauces montañosos) (Delgadillo Pelcastre & Lopez Orozco, 2009)

$$B^{\frac{7m+4}{3}} \mathbf{x} \left[\left(\frac{Q_B}{\epsilon} \right)^{2/3} + 0.047 \mathbf{x} B^{2/3} \right] = (n \mathbf{x} Q^2)^2 \mathbf{x} N \mathbf{x} K^{7/3}$$
 (2.63)

Donde:

B = Ancho medio regulado del cauce [m].

m = Exponente que depende de la morfología, ecuación (2.35).

K = Coeficiente que depende de la resistencia de las orillas.

 $Q_{B}=% \frac{1}{2}\left(-\frac{1}{2}\right) =-\frac{1}{2}\left(-\frac$

$$H^{\frac{7m+4}{3m}} \mathbf{x} \left[\left(\frac{Q_B}{\epsilon} \right)^{2/3} \mathbf{x} K^{\frac{4}{3m}} + 0.047 \mathbf{x} H^{\frac{2}{3m}} \mathbf{x} K^{2/m} \right] = (n \mathbf{x} Q^2)^2 \mathbf{x} N \tag{2.64}$$

H =Calado del cauce regulado [m].

 Q_B = Transporte de sedimentos calculada con (2.15).

Las demás variables son descritas en ecuaciones anteriores (ver índice).

$$S - \frac{7xm + 4}{10xm + 6}x \left[\left(\frac{Q_B}{\epsilon} \right)^{2/3} + 0.047x \left(\frac{nxQxK^{5/3}}{S^{1/2}} \right)^{\frac{2}{5xm + 3}} \right] = Nx(nxQ)^{\frac{3xm + 2}{5xm + 3}} xK^{\frac{1}{3x(5xm + 3)}} (2.65)$$

Donde:

S = Pendiente del cauce [m]

 Q_B = Transporte de sedimentos calculada con (2.15).

Las demás variables son descritas en ecuaciones anteriores (ver índice).

<u>Grupo II</u>.- Ecuaciones de diseño para canales arenosos (D $< 2 \, mm$) y transporte de sedimentos, estas ecuaciones son aplicables para régimen de flujo inferior (cauces montañosos y sub montañosos). (Delgadillo Pelcastre & Lopez Orozco, 2009).

$$B = \left[\frac{Q^{1.233} \times K^{1.37}}{\alpha^{0.767}} \times \left(\frac{\beta}{Q_{BT}}\right)^{0.233}\right]^{\frac{1}{1.37m+1}}$$
(2.66)

Donde:

 Q_{BT} = Transporte de sedimentos calculada con (2.17).

$$H = \left[\frac{Q^{1.233}}{\alpha^{0.676} \times K^{1/m}} \times \left(\frac{\beta}{Q_{BT}} \right)^{0.233} \right]^{\frac{1}{1.37m+1}}$$
(2.67)

 Q_{BT} = Transporte de sedimentos calculada con (2.17)

Las demás variables son descritas en ecuaciones anteriores (ver índice).

$$S = \left[\frac{K^{0.58}}{\alpha^{0.256m + 0.511} \times Q^{1.413m + 0.511}} \times \left(\frac{Q_{BT}}{\beta} \right)^{0.835m + 0.511} \right]^{\frac{1}{1.37m + 1}}$$
(2.68)

Donde:

 Q_{BT} = Transporte de sedimentos calculada con (2.17)

Las demás variables son descritas en ecuaciones anteriores (ver índice).

<u>Grupo III</u>.- Ecuaciones de diseño para canales de arena (D \leq 5 mm) con cualquier condición de transporte de sedimentos (cauces de planicies). (Delgadillo Pelcastre & Lopez Orozco, 2009)

$$B^{2.583m+1.526} \mathbf{x} \left[\left(\frac{Q_B}{\epsilon} \right)^{2/3} + 0.047 \mathbf{x} B^{2/3} \right] = N \mathbf{x} K^{2.583} \mathbf{x} \left(\frac{Q}{\alpha} \right)^{2.193}$$
 (2.69)

Donde:

 $Q_B = Transporte de sedimentos calculada con (2.15)$

Las demás variables son descritas en ecuaciones anteriores (ver índice).

$$H^{\frac{2.583m+1.526}{m}} \mathbf{x} \left[\left(\frac{Q_B}{\epsilon} \right)^{2/3} + 0.047 \mathbf{x} (K \mathbf{x} H)^{\frac{2}{3m}} \right] \mathbf{x} K^{\frac{1.526}{m}} = N \mathbf{x} \left(\frac{Q}{\alpha} \right)^{2.193}$$
(2.70)

Donde:

 Q_B = Transporte de sedimentos calculada con (2.15)

$$S^{\frac{0.304}{w}} x \left(\frac{Q_B}{\epsilon}\right)^{2/3} + 0.047 x K^{\frac{1.089}{w}} x \left(\frac{Q}{\alpha}\right)^{\frac{2}{3m}} = N x \left(\frac{Q}{\alpha}\right)^{\frac{0.667+m}{w}} x K^{\frac{0.089}{w}} x S^{\frac{1+1.178}{w}}$$
(2.71)

 Q_B = Transporte de sedimentos calculada con (2.15)

w = Es un constante que depende del exponente m,(2.72)

Las demás variables son descritas en ecuaciones anteriores (ver índice).

$$w = 1 + 1.634xm \tag{2.72}$$

Donde:

Las variables son descritas en ecuaciones anteriores (ver índice).

Cuando en un cauce el diámetro medio de las partículas sea $D_m > 2mm$, no se pueden aplicar las ecuaciones del grupo II. Porque la fórmula de Engelund - Hansen sólo se usa en arenas. Además las ecuaciones del grupo II no pueden usarse cuando $\tau_* < 0.1$. (Delgadillo Pelcastre & Lopez Orozco, 2009)

Debido a que la ecuación (2.58) no se ha probado para materiales con diámetro medio mayor que 8 mm. Su aplicación no se recomienda para ese tipo de materiales. Sólo las ecuaciones de los grupos I y III pueden aplicarse, ya que con la fórmula de Meyer-Peter y Mueller se puede obtener la condición crítica sin transporte de sedimento (Delgadillo Pelcastre & Lopez Orozco, 2009).

La principal ventaja de este método consiste en que permite conocer las variaciones que sufre la sección debido a la variación del gasto sólido.

El problema que se presenta es conocer el gasto sólido y líquido. Cuando hay una estación de medición cerca del área en estudio se pueden obtener el caudal líquido y el caudal sólido por cálculo numérico. Pero si no hay estaciones de medición, se puede escoger un cierto tramo del río en estudio para medir ancho y pendiente. A partir de estos valores, obtener el gasto líquido (Q) y calcular el transporte de sedimento (Q_B) . (Delgadillo Pelcastre & Lopez Orozco, 2009).

2.2.3.3.5. Método de Blench (1939 y 1941)

Blench en 1939 y 1941 presentó sus fórmulas básicas y de diseño. Su método toma en cuenta dos parámetros introducidos por él, La cuales son: (Maza Álvarez & García Flores, 1993).

Factor de fondo, F_h .

Factor de orilla, F_s .

Esos parámetros están en función; de la concentración del material transportado en suspensión (C), diámetro de las partículas del fondo (D_m) y la resistencia de las orillas erosionadas. Las fórmulas se resumen a continuación (Maza Álvarez & García Flores, 1993).

 Factor de fondo. Toma en cuenta la resistencia del fondo y se obtiene mediante la expresión (Maza Álvarez & García Flores, 1993).

$$F_b = F_{bo} x(1 + 0.012xC) (2.73)$$

Donde:

C = Concentración del material arrastrado en la capa de fondo [ppm].

 $F_{bo} =$ Se obtiene de la ecuación (2.74).

Las demás variables son descritas en ecuaciones anteriores (ver índice).

La fórmula es aplicable a fondos arenosos con transporte de sedimentos, en los cuales se han formado dunas (formación de islas dentro del cauce). (Maza Álvarez & García Flores, 1993).

$$F_{bo} = 60.1 \text{x} D_m^{1/2} \tag{2.74}$$

Donde:

 D_m = Diámetro medio de las partículas de fondo [m].

Cuando existe poca información, Blench(1939 y 1941) recomendó utilizar los siguientes valores para F_b .

- 0.8 Material fino, $D_m \leq 0.5 \ mm$
- 1.2 Material grueso, $D_m > 0.5 mm$
- Factor de orilla. Este parámetro, que mide la resistencia de las orillas. Es obtenido mediante la expresión (2.75).

$$F_{s} = \frac{F_{bs}^{2}}{8} \tag{2.75}$$

Donde:

 F_{bs} = Se obtiene al utilizar la ecuación (2.73). Sustituyendo en ella el diámetro del material de las orillas, cuando es arena.

Para el factor de orilla, Blench (1939 y 1941) recomienda los siguientes valores:

- 0.1, Material poco cohesivo, como arena.
- 0.2, Material medianamente cohesivo.
- 0.3, Material muy cohesivo, como arcilla.

Como puede observarse no existe una definición exacta de lo que significa "poco", "medianamente" y "muy cohesivo". Por lo tanto, la aplicación de este método se dificulta. (Maza Álvarez & García Flores, 1993).

Ecuaciones básicas.

Las ecuaciones básicas propuestas por Blench son:

$$F_b = 3.28 \,\mathrm{x} \,\frac{U^2}{d} \tag{2.76}$$

Donde:

d = Tirante de la corriente medida del fondo a la superficie <math>[m].

U = Velocidad media de la corriente [m/s].

Las demás variables son descritas en ecuaciones anteriores (ver índice).

$$F_{\rm S} = 10.76 \, {\rm x} \frac{U^3}{b_m} \tag{2.77}$$

Donde:

 b_m = Ancho medio de la sección. Cumple con la relación mostrada en (2.79) Las demás variables son descritas en ecuaciones anteriores (Ver índice)

$$\frac{U^2}{\text{gxdxS}} = 3.63 \text{x} \left(1 + \frac{C}{2333}\right) \text{x} \left(\frac{U \text{x} b_m}{\vartheta}\right)^{1/4} \tag{2.78}$$

Donde:

 ϑ = Viscosidad de la mezcla agua sedimento, [m²/s]

S = Pendiente en prueba [m/m].

g = Aceleración de la gravedad [m/s²]

Las demás variables son descritas en ecuaciones anteriores (Ver índice)

$$A = db_m (2.79)$$

Donde:

A =Área hidráulica [m^2]

Las variables son descritas en ecuaciones anteriores (ver índice).

Estas ecuaciones son válidas para el sistema métrico.

Ecuaciones de diseño. Según (Maza Álvarez & García Flores, 1993)

A partir de las ecuaciones básicas se deducen las fórmulas de diseño. Se obtienen las dimensiones estables del cauce. Dichas expresiones son:

$$b_m = 1.81 \text{x} \left(\frac{F_b \text{x} Q}{F_s}\right)^{1/2} \tag{2.80}$$

Donde:

Las variables son descritas en ecuaciones anteriores (Ver índice).

$$d = \left(\frac{F_{\rm S} \times Q}{F_{\rm b}^2}\right)^{1/3} \tag{2.81}$$

Donde:

Las variables son descritas en ecuaciones anteriores (Ver índice).

$$S = \frac{F_b^{5/6} x F_s^{1/12}}{3.28 x K x Q^{1/6} x \left(1 + \frac{C}{2333}\right)}$$
(2.82)

Donde:

K = Agrupa a las principales constantes, ecuación (2.83).

Las demás variables son descritas en ecuaciones anteriores (Ver índice).

$$K = 3.63 x \frac{g}{y^{1/4}} \tag{2.83}$$

Donde:

Las demás variables son descritas en ecuaciones anteriores (ver índice). Al relacionar b_m y d (ecuaciones 2.80 y 2.81), se obtiene la siguiente expresión.

$$b_m^{2/3} = \frac{1.49 x F_b}{F_c^{2/3}} x d {(2.84)}$$

Donde:

Al tratar con una sección trapecial. Las variables geométricas que primero deben ser obtenidas son b_m y d (Maza Álvarez & García Flores, 1993).

$$B = b_m + kxd (2.85)$$

$$b = b_m - kxd (2.86)$$

Donde:

k = Talud de las orillas

Las variables son descritas en ecuaciones anteriores (Ver índice)

Formas de aplicación.

Para conocer las características estables de un cauce formado en un material cuyas propiedades y características son conocidas. Se deberá calcular el valor de F_b y F_s . Eso no es posible realizar fácilmente, y como Blench indicó, se requiere experiencia y cuidado extremo para lograrlo. A partir de estos valores y del conocimiento del gasto que se desea pasar por el cauce se obtendrán b_m , d y S (Maza Álvarez & García Flores, 1993).

También puede ocurrir que conocida la geometría de un cauce se desee hacer una rectificación y cortar algunos meandros. Esto es para disminuir los recorridos de la navegación o para aumentar la capacidad hidráulica del río donde se haga la rectificación (Maza Álvarez & García Flores, 1993).

2.2.3.4. Control Horizontal del cauce según (Quezada Poma, 2004).

Dado que existe erosión en las curvas de los cauces y por esto frecuentemente se encuentra cambiando el eje del río. Bajo estas condiciones se recomienda realizar el trazado del eje del rio con líneas curvas muy moderadas que se unen entre sí con rectas. De tal forma que cumplan con curvas sinusoidales o elásticas.

La curva sinusoidal que se utilizará en el cálculo, es semejante a la mostrada en la figura 2.2.

 Calculamos el radio de la curva (R) con la siguiente expresión, se eligió el valor de 5.

$$R = (4 \ a \ 6) \times B_r \tag{2.87}$$

Donde:

R = Radio de la curva. [m].

 $B_r = Ancho del cauce regulado [m].$

II. Calcula los siguientes parámetros:

$$B_c = (0.6 - 0.8) \times B_r \; ; Si \; \theta \ge 45$$
 (2.88)

$$B_c = (0.81 - 0.95) x B_r ; Si \theta < 45$$
 (2.89)

Donde:

 B_c = Ancho de la curva. [m]

 $\theta = \text{ Ángulo de deflexión}.$

Las demás variables son descritas en ecuaciones anteriores (ver índice).

$$K_1 = \tan\left(\frac{\theta}{2}\right) \tag{2.90}$$

Donde:

 K_1 = Coeficiente que depende del ángulo de deflexión.

Las demás variables son descritas en ecuaciones anteriores (ver índice).

$$x_o = \frac{\pi}{2} \mathbf{x} K_1 \mathbf{x} R \tag{2.91}$$

$$y_o = K_1^2 xR \tag{2.92}$$

Donde:

 $x_o =$ Longitud máxima en x de la curva medida desde el PI (figura 2.2).

 $y_o =$ Longitud máxima en y de la curva medida desde el PI (figura 2.2).

III. Suponemos las abscisas (x) y determinamos las ordenadas (y) para construir la curva. El eje y pasa por el PI de la curva y el eje x pasa por la cuerda principal de la curva (figura 2.2).

Br = Ancho del cauce regulado en la curva
Br = Ancho del cauce regulado en el tramo recto

Figura. 2.2. Esquema de curva sinusoidal

Fuente: (Quezada Poma, 2004)

2.2.3.5. Cálculo de profundidades medias y máximas (socavación en tramos curvos).

Para el cálculo de las profundidades medias y máximas en curvas se procede de la siguiente manera:

- i. Obtiene una constante al dividir el radio de la curva sobre el ancho estable (R/B) (Quezada Poma, 2004).
- ii. Ingrese a la tabla 2.4 con la constante obtenida en el ítem i para obtener los valores de K_t y e_1 (Quezada Poma, 2004).
- iii. Extraiga el valor e_2 de la tabla 2.4, el cual depende del talud de las orillas. (Quezada Poma, 2004).

iv. Determine las profundidades de la curva con las siguientes expresiones:

$$H_{\max(r)} = KxH_{mr} \tag{2.93}$$

Donde:

 $H_{\max(r)} =$ Profundidad máxima regulada [m].

 H_{mr} = Profundidad media regulada obtenida por el método de Altunin,

Maza y Cruickshank o Blench.

K = Coeficiente que depende del tipo del río. Para ríos montañosos

y sub montañosos (1.6 – 1.4).

$$H_{\text{mrc(r)}} = H_{mr} x (1 + K_t)$$
 (2.94)

Donde:

 $H_{\text{mrc}(r)} = \text{Profundidad media regulada de la curva } [m].$

 $K_t =$ Coeficiente que depende de la relación R/B (tabla 2.4).

Las demás variables son descritas en ecuaciones anteriores (ver índice).

$$H_{\text{maxc}} = e_1 x e_2 x H_{mrc(r)} \tag{2.95}$$

Donde:

 $H_{\max(r)} = \text{Profundidad máxima de la curva } [m]$

 $e_1 =$ Coeficiente que depende de la relación R/B (tabla 2.4)

 $e_2 =$ Coeficiente que depende de la pendiente de los taludes (tabla 2.5)

Tabla 2.4. Valores de K_t y e_1

R/B	K _t	e_1
1.5	1.62	
2	0.6	3
3	0.43	2.57
4	0.33	2.2
5	0.27	1.84
6	0.24	1.48
7	0.22	1.46
Infinito	-	1.27

Fuente: (Esparza & Espinoza, 2003; Martin Vide, 2003)

Tabla 2.5. Valores e_2

m	e_2
0 - 0.5	1.2
0.5 - 1	1
1 - 1.5	0.9
1.5 - 2	0.8
> 2	0.7

Fuente: (Esparza & Espinoza, 2003)

2.2.3.6. Estudio de la socavación

Una corriente de agua que se desplaza en su cauce o en una zona de inundación tiene una cierta capacidad de suspender y arrastrar partículas sólidas. Estas partículas constituyen el lecho sobre el que ocurre el flujo. Según (Santiago Casanova, 2007) el movimiento de material sólido en corrientes aluviales es un fenómeno complejo que depende de diversos factores como:

- La configuración geológica.
- La configuración topográfica del cauce.
- Las características del material de arrastre.
- Las características hidráulicas de la corriente.

Para calcular la socavación normal en cauces existen muchos de métodos empíricos (ejemplo Lischtvan – Lebediev, Laursen). Estos métodos principalmente se basan en la fuerza tractiva sobre la carga de fondo. (Santiago Casanova, 2007)

2.2.3.6.1. Tipos de socavación según (Santiago Casanova, 2007)

La socavación que una corriente de agua produce en el cauce donde circula, puede presentar diversas formas. Las de mayor importancia para el ingeniero son las que se describen brevemente a continuación.

Socavación normal o general.- Consiste en una disminución generalizada del nivel del fondo como consecuencia del incremento de la capacidad del flujo al presentarse una creciente. Esto aumenta de la capacidad de arrastre del material sólido.

La erosión de fondo de un cauce definido es una cuestión de equilibrio entre el aporte sólido que pueda traer el agua y el material que sea removido por el flujo.

<u>Socavación en estrechamiento</u>.- Aumenta la velocidad del flujo por el efecto en la reducción del área hidráulica del cauce. Como consecuencia aumenta la capacidad de arrastre

<u>Socavación transversal</u>.- La reducción del ancho de la sección, ocasionada en forma natural o como consecuencia de una obra civil. Se compensa con un incremento en la profundidad, hasta el punto en el cual se alcanza la capacidad necesaria en la sección.

Socavación en curvas.- Se genera una sobre elevación en el fondo cercano al lado cóncavo de la curva (talud exterior). Se debe al flujo helicoidal que se forma cuando el río cambia de dirección. Esta sobre elevación es producida por la fuerza centrifuga. Como consecuencia, la capacidad de arrastre de sólidos y la profundidad de erosión en el exterior es mayor que en el interior de la curva.

Socavación en márgenes.- Es la erosión que se producen en los materiales térreos o solubles que forman sus orillas. El efecto es especialmente peligroso en

crecientes, por el aumento de poder erosivo de la corriente a causa de su mayor velocidad. La erosión de las márgenes es causa de divagación y si el ataque se produce en estratos susceptibles situados bajo otros que no lo son. Esto producirá embovedamientos causantes de inestabilidad en los taludes de la propia margen.

2.2.3.6.2. Análisis de la socavación general en cauces definidos con rugosidad uniforme según (Santiago Casanova, 2007)

Para el cálculo de la socavación general se recomienda utilizar el criterio de L.L (Lichtvan – Lebediev). El cual se basa en determinar la condición de equilibrio entre la velocidad media de la corriente y la velocidad media del flujo, necesaria para erosionar el material que forma el cauce. Es aplicable tanto para suelos con estratificación homogénea y no homogénea.

La profundidad de socavación se calcula para un determinado punto. Si se calcula para un tramo las características del material de fondo deben ser promedio

La avenida trae consigo el aumento de la capacidad de arrastre de la corriente, con la que se empieza a degradar el fondo. Al aumentar el gasto aumenta la socavación y el área hidráulica, hasta que se llega a la socavación máxima de equilibrio. Al disminuir el gasto se reduce el valor medio de la velocidad de la corriente. Esto disminuye la capacidad de arrastre, iniciándose la etapa de depósito.

2.2.3.6.3. Cálculo de la profundidad de la socavación en suelos homogéneos

Las secciones homogéneas pueden calcularse fácilmente mediante la teoría de Lischtvan – Lebediev. El equilibrio se da cuando la velocidad de la corriente (V_r) es igual a la velocidad que se necesita tener para arrastrar el material (V_e) (Santiago Casanova, 2007).

Dentro de los suelos homogéneos únicamente se distinguen dos condiciones diferentes según el material sea cohesivo o no (Santiago Casanova, 2007).

• Suelos cohesivos. - $V_e = V_r$, donde V_e esta dada por la ecuación (2.99) y V_r esta dada por la ecuación (2.96).

$$V_r = \frac{\alpha x H_o^{5/3}}{H_c}$$
 (2.96)

Donde:

 $V_r = Velocidad de la corriente [m/s].$

 $\alpha =$ Es una constante para cualquier río dada por la ecuación (2.97).

 H_0 = Profundidad antes de la erosión [m].

 H_s = Tirante considerado donde se desea conocer el valor de V_e [m].

$$\alpha = \frac{Q}{H_m^{5/3} \times \beta \times \mu} = \frac{1}{n} \times S^{1/2}$$
 (2.97)

Donde:

 $Q = \text{Caudal de diseño } [\text{m}^3/\text{s}].$

 H_m = Tirante medio medido entre la superficie del agua al pasar la avenida y el fondo original. Se obtiene de dividir el área hidráulica en el ancho de la superficie libré.

 $\beta =$ Coeficiente que depende de la frecuencia con se presente la avenida: (tabla 2.6 o ecuación 2.98) (Hernandez, Molina, & Salatiel).

 $\mu=$ Coeficiente que depende la contracción del cauce (tabla 2.9).

S =Pendiente del cauce [m/m].

n = Coeficiente de rugosidad de Manning.

$$\beta = 0.7929 + 0.0973 \operatorname{xlog} T_{r}$$
 (2.98)

Donde:

 T_r = Periodo de Retorno

Las demás variables son descritas en ecuaciones anteriores (ver índice).

$$V_{e} = 0.6x\gamma_{d}^{1.18}x\beta x H_{s}^{x}$$
 (2.99)

Donde:

 V_e = Velocidad erosiva; [m/s]

 γ_d = Peso volumétrico del material seco que se encuentra a la profundidad H_s ; $[Ton/m^3]$

x =Exponente que está en función del peso volumétrico γ_d ; (tabla 2.7)

Las demás variables son descritas en ecuaciones anteriores (ver índice).

Por lo que como resultados nos da:

$$H_{s} = \left(\frac{\alpha x H_{o}^{5/3}}{0.6 x \gamma_{d}^{1.18} x \beta x \Psi}\right)^{\frac{1}{x+1}}$$
 (2.100)

Donde:

 $\Psi =$ Coeficiente que depende de la concentración del material transportado (tabla 2.8).

Las demás variables son descritas en ecuaciones anteriores (ver índice).

Se resta el valor de H_o de H_s para obtener el valor de socavación esperado.

• <u>Suelos no cohesivos</u>.- $V_e = V_r$, donde V_e esta dada por la ecuación (2.101) y V_r esta dada por la ecuación (2.96).

$$Ve = 0.68 d_m^{0.28} x \beta x H_s^{\ x} \tag{2.101}$$

Donde:

 d_m = Diámetro medio de las partículas de fondo; [m]

Las demás variables son descritas en ecuaciones anteriores (Ver índice)

Por lo que como resultados nos da:

$$H_s = \left(\frac{\alpha x H_o^{5/3}}{0.68 x d_m^{0.28} x \beta x \Psi}\right)^{\frac{1}{x+1}}$$
 (2.102)

$$x = 0.394557 - 0.04136 \log d_m - 0.00891 (\log d_m)^2$$
 (2.103)

Donde:

Las variables son descritas en ecuaciones anteriores (ver índice).

De H_s se resta el valor de H_o para obtener el valor de socavación esperado.

Tabla 2.6. Valores del coeficiente β que depende de la frecuencia de la avenida

Probabilidad en % de que se presente el caudal de diseño	Período de retorno	Coeficiente β		
100	1	0.77		
50	2	0.82		
20	5	0.86		
10	10	0.9		
5	20	0.94		
2	50	0.97		
1	100	1		
0.3	330	1.03		
0.2	500	1.05		
0.1	1000	1.07		

Fuente: (Delgadillo Pelcastre & Lopez Orozco, 2009)

Tabla 2.7. Valores de x y 1/(x+1) para suelos cohesivos y no cohesivos

Suelos cohesivos						Suelos no cohesivos						
γ_d (Ton/m ³)	Х	1/(1+x)	γ_d (Ton/m ³)	х	1/(1+x)	Dm(mm)	х	1/(1+x)	Dm(mm)	х	1/(1+x)	
0.80	0.52	0.66	1.20	0.39	0.72	0.05	0.43	0.70	40.00	0.30	0.77	
0.83	0.51	0.66	1.24	0.38	0.72	0.15	1.42	0.41	60.00	0.29	0.78	
0.86	0.50	0.67	1.28	0.37	0.73	0.50	0.41	0.71	90.00	0.28	0.78	
0.88	0.49	0.67	1.34	0.36	0.74	1.00	0.40	0.71	140.00	0.27	0.79	
0.90	0.48	0.68	1.40	0.35	0.74	1.50	0.39	0.72	190.00	0.26	0.79	
0.93	0.47	0.68	1.46	0.34	0.75	2.50	0.38	0.72	250.00	0.25	0.80	
0.96	0.46	0.68	1.52	0.33	0.75	4.00	0.37	0.73	310.00	0.24	0.81	
0.98	0.45	0.69	1.58	0.32	0.76	6.00	0.36	0.74	370.00	0.23	0.81	
1.00	0.44	0.69	1.64	0.31	0.76	8.00	0.35	0.74	450.00	0.22	0.82	
1.04	0.43	0.70	1.71	0.30	0.77	10.00	0.34	0.75	570.00	0.21	0.83	
1.08	0.42	0.70	1.80	0.29	0.78	15.00	0.33	0.75	750.00	0.20	0.83	
1.12	0.41	0.71	1.89	0.28	0.78	20.00	0.32	0.76	1000.00	0.19	0.84	
1.16	0.40	0.71	2.00	0.27	0.79	25.00	0.31	0.76				

Fuente: (Santiago Casanova, 2007)

Tabla 2.8. Valores de Ψ

Mezcla	1.05	1.1	1.15	1.2	1.25	1.3	1.35	1.4
Ψ	1.06	1.13	1.2	1.27	1.34	1.42	1.5	1.6

Fuente: (Esparza & Espinoza, 2003)

Tabla 2.9. Valores de μ

Velocidad	Luz libre entre dos pilas, (m)												
media	10	13	16	18	21	25	30	42	52	63	106	124	200
(m/s)		Coeficiente μ											
< 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.00	0.96	0.97	0.98	0.98	0.99	0.99	0.99	1.00	1.00	1.00	1.00	1.00	1.00
1.50	0.94	0.96	0.97	0.97	0.97	0.98	0.99	0.99	0.99	0.99	1.00	1.00	1.00
2.00	0.93	0.94	0.95	0.96	0.97	0.97	0.98	0.98	0.99	0.99	0.99	0.99	1.00
2.50	0.90	0.93	0.94	0.95	0.96	0.96	0.97	0.98	0.98	0.99	0.99	0.99	1.00
3.00	0.89	0.91	0.93	0.94	0.95	0.96	0.96	0.97	0.98	0.98	0.99	0.99	0.99
3.50	0.87	0.90	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.98	0.99	0.99	0.99
>= 4.00	0.85	0.89	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99	0.99	0.99

Fuente: (Maza, 1967)

2.2.3.6.4. Teoría de Lischtvan – Lebediev según (Schreider, Scacchi, & Franco, 2001)

Se requiere para su aplicación de datos que son relativamente fáciles de obtener en la naturaleza. La teoría permite determinar el valor de la socavación general en cualquier tramo de un río y el correspondiente a la socavación debida al estrechamiento de la sección.

Las variables que se requieren en la teoría son:

- a. El Caudal de diseño (Q_d) escogido con una frecuencia determinada. Puede ser obtenido mediante métodos empíricos y semi empíricos (ejemplo, Método Racional, Método de Ven Te Chow)
- b. El perfil longitudinal y transversal del cauce
- c. Características del material del fondo como peso específico (γ_d) y el diámetro medio de las partículas (d_m) , así como su distribución en el subsuelo.

La hipótesis es que el caudal permanece constante durante todo el proceso erosivo en cada franja escogida de la sección. Como el caudal de las orillas es igual a cero, después de la erosión deberá permanecer así. Por lo que se excluye la posibilidad de cualquier corrimiento lateral. En la mayoría de las ocasiones esto se cumple excepto en el exterior de las curvas.

Con esta hipótesis se puede presentar el inconveniente que exista una zona con un material más resistente a la erosión que en el resto de la sección. Esto hará que después de un cierto tiempo sea menor el gasto sobre esa zona. En el caso del material menos resistente, las alturas de socavación serán más bajas que las calculadas con este método.

La teoría no toma en cuenta el tiempo necesario para que cada material pueda ser erosionado. El tiempo necesario para que la corriente haga su trabajo puede ser mayor que el de la duración de la avenida. Esto no es válido con material no cohesivo.

2.2.3.6.5. Socavación del régimen.

El lecho del río es socavado durante flujos de creciente. Pueden desarrollarse progresivamente grandes descensos del cauce. Tal profundidad de socavación debida a la creciente, por debajo del nivel de inundación y que corresponde al ancho del régimen (ancho estable según la teoría del régimen, apartado 2.2.3.3.1). Es denominado profundidad de socavación de régimen (R_s). La cual se estima con la formula de Lacey. (Quezada Poma, 2004)

$$R_s = 0.475 x \left(\frac{Q}{f}\right)^{1/3} \tag{2.104}$$

Donde:

 R_s = Radio hidráulico del régimen.

f = Factor de sedimentación de Lacey dada con (2.106).

Q = Caudal de máxima crecida [m³/s]

Si el ancho cauce es menor que el ancho del régimen (*B*), se utiliza la siguiente expresión: (Quezada Poma, 2004)

$$R_s = 1.35 x \left(\frac{q^2}{f}\right)^{1/3} \tag{2.105}$$

$$f = 1.75 \times d_m^{1/2} \tag{2.106}$$

Donde:

q = Caudal unitario $[m^3/s/m]$

 d_m = Diámetro medio de las partículas [mm]

Las demás variables son descritas en ecuaciones anteriores (Ver índice)

Cabe señalar que (*B*) es el ancho mínimo estable de un canal aluvial dado por la teoría del régimen medido en metros (medido a lo largo de la superficie libre del agua y formando ángulos rectos con las orillas). (Quezada Poma, 2004)

$$B = 4.75 \,\mathrm{x} Q^{1/2} \tag{2.107}$$

Donde:

B = Ancho mínimo estable [m]

Las demás variables son descritas en ecuaciones anteriores (Ver índice)

2.2.3.7. Combinación de socavación según (Martin Vide, 2003)

La estimación de socavaciones antes estimadas tiene como objeto deducir una cifra de socavación potencial. La estimación de la socavación a largo plazo normalmente se refiere a un plazo en años. Mientras la socavación general transitoria va asociada a una probabilidad de ocurrencia. En este sentido es interesante definir un plazo de vida del encauzamiento. Con esto se realiza la estimación de socavación permanente precisamente para ese plazo. Por otra parte, los restantes procesos de erosión ocurren independientemente a la evolución progresiva del fondo. De manera que el fondo erosionado a largo plazo puede considerarse un plano de referencia rebajado. Así concluimos que la socavación general transitoria (e_T) cuyo riesgo de ocurrencia en un plazo (N), puede sumarse directamente con la socavación a largo plazo (e_N) .

- La suma $(e_T + e_N)$ tiene el mismo periodo de retorno que (e_T) , por ser (e_N) un suceso seguro.
- La suma significaría medir (e_T) desde el plano de referencia dado por (e_N) . Esto se consideraría si el suceso de recurrencia se presenta al final o después de los N años.

La combinación de socavación general transitoria y en curvas, se realiza multiplicativamente. En este documento la socavación en tramos curvos se la presenta en el apartado 2.2.3.5.

2.2.4. Obras civiles.

Las obras que se utilizan para la rectificación de un cauce se dividen en:

2.2.4.1. Obras longitudinales según (Lopez Cardenas del Llano, 1988)

Produce un control horizontal de la tensión tractiva sobre las márgenes. Rectifica el eje de la corriente, evitando los desequilibrios producidos por curvaturas excesivas. Solo en casos limitados suele acudirse una disminución de la tensión tractiva del agua por reducción de la pendiente.

El uso de espigones transversales a la corriente es también un control horizontal. Donde la estructura actúa disminuyendo la tensión tractiva del agua en contacto con las márgenes. Mediante el establecimiento de zonas de poca velocidad entre cada dos espigones donde se producen sedimentaciones. El uso de estas estructuras provoca una reducción de la sección del flujo del cauce útil. Por lo que se produce el aumento de la capacidad erosiva del cauce.

Las obras de rectificación del eje hidráulico y de la sección de flujo de los ríos se suelen conseguir por medio de encauzamiento, muros de rivera o fuertes revestimientos que definen la sección. Este tipo de obras deben estudiarse con cuidado, pues implican el riesgo de forzar las aguas dentro de un trazado diferente al que el rio tiende a forjarse. Conviene ajustarse lo más posible a la que pueda considerarse como tendencia de equilibrio natural del cauce.

Las obras longitudinales limitan su función a evitar la erosión en las márgenes y controlar las inundaciones. La proyección de las estructuras longitudinales es más bien de defensa y salvaguarda pasiva frente al proceso torrencial. Mientras que la obra transversal incide activa y decisivamente en el propio proceso. Tanto en su diseño como en su funcionalidad. Algunas obras longitudinales se describen a continuación.

<u>Malecones.</u> Los malecones se sitúan protegiendo las márgenes sometidas a procesos localizados de erosión. Sin embargo, al impedir la divagación de las aguas, puede aumentarse la acción erosiva y desestabilizar el lecho. Se colocan cerrando ansas y rectificando la curvatura del cauce.

Espigones (figura 2.3 y 2.4). Se colocan en lugares con problemas de erosión en las márgenes. El cauce debe tener el suficiente ancho para que la modificación de la dinámica torrencial sea admisible. La ventaja frente a los malecones consiste en que la resulta más económico.

Figura: 2.3 Espigones formados por pilotes metálicos,

Fuente: (Calviño & Asociados, 2009)

Figura: 2.4 Espigones transversales

Fuente: (Ministerio del medio Ambiente y medio rural y marino, 2008)

Otras obras longitudinales. En los lugares en que no sea posible desviar las aguas, por la limitación en el ancho del cauce, y se trate sólo de proteger las márgenes y aumentar su resistencia. Se recurre a revestimientos tales como escolleras, corazas o plantación de cubiertas vegetales. La figura 2.5 muestra cauces con revestimiento en sus márgenes.

Figura 2.5 Recubrimiento de márgenes

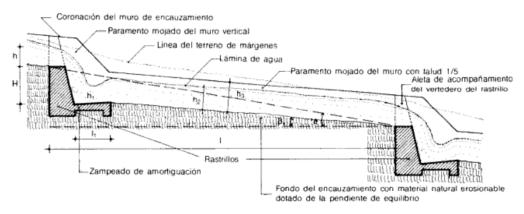
Fuente: (Barberis, Accattatis, & Selzer, 2005)

2.2.4.2. Obras transversales según (Lopez Cardenas del Llano, 1988).

Las obras transversales ofrece la solución más simple para controlar:

- El descenso progresivo de los lechos.
- El transporte masivo de sedimentos.
- Erosión de las márgenes y la desestabilización de los macizos adyacentes.

Este tipo de obras tienen los siguientes efectos:


- Establecen un punto fijo en el lecho del cauce, controlando su descenso progresivo.
- Mientras el vaso del embalse que originan se encuentra sin aterrar, el efecto de presa hace que las aguas embalsadas frenan la velocidad de llegada de los sedimentos. En consecuencia se depositen los granos más gruesos y disminuya el caudal de vertido de la proporción sólida.
- Los depósitos que se producen van formando un aterramiento que eleva el cauce hasta alcanzar la pendiente de compensación. Está pendiente es menor que la del cauce natural.
- La elevación del cauce en el entorno que comprende el aterramiento da lugar a que el nuevo lecho, elevado y asentado sobre los acarreos retenidos. Esto produce secciones de mayor anchura, por lo que disminuye el radio hidráulico sensible al calado.

Las obras transversales destinadas a la corrección de un cauce torrencial se suelen clasificar en diques de consolidación y diques de retenida, según la función específica para la que estén destinados (Lopez Cardenas del Llano, 1988)

2.2.4.2.1. Los diques de consolidación

Tienen por objeto evitar los fenómenos directos de erosión en los cauces y en las laderas marginales afectadas de inestabilidad por esta acción erosiva. Con estas obras transversales se persigue la fijación del perfil longitudinal del lecho del torrente. Evitando su descenso erosivo, lo que se logra por el escalonamiento del cauce con diques consecutivos. Estos dotan al torrente de una pendiente menor que la del cauce natural. Los diques forman escalones cuyas huellas son estos aterramientos y las contrahuellas es la estructura del dique. De esta manera cubre ininterrumpidamente con la pendiente de compensación, desde la coronación de un dique hasta el pie aguas arriba del anterior. La figura 2.6 nos indica el funcionamiento de estos diques.

Figura: 2.6 Obras transversales el forma escalonada

Fuente: (Lopez Cardenas del Llano, 1988)

La altura de los diques que forman este escalonamiento puede ser variable. Pueden estar ubicados y dimensionados de tal manera que se forma un escalonamiento continuo de aterramientos. Excluyendo casos en que el lecho, por causas naturales, exista un afloramiento rocoso, que no presente un peligro de retrogresión.

Dentro de los diques de consolidación tenemos

 Umbrales de fondo (figura 2.7). Estas obras transversales son auxiliares para obras longitudinales. En cauces de pendiente no exagerada controlan la erosión del lecho. Se localizan en los tramos erosionables en que no es posible el uso de diques de corrección (Lopez Cardenas del Llano, 1988)

Figura 2.7 Umbral de fondo

Fuente: El autor

Para el análisis hidráulico de los Umbrales de fondo utilizamos las siguientes expresiones (Quezada Poma, 2004)

$$H_o = \left(\frac{Q}{4.43 \times m \times e \times k \times b}\right)^{2/3} \tag{2.108}$$

Donde:

H_o = Tirante de agua sobre el vertedero [m]

Q = Caudal de diseño [m³/s].

m = Coeficiente de gasto, según la ecuación (2.109)

e = Coeficiente de contracción según la ecuación (2.110)

 ${\bf k}={\bf C}$ Coeficiente de sumergimiento = 1 por que la estructura se encuentra totalmente sumergida.

b = Ancho del vertedero [m]

$$m = 0.32 + 0.01 \times \left(\frac{3 \times H_o - P}{0.46 \times H_o - 0.75 \times P} \right)$$
 (2.109)

$$e = 1 - 0.2x \left(\frac{H_o}{H_o + b}\right) \tag{2.110}$$

Donde:

P = Altura del Vertedero o Umbral de Fondo [m].

Las demás variables son descritas en ecuaciones anteriores (ver índice).

Características del salto hidráulico.

Profundidad crítica del agua (h_c) .

Sección rectangular.

$$h_{cr} = \left(\frac{Q^2}{g \times e^2 \times b^2}\right)^{1/3} \tag{2.111}$$

Donde:

 h_{cr} = Altura crítica del agua para sección rectangular [m]

g = Aceleración de la gravedad [m/s²].

Las demás variables son descritas en ecuaciones anteriores (ver índice).

Sección Trapezoidal.

$$h_{ct} = \left(1 - \frac{S}{3} + 0.105 \text{x} S^2\right) \text{x} h_{cr}$$
 (2.112)

Donde:

S = Se obtiene de la ecuación (2.113).

Las demás variables son descritas en ecuaciones anteriores (ver índice).

$$S = \frac{m \times h_{cr}}{h} \tag{2.113}$$

Para sección rectangular m = 1

Donde:

Las demás variables son descritas en ecuaciones anteriores (ver índice).

Vertedero de sección trapezoidal.

$$V_{cr} = \frac{Q}{bx(h_{ct} + P) + h_{ct}^{2}}$$
 (2.114)

Donde:

 V_{cr} = Velocidad crítica [m/s].

Las demás variables son descritas en ecuaciones anteriores (ver índice).

Altura crítica del agua sobre el vertedero (h_{cr}) .

$$h_{cr} = \frac{V_{cr}^2}{2xg} \tag{2.115}$$

Donde:

 $h_{cr} = \text{Altura crítica del agua } [m].$

Las demás variables son descritas en ecuaciones anteriores (ver índice).

Resalto hidráulico.

$$Y_1^3 - \left(P + h_{ct} + \frac{V_{cr}^2}{2xg}\right) x Y_1^2 + \frac{Q^2}{2xgxb^2} = 0$$
 (2.116)

Donde:

 $Y_1 = \text{Conjugado menor } [m].$

Las demás variables son descritas en ecuaciones anteriores (ver índice).

$$F_1 = \frac{{V_1}^2}{g \times Y_1} \tag{2.117}$$

Donde:

 F_1 = Número de Froude.

 V_1 = Velocidad del agua (m/s).

Las demás variables son descritas en ecuaciones anteriores (ver índice).

$$Y_2 = \frac{Y_1}{2} x \left((1 + 8xF_1)^{1/2} - 1 \right)$$
 (2.118)

Donde:

 Y_2 = Conjugado mayor.

Las demás variables son descritas en ecuaciones anteriores (ver índice).

$$Q = \frac{1}{n} x \left(\frac{(bxY_3)^{5/3}}{(b + 2xY_3)^{2/3}} \right) x S^{1/2}$$
 (2.119)

Donde:

n = Coeficiente de rugosidad de Manning.

 Y_3 = Calado aguas debajo de la estructura [m].

Las demás variables son descritas en ecuaciones anteriores (ver índice).

$$L_{\rm S} = 6.9 \, {\rm x} (Y_2 - Y_1) \tag{2.120}$$

Donde:

 L_s = Longitud del resalto hidráulico [m]

Las demás variables son descritas en ecuaciones anteriores (Ver índice)

$$r = 0.15 \text{x} V_1 \text{x} Y_1^{1/2} \tag{2.121}$$

Donde:

r =Profundidad de revestimiento [m]

Las demás variables son descritas en ecuaciones anteriores (Ver índice)

Se aconseja que r deba estar entre 0.50 y 1.00

$$r = 0.22xq^{1/2}xZ^{1/4} (2.122)$$

Donde:

 $q = \text{Caudal unitario } [\text{m}^3/\text{s/m}]$

Z = Coeficiente estimado con la expresión (2.123)

$$Z = (P + Ho) - Y_2 (2.123)$$

Donde:

Las demás variables son descritas en ecuaciones anteriores (Ver índice)

 Azud (figura 2.8). Es una estructura transversal que se levanta en el lecho de un cauce para atajar el agua. Se produce una elevación de su nivel que permita la derivación de la corriente. Su finalidad es elevar el nivel del agua y facilitar su almacenamiento (Lopez Cardenas del Llano, 1988)

Fuente: El autor

Cuando las aguas llevan sedimentos se produce un proceso de sedimentación análogo al ya estudiado. El azud funciona como un dique de retención.

Para determinar la altura de la lamina de agua (H) sobre el perfil se utiliza la siguiente ecuación: (Quezada Poma, 2004)

$$H = \left[\frac{Q}{mxb}\right]^{2/3} \tag{2.124}$$

Donde:

H = Altura de la lamina de agua [m]

 $Q = \text{Caudal de diseño } [m^3/s].$

m = 1,84 para vertederos de pared gruesa o azud trapezoidal

b =Es el ancho del vertedero, [m]

Utilizamos las ecuaciones (2.125) y (2.126), para determinar el perfil Creager (Quezada Poma, 2004)

$$X^{1.85} = 2xH_d^{0.85}xY (2.125)$$

Donde:

X = Coordenadas en X [m]

Y = Coordenadas en Y [m]

 $H_d = Tirante de agua [m]$

$$Q = CxLxH_d^{1.5} (2.126)$$

Donde:

Q = Caudal de diseño [m³/s].

C = Coeficiente que depende del vertedero (pared ancho, delgada).

L = Ancho de la estructura [m].

Las demás variables son descritas en ecuaciones anteriores (ver índice).

Para el diseño del pozo de amortiguamiento resumimos el procedimiento de cálculo en las ecuaciones (2.127) a la (2.131) (Quezada Poma, 2004).

$$V_1 = \sqrt{2xgx(Z - 0.5xH)} \tag{2.127}$$

Donde:

 $V_1 = Velocidad del agua [m/s].$

 $g = Aceleración de la gravedad [m/s^2].$

Z = Altura de la lamina de agua más la altura de la estructura <math>[m].

Las demás variables son descritas en ecuaciones anteriores (ver índice).

$$Y_1 = \frac{Q}{V_1 \times b} \tag{2.128}$$

Donde:

 $Y_1 = \text{Conjugado menor } [m]$

Las demás variables son descritas en ecuaciones anteriores (Ver índice)

$$Y_2 = 0.5xY_1x\left[\sqrt{1 + 8xF^2} - 1\right]$$
 (2.129)

Donde:

 $Y_2 = \text{Conjugado mayor } [m].$

F = Número de Froude.

Las demás variables son descritas en ecuaciones anteriores (Ver índice).

$$2.66xF^{2}x\left[1+\frac{h/Y_{1}}{Y_{2}/Y_{1}}\right] = \left[\frac{Y_{2}}{Y_{1}} - \frac{h}{Y_{1}}\right]^{3}$$
(2.130)

Donde:

h = Altura del dintel [m].

Las demás variables son descritas en ecuaciones anteriores (Ver índice).

$$L = 5x(Y_2 - Y_1) (2.131)$$

Donde:

L =Longitud del pozo de amortiguamiento [m]

Las demás variables son descritas en ecuaciones anteriores (Ver índice)

2.2.4.2.2. Los diques de retenida

Se destinan exclusivamente a retener los materiales sólidos y en algunos casos a laminar la punta de los caudales líquidos de avenida. Son trabajos complementarios, necesarios para evitar rápidamente los daños que pueden ocasionar los acarreos y caudales líquidos (Lopez Cardenas del Llano, 1988).

Los diques de retención, se caracterizan por ser obras de ingeniería de mediana envergadura. En la construcción se aprovechan tanto los recursos existentes en la zona de emplazamiento, como también las propiedades estructurales de los materiales utilizados. (Aguilar, 2006)

Las dimensiones del dique de retención están asociadas a los volúmenes de acumulación de material deseado aguas arriba del dique. Sus dimensiones son función de la altura máxima de retención. Según (Aguilar, 2006) el dimensionamiento hidráulico toma en cuenta:

- Trayectoria del cauce.- Tiene relación con la ubicación del dique en el cauce.
- Condiciones geológicas (factibilidad de emplazamiento).
- Caudal de diseño.- Define la geometría del vertedero y las dimensiones del dique.
- Necesidades de disipación de energía cinética.- Relacionado con obras complementarias al pie del dique.

Los diques de retención son obras que tienen la capacidad de disminuir la fracción sólida acarreada por una crecida. Dando paso a la acumulación de material aguas arriba de este. Esto permite una disminución de la pendiente del cauce y de la capacidad de arrastre del flujo. (Aguilar, 2006)

Para el diseño de un dique se retención se consideran 3 etapas de funcionamiento: (Aguilar, 2006)

- Colmatación.
- Aterramiento.
- Consolidación.

En las etapas de colmatación y aterramiento, la estructura se comporta como un dique de retención de sedimentos. Mientras que en la etapa de consolidación, la sedimentación colapsa la primera sección del vertedero. En consecuencia se reduce el espesor de la coronación y el ancho efectivo de la base (Aguilar, 2006).

Las fuerzas que actúan sobre el dique en sus distintas etapas de funcionamiento son: (Aguilar, 2006)

- Empuje hidrostático en el paramento superior.
- Empuje de tierra sobre cimentación.
- Peso del agua sobre el umbral del vertedero.
- Presión del agua sobre el dique.
- Peso propio de la estructura.
- Presión intersticial del agua.

Colmatación.- Durante esta primera etapa. El empuje hidrostático actúa sobre el paramento de aguas arriba.

Aterramiento.- En este caso, el flujo detrítico sedimenta aguas arriba del dique provocando una elevada presión sobre el paramento de aguas arriba.

Consolidación.- El empuje hidrostático actúa solamente en las alas del dique. El resto de la obra al empuje de la tierra saturada.

Un ejemplo de un dique de retención con mampostería gavionada se presenta en la figura 2.9

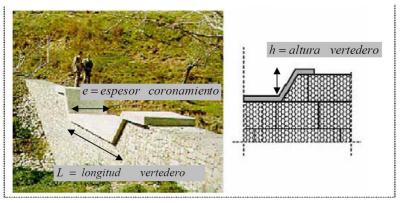


Figura 2.9. Dique de retención

Fuente: (Aguilar, 2006)

CAPÍTULO III

3. IMPLEMENTACIÓN DE LA APLICACIÓN

3.1. Laboratorio virtual de hidrología (HYDROVLAB).

Se implemento una herramienta de cálculo para el análisis y diseño de cauces estables en el Laboratorio Virtual de Hidrología (Hydrovlab). La dirección de la página de inicio es "http://www.hydrovlab.utpl.edu.ec". La figura 3.1 muestra la página de inicio de la web. La aplicación está dirigida a la comunidad en general.

Hydrovlab Laboratorio Virtual Hidrolog Universidad Técnica Particular de Loja ANÁLISIS SIMULACIÓN FORUM WIKI EQUIPO Estas en: BIENVENIDOS Ingresar Presentación El laboratorio virtual de hidrología (HYDROVLAB) es una iniciativa académica que tiene por finalidad **O** Usuario: proporcionar a estudiantes y profesionales un medio que permita observar, experimentar y comprender el comportamiento de un sistema hidrológico y la interrelación de las variables en éste involucradas. **@** Contraseña: HYDROVLAB posee tres tipos de herramientas: Análisis de datos, que le permiten al usuario realizar análisis de consistencia, modelamiento de series históricas y estimación de información faltante.
 Simulación de procesos, que permiten estudiar cada una de las fases del ciclo hidrológico y el efecto de la variación de sus parámetros.
 Diseño de obras relacionadas a la hidrología, la hidráulica y la ingeniería fluvial, que se constituyen en una herramienta de apoyo para el proyectista. Aceptar Recordar contraseña Registro Has olvidado tu HYDROVLAB posee una interfaz amigable e interactiva, permite la colaboración e intercambio de información entre los usuarios mediante las tecnologías de la WEB 2.0, constituyéndose en un recurso didáctico invaluable en el estudio de la hidrología.

Figura 3.1. Página de inicio del laboratorio virtual de hidrología

Fuente: http://www.hydrovlab.utpl.edu.ec/

Para ingresar a la aplicación. Primero se deberá identificar. Después ir a la pestaña "DISEÑO" (figura 3.1). A continuación damos un click en "encauzamiento". Este link se encuentra en la parte izquierda de la página.

3.2. Aplicación en Microsoft VisualStudio.net según (Blanco, 2002)

La aplicación tiene una extensión aspx.net dentro de Microsoft Visual Studio 2008. Se utilizó el Framework 2.0 para crear la aplicación.

Las páginas ASP (Active Server Pages).- Es el medio con el que en Windows DNA, podemos programar aplicaciones para Internet utilizando la tecnología de Microsoft. El hecho de ser código interpretado, carece de una herramienta de depuración y poca estructuración. Pero todas las herramientas de desarrollo tienden progresivamente hacia un modelo orientado a objetos.

<u>El lenguaje Visual Basic (VB)</u>.- El papel de VB dentro de Windows DNA ha sido el de la escritura de componentes para su uso por parte de las páginas ASP. El VB es un lenguaje sencillo y de fácil manejo.

<u>El .NET</u>.- Es toda una nueva arquitectura tecnológica, desarrollada por Microsoft para la creación y distribución del software como un servicio. En consecuencia los programadores podrán crear aplicaciones basadas en servicios para la web.

Las características principales que conforman .NET son las siguientes:

- La plataforma .NET Framework. Proporciona la infraestructura para crear aplicaciones y el entorno de ejecución para las mismas.
- Los productos de Microsoft enfocados hacia .NET, entre los que se encuentran:
 - Windows .NET Server.- Sistema operativo que incluirá de forma nativa la plataforma .NET Framework
 - Visual Studio .NET. Herramienta integrada para el desarrollo de aplicaciones;
 - Office .NET; base central para .NET, etc.
- Servicios para .NET desarrollados por terceros, que podrán ser utilizados por otras aplicaciones que se ejecuten en Internet.

En este sentido, un programador puede crear Web Services para que sean utilizados por sus propias aplicaciones a modo de componentes (pero de una forma mucho más avanzada que empleando el modelo COM clásico), siguiendo una estructura de programación ya conocida.

<u>.NET Framework.</u>- .NET Framework constituye la plataforma y elemento principal sobre el que se asienta Microsoft .NET. De cara al programador, es la pieza fundamental, ya que proporciona las herramientas y servicios que necesitará en su labor habitual de desarrollo.

.NET Framework permite el desarrollo de aplicaciones a través del uso de un conjunto de herramientas y servicios. Las cuales pueden agruparse en tres bloques principales:

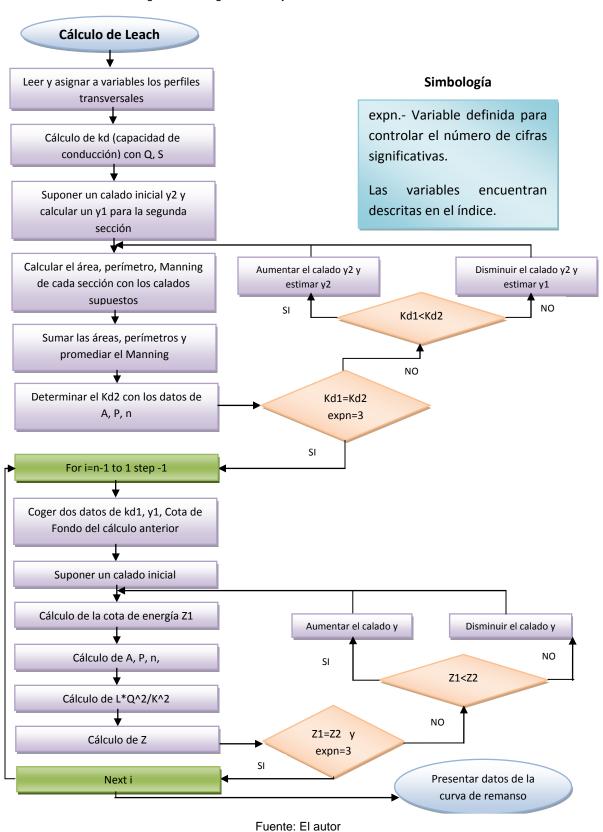
- El Entorno de Ejecución Común o Common Language Runtime (CLR).
- La jerarquía de clases básicas de la plataforma (.NET Framework Base Classes).
- Permite crear interfaces para la web o para el tradicional entorno Windows. Así como servicios para ambos entornos operativos.

3.3. Diagrama de flujo general para la aplicación

La aplicación sigue el diagrama de flujo que se presenta a continuación. El cual se los ha dividido por métodos de cálculo, para su mejor manejo al utilizar el lenguaje de programación.

Inicio Escoger material de fondo del cauce. Ingresar Q y características del material de fondo. Ingresar los archivos .txt que contengan los perfiles transversales y la ubicación de las curvas. Calculo de la curva de remanso mediante Leach. Elección de los tramos y características de las obras transversales. Altunin Blench Maza Cruickshank Control horizontal. Socavación en tramos rectos. Profundidades medias y máximas. NO Cálculo del perfil Obras rectificado con obras SI transversales.

Figura 3.2. Diagrama de flujo general de la aplicación


Fuente: El autor

Presentación de

resultados.

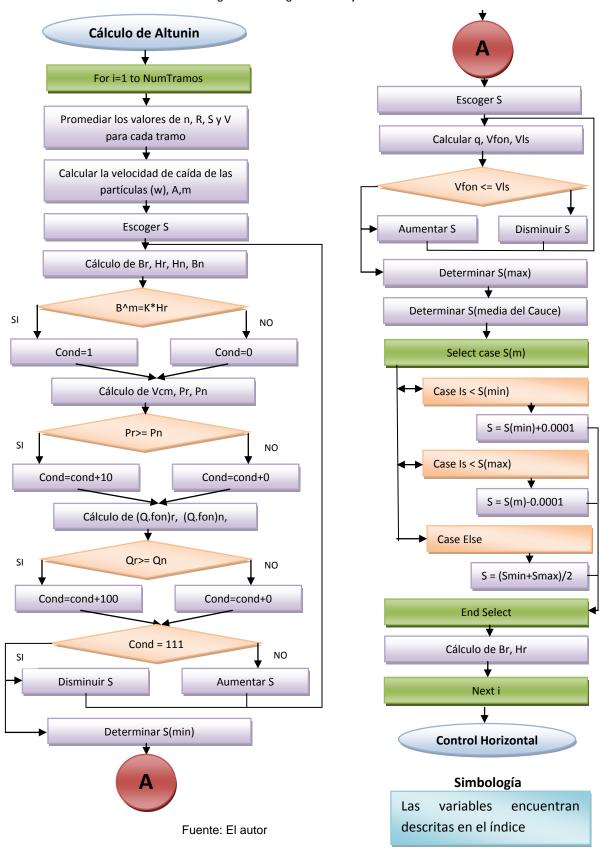

Fin

Figura 3.3. Diagrama de flujo de la Curva de Remanso

La Universidad Católica de Loja

Figura 3.4. Diagrama de flujo de Altunin

Simbología

Las variables encuentran descritas en el índice

Figura 3.5. Diagrama de flujo Maza y Cruickshank

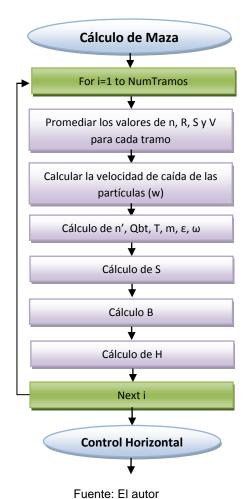
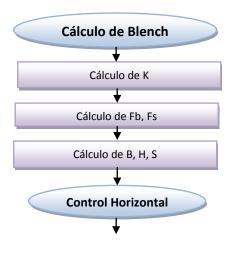



Figura 3.6. Diagrama de flujo Blench

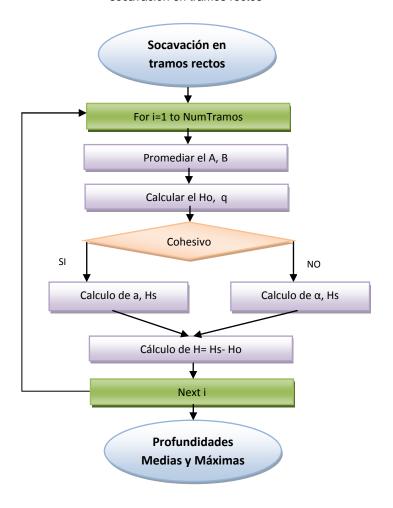

Fuente: El autor

Figura 3.7. Diagrama de flujo del cálculo del control horizontal

Control horizontal For i=1 to NumCurvas Leer el ancho de cauce Br Cálculo de Bc, R,k1 Cálculo de xo, yo Cálculo de la Abscisas inicial y final Replanteo de la curva Next i Socavación en tramos rectos

Fuente: El autor

Figura 3.8. Diagrama de flujo del cálculo de socavación en tramos rectos

Simbología

variables encuentran Las descritas en el índice

Fuente: El autor

Figura 3.9. Diagrama de flujo de Figura 3.10. Diagrama de flujo del cálculo del perfil rectificado profundidades medias y máximas **Perfil Rectificado Profundidades** Medias y Máximas For i=1 to NumPerfiles For i=1 to NumTramos Cota i = Cota(i-1) - S*(abs(i)-abs(i-1)Calculo de Hmax = 1.5Hmed Alt O= Cota(i) - Cota de Fondo(i) Next i AltO > AltMax For i=1 to NumCurvas NO Diseño de Azud Cálculo de R/B Interpolar los valores de e1, kt, e2 AltO > 0 NO Cálculo de Hcur(media) SI Diseño de Umbral Cálculo Hcur(max) de Fondo Next i **Perfil Rectificado** Next i Fuente: El autor Presentación de resultados Simbología Fuente: El autor

variables

descritas en el índice

encuentran

Las

3.4. Interface del usuario

Un interfaz proporciona, a modo de declaración, una lista de propiedades y métodos, que posteriormente serán codificados (Blanco, 2002).

3.4.1. Variables de entrada

3.4.1.1. Caudal de diseño

Se lo puede estimar con los métodos mencionados en el apartado 2.2.1.3.

3.4.1.2. Características del material de fondo

Para realizar el análisis requiere elegir el material de fondo, de las opciones mostradas en la aplicación (granular, arenoso o cohesivo).

Las variables a ingresar dependen del material del lecho del cauce. Si lecho del cauce es granular se utiliza el método de Altunin para realizar el análisis de estabilidad y por lo tanto, las variables son:

El valor del coeficiente (K) es de 3.0 a 4.0 si la resistencia del material de las orillas es muy resistente (tipo a), de 16.0 a 20.0 si el material de las márgenes es fácilmente erosionable (tipo b), y para un material aluvial de 8.0 a 12.0.

<u>Peso específico</u>.- Es el proveniente al material de fondo expresado en gramos por centímetro cubico. Para obtener esta variable nos regimos a la norma (AASHTO T100).

<u>Periodo de retorno</u>.- Se colocara el periodo de retorno en años. El mismo con el que se estimo el caudal de crecida.

<u>Diámetro medio</u>.- Es el diámetro medio de las partículas del material de fondo expresado en metros. Este parámetro se lo obtiene luego de realizar un ensayo granulométrico basada en la norma (ASTM D422).

<u>Peso Unitario (agua sedimento).</u>- Este parámetro es el peso específico del agua más el sedimento dividido para el peso específico del agua (1 gr/cm^3 o 1000 Kg/m^3). Este valor se encuentra comprendido entre 1.05 y 1.40.

Para el material de lecho de fondo arenoso se utiliza el método de Maza y Cruickshank. El método usa las variables mencionadas por el método de Altunin. Para el diseño se excluye el parámetro K y necesita los siguiente parámetros.

<u>D90, D84, D50</u>.- Estos parámetros corresponden al tamaño de las partículas del lecho de fondo correspondiente al 90%, 84% y 50%. Los diámetros son obtenidos de un análisis granulométrico y están expresadas en metros.

Para el material de lecho de fondo cohesivo se utiliza el método de Blench. El método usa algunos parámetros del método del Altunin, además necesita los siguientes parámetros:

Concentración de las partículas (C). Se obtiene dividiendo el peso del material arrastrado en la capa de fondo entre el peso total líquido. (Ambos por segundo, y expresado [ppm]).

<u>Viscosidad agua sedimento</u>. Se utiliza la viscosidad del agua mezclada con el sedimento en $[m^2/s]$.

<u>Diámetro medio</u>.- Es el diámetro medio de las partículas del material de la orilla expresado en metros.

El lecho de fondo granular se los encuentra en cauces montañosos. Lechos arenosos y cohesivos se encuentra cerca de la desembocadura. Al seleccionar el tipo de lecho de fondo se activan los cuadros de texto necesarios para el ingreso de los datos.

Las figuras 3.11 y 3.12 y 3.13 muestran los textos activados para cada material de fondo.

ENCAUZAMIENTO Y CONTROL DE TORRENTES

Datos de Entrada

DESCARGAR ARCHIOS MANUAL

LIMBIAR CAMPOS

CALDAL DE CRECIDA (m3s)

PERIODO DE RETORNO (ANOS)

MATERIAL DE LECHO GRANULAR

MATERIAL DE LECHO COHESIVO

COEPICIENTE (K)

PESO ESPECIFICO (grind)

DIAMETRO MEDIO (n)

PESO LINITARIO (signa - sediminto)

Figura 3.11. Cuadro de texto habilitados para "LECHO GRANULAR"

Fuente:http://www.hydrovlab.utpl.edu.ec/hydrovlexperimentos/diseño/DisenoCauces.aspx

Figura 3.12 Cuadro de texto habilitados para "LECHO ARENOSO"

Fuente:http://www.hydrovlab.utpl.edu.ec/hydrovlexperimentos/diseño/DisenoCauces/DisenoCauces.aspx

ENCAUZAMIENTO Y CONTROL DE TORRENTES

Datos de Entrada

DESCARGAR ARCHNOS MANUAL

LIMPAR CAMPOS

CAUDAL DE CRECIDA (mila)

PERIODO DE RETORNO (MIOS)

MATERIAL DE LECHO GRANALAR

MATERIAL DE LECHO COMESINO

PESO ESPECIFICO (gins)

DUMETRO MEDIO (n)

PESO LINTARIO (Rigua - sedimento)

CONCENTRACION DEL MATERIAL DE FONDO C (gins)

VISCOSIDAD AGUA SEDIMENTO (mila)

CUMETRO MEDIO EN LAS ORILLAS (n)

Figura 3.13 Cuadro de texto habilitados para "LECHO COHESIVO"

Fuente:http://www.hydrovlab.utpl.edu.ec/hydrovlexperimentos/diseño/DisenoCauces/DisenoCauces.aspx

Para descargar el manual de manejo del programa y los archivos de ejemplo se hace click sobre los botones que se encuentran en la parte superior de la página.

3.4.1.3. Datos de topografía

Los datos topográficos que se deben ingresar a la aplicación son; los perfiles transversales y las curvas del cauce. Los datos se cargaran a través de dos archivos con extensión txt. Los archivos serán nombrados "XXXXXperfiles.txt" y "XXXXXcurvas.txt". Siendo XXXXX una descripción particular del tramo analizado.

El archivo "XXXXXperfiles.txt" se enlistara la abscisa longitudinal, abscisa transversal, elevación, y el coeficiente de rugosidad de Manning para cada perfil transversal. Mientras que el archivo "XXXXXcurvas.txt" poseerá la ubicación de cada curva por medio de las abscisas y el ángulo de deflexión de la curva.

Formato del Archivo "XXXXXperfiles.txt"

Como se puede observar en la figura 3.14. Los datos obligatoriamente deben ser tomados desde la orilla izquierda orientándose en el sentido del movimiento del agua en el cauce. Para el muestreo de los perfiles transversales, el eje del cauce no debe presentar curvas.

En la primera columna se coloca la abscisa longitudinal de cauce. Este valor de "10" en la primera columna (figura 3.15) corresponde a la abscisa "0+ 010" (figura 3.14).

En la segunda columna se coloca las abscisas del perfil (figura 3.15). La figura 3.14 nos muestra que las primeras abscisas transversales ("0.000", "1.000" y "4.000"). Las cuales se colocan en la columna 2 (figura 3.15) y sus cotas ("1595.000", "1594.872", "1594.714") se colocan en la columna 3 (figura 3.15).

El coeficiente de rugosidad de Manning se la escribe en la columna 4 (figura 3.15). La primera fila de la columna 4 se coloca el valor de "0". Se sigue con el valor de 0.035 correspondiente al primer tramo entre las abscisas "0.000" y "1.000" (figura 3.14). La cantidad de 0.056 pertenece al tramo entre las abscisas "1.000" y "4.000" (figura 3.14). De esta manera podemos delimitar el coeficiente de rugosidad de Manning para el lecho de fondo y para la zona de inundación del cauce.

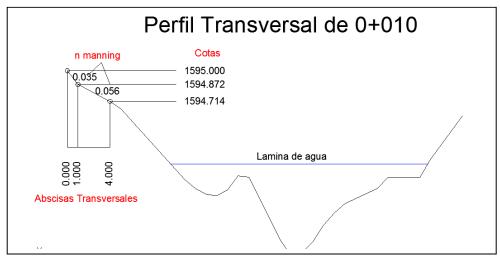


Figura 3.14. Perfil transversal de la abscisa longitudinal 0+ 010

Figura 3.15 Datos del perfil transversal de la abscisa longitudinal 0+ 010.

Columna 1	Columna 2	Columna 3	Columna 4
10	0	1595	0
10	1	1594.872	0.035
10	4	1594.714	0.056
10	5	1594.645	0.056
10	11	1593.986	0.056
10	12	1593.899	0.056
10	13	1593.846	0.056
10	14	1593.831	0.056
10	15	1593.888	0.056
10	16	1594.019	0.056
10	17	1594.007	0.056
10	20	1594.408	0.035

Fuente: El autor

Para obtener un archivo *.txt con el formato adecuado se sugiere digitar en una hoja de Excel (figura 3.16). Cada celda debe mostrar 3 decimales. Para guardar el archivo con formato .txt se debe:

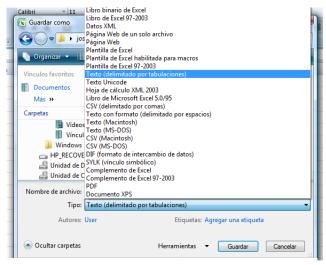
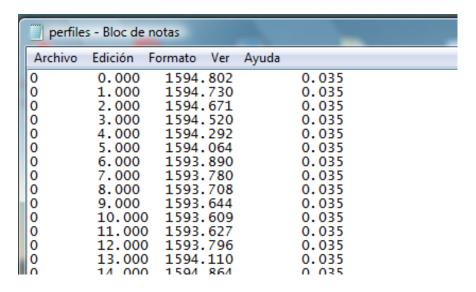

Hacer un click en el botón inicio de la hoja de Excel > Guardar como >Otros formatos. Se abre un cuadro de dialogo como se muestra en la figura 3.17.

Figura 3.16. Hoja de excel con los datos de los perfiles transversales

	egar	N	K S -	<u> </u>		Combina	r y centrar *	\$ - % 000	00 F
Porta	papeles 👨	Fuente 5		5	Al	Alineación		Número	con
	M15		~ (0	f _{sc}					
	Α		В	С	D	Е	F	G	Н
1		0	0.000	1594.802	0.035				
2		0	1.000	1594.730	0.035				
3		0	2.000	1594.671	0.035				
4		0	3.000	1594.520	0.035				
5		0	4.000	1594.292	0.035				
6		0	5.000	1594.064	0.035				
7		0	6.000	1593.890	0.035				
8		0	7.000	1593.780	0.035				
9		0	8.000	1593.708	0.035				
10		0	9.000	1593.644	0.035				
11		0	10.000	1593.609	0.035				
12		0	11.000	1593.627	0.035				
13		0	12.000	1593.796	0.035				
14		0	13.000	1594.110	0.035				
15		0	14.000	1594.864	0.035				
16		0	15.000	1595.000	0.035				
17		10	0.000	1595.000	0.035				
4.0		10	1 000	1504073	0.035				

N I


Figura 3.17. Guardar el "Texto (delimitado por tabulaciones)"

Fuente: El autor

Se guarda el archivo con el formato "Texto (delimitado por tabulaciones)" (figura 3.17). Si abrimos este archivo veremos que los valores se encuentran espaciados por tabulaciones (figura 3.18.).

Figura 3.18. Formato del archivo "XXXXXPerfiles.txt",

<u>Formato del Archivo "XXXXXCurvas.txt"</u>.- El archivo contiene las abscisas longitudinales de la curva con formato decimal. Es decir si se tiene la abscisa "1+300.264", en el archivo de texto se debe indicar "1300.264". Adicionalmente debe constar el ángulo de deflexión que forman las dos alineaciones. El ángulo que se coloca debe estar en grados decimales (figura 3.19).

La tabla para este archivo se sugiere realizarlo como para el archivo "XXXXXperfiles.txt". El resultado de esta operación se obtendrá un archivo llamado "XXXXXcurvas.txt" el cual su contenido se muestra en la figura 3.19.

Figura 3.19. Formato del Archivo "XXXXXCurvas.txt"

	Tramo	1160 180	0 curvas.txt	t - Blo	c (
ı	Archivo	Edición	Formato	Ver	I
ı	1300		666667		
ı	1370 1480		055556 611111		
ı	1580		333333		
	1720	29.09	166667		

Fuente: El autor

Los archivos se suben a la aplicación realizando un click en el botón "Examinar". Se abre el explorador de Windows y buscamos el archivo. Proseguimos dando click en el botón "Abrir". A continuación se da un click sobre el botón "SUBIR ARCHIVO."

Para saber que se han ingresado correctamente los archivos ("XXXXXperfiles.txt" y "XXXXXcurvas.txt") se muestra dos labels indicando su nombre (figura 3.20).

Figura 3.20. Archivos "XXXXXperfiles.txt" y "XXXXXcurvas.txt" subidos correctamente

Fuente:http://www.hydrovlab.utpl.edu.ec/hydrovlexperimentos/diseño/DisenoCauces/DisenoCauces.aspx

3.4.2. Variables de salida

3.4.2.1. Gráficas de perfiles

<u>Perfil longitudinal</u>.- Como se muestra en la figura 3.21 se coloca un valor "10" debajo del botón "CALCULAR CURVA DE REMANSO". Con esta cantidad la aplicación dibuja el perfil longitudinal cada 10m.

El perfil longitudinal del terreno natural y la curva de remanso calculada por el método de Leach se muestra al dar un click sobre el botón "CALCULAR CURVA DE REMANSO". Una vez calculado la curva de remanso se cargan las abscisas del cauce a la aplicación (figura 3.21).

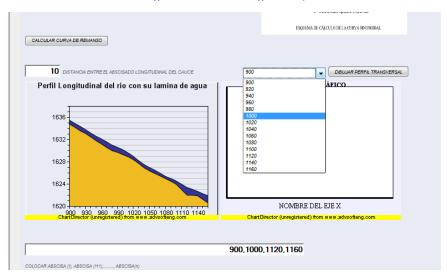


Figura 3.21. Perfil longitudinal,

Fuente:http://www.hydrovlab.utpl.edu.ec/hydrovlexperimentos/diseño/ DisenoCauces/DisenoCauces.aspx <u>Perfil transversal</u>.- Con el fin de realizar una verificación de los datos ingresados. Se puede ver los perfiles transversales, escogiendo la abscisa requerida y presionando sobre el botón "DIBUJAR EL PERFIL TRANSVERSAL". La figura 3.22 nos muestra el perfil transversal de la abscisa 1+ 000.

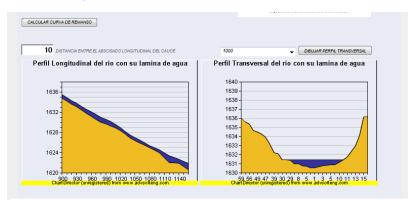


Figura 3.22. Perfil transversal de la abscisa 1+ 000.

Fuente:http://www.hydrovlab.utpl.edu.ec/hydrovlexperimentos/diseño/DisenoCauces.aspx

3.4.2.2. División por tramos del cauce

Una vez realizado el cálculo de la curva remanso. El usuario deberá elegir como se divida el cauce para efectos del cálculo. Esto lo debe hacer mediante la similitud de pendientes. La aplicación nos ayuda mostrando el perfil longitudinal del cauce (figura 3.22).

Se debe colocar las abscisas correspondientes a la división. Las abscisas ingresadas en el cuadro de dialogo debe ser las mismas que las ingresadas por el archivo "XXXXXperfiles.txt". Cada valor debe ser separado por el carácter "," denominada "coma"

En la figura 3.21 nos muestra las abscisas ingresadas en el cuadro de dialogo. El texto "900,1000,1120,1160" nos quiere decir que el cauce se divide en tres tramos. El primero de la abscisa 900 a la 1000, el segundo tramo de la abscisa 1000 a la abscisa 1120 y el tercer tramo de la abscisa 1120 a la 1160.

3.4.2.3. Estimación de la posible colocación de obras transversales.

Se deben ingresar una distancia a la cual se podrán colocar los umbrales de fondo (traviesa). Así como la altura máxima del umbral de fondo (figura 3.23). Cabe notar que se estima la altura necesaria para la rectificación de la pendiente del cauce. Si la altura de rectificación sobrepasa la altura máxima de la traviesa se colocara un azud con la altura requerida.

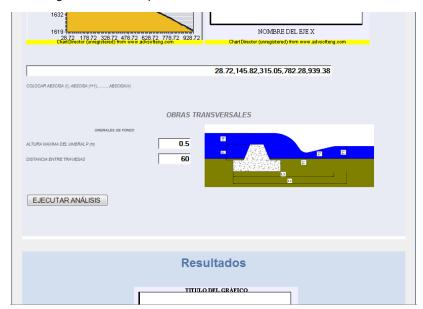


Figura 3.23. Datos para la colocación de obras transversales

Fuente:http://www.hydrovlab.utpl.edu.ec/hydrovlexperimentos/diseño/DisenoCauces.aspx

3.4.2.4. Perfil rectificado del cauce

Una vez ejecutado el análisis, la aplicación nos muestra (figura 3.24 y 3.25):

- El perfil rectificado con la posible ubicación, tipo y elevación de las obras transversales (traviesa y/o azud). (línea verde).
- El perfil del cauce natural. (línea café).
- El perfil de la lámina de agua (línea azul).

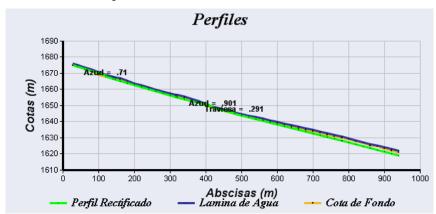


Figura 3.24. Perfil rectificado con traviesas

Fuente:http://www.hydrovlab.utpl.edu.ec/hydrovlexperimentos/diseño/DisenoCauces.aspx

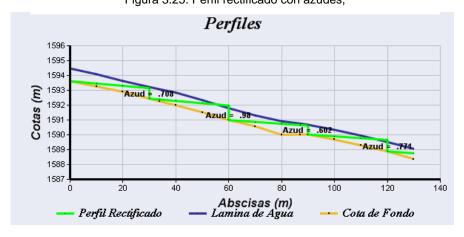
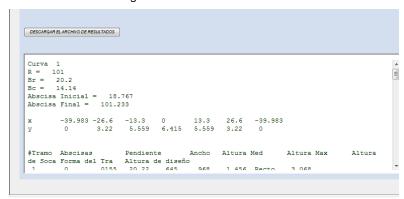


Figura 3.25. Perfil rectificado con azudes,


Fuente:http://www.hydrovlab.utpl.edu.ec/hydrovlexperimentos/diseño/DisenoCauces/DisenoCauces.aspx

3.4.2.5. Cuadro de resultados

El cuadro de resultados muestra (figura 3.26):

- Los datos para el replanteo de las curvas.
- El cuadro donde se presenta la altura de diseño para el encauzamiento.
- Un cuadro donde se implementa las obras transversales para la corrección de la pendiente longitudinal del cauce.

Figura 3.26 Cuadro de resultados

Fuente:http://www.hydrovlab.utpl.edu.ec/hydrovlexperimentos/diseño/DisenoCauces/DisenoCauces.aspx

Se puede obtener un archivo *.txt de los resultados presionando el botón "DESCARGAR EL ARCHIVO DE RESULTADOS".

3.4.3. Interpretación de los resultados

Se recomienda seleccionar los datos directamente del TextBox de salida (figura 3.26) o del archivo de resultados. Copia la selección y pega en una hoja de Excel.

Curvas

Para explicar cada una de los resultados en curvas nos referiremos a la figura 3.27. Donde nos mostrara el formato que arroja la aplicación.

Figura 3.27. Formato tipo para curvas

```
Curva 1
R =
     101
Br =
      20.2
      14.14
Abscisa Inicial = 18.767
Abscisa Final = 101.233
                       -13.3
        -39.983 -26.6
                                                       -39.983
                                 0
                                         13.3
                                                 26.6
                3.22
                         5.559
                                 6.415
                                                         0
                                         5.559
                                                 3.22
У
#Tramo
       Abscisas
                        Pendiente
                                        Ancho
                                                Altura Med
                                                                 Altura Max
                                                                                 Altura de
        Forma del Tra
                       Altura de diseño
Soca
               .0155
                                .645
                         20.22
                                          .968
                                                 1.456 Recto
                                                                  3.068
1
         0
 1
         10
                 .0155
                         20.22
                                 .645
                                         .968
                                                  1.456 Recto
                                                                  3.068
```

Fuente: El autor

El significado de los términos utilizados en la aplicación (Figura 3.27) se describe a continuación:

- "R" = radio de la curva (m)
- "Br" = Ancho del cauce regulado (m)
- "Bc" = Ancho regulado de la curva (m)

A continuación del texto "Abscisa Final = 101.233", se muestra una tabla con las coordenadas de replanteo de la curva sinusoidal. Cabe recalcar que las unidades se encuentran en el sistema métrico.

Tabla de resultados

La tabla 3.1 nos muestra el formato de los valores de la tabla de resumen.

- Columna 1. Tramo al que pertenece la abscisa longitudinal.
- Columna 2. Abscisa longitudinal del río.
- Columnas 3, 4 y 5. Dimensiones estables del cauce (Pendiente, ancho y calado).
- Columna 6. Calado máximo que se puede presentar en tramos curvos y/o rectos.
- Columna 7. Altura de socavación que se puede producir en el cauce.
- Columna 8. Forma del tramo (Curvo y/o recto).
- Columna 9. Altura de diseño de los muros de encauzamiento

Tabla 3.1. Formato de la tabla de resultados

#Tramo	Abscisas (m)	Pendiente (m/m)	Ancho (m)	Altura Med (m)	Altura Max (m)	Altura Soca (m)	Forma del Tramo	Altura diseño (m)
1	0	0.027	11.512	0.551	0.826	0.657	Recto	2.034
1	10	0.027	11.512	0.551	0.826	0.657	Recto	2.034
1	20	0.027	11.512	0.551	0.826	0.657	Recto	2.034
1	30	0.027	11.512	0.551	0.826	0.657	Recto	2.034
1	33.74	0.027	11.512	0.551	0.724	0.657	Curvo	1.932
1	50	0.027	11.512	0.551	0.724	0.657	Curvo	1.932
1	60	0.027	11.512	0.551	0.724	0.657	Curvo	1.932
2	70	0.021	12.083	0.575	0.724	0.657	Curvo	1.956
2	110	0.021	12.083	0.575	0.863	0.657	Recto	2.095
2	120	0.021	12.083	0.575	0.863	0.657	Recto	2.095
2	130	0.021	12.083	0.575	0.863	0.657	Recto	2.095

En la figura 3.28 nos muestra los resultados de las dimensiones y tipo de obras transversales. El formato que se sigue es:

- Columna 1. Tipo de obra transversal.
- Columna 2. Ancho de la obra transversal.
- Columna 3. Altura de la estructura.
- Columna 4. Pendiente del cauce en el tramo.
- Comuna 5. Coeficiente de rugosidad de Manning.
- Columna 6. Altura de la lámina de agua por encima de la obra transversal.
- Columna 7. Longitud de resalto aguas debajo de la estructura.
- Columna 8. Espesor del revestimiento.
- Columna 9. Altura de socavación al pie de la estructura.

DESCARGAR EL ARCHIVO DE RESULTADOS 1.917 13.919 Abscisas Ancho Altura Pendiente Resalto Revestimiento Alt Socavación 28.72 13.83 .069 .103 0 0 Traviesas No es necesario colocar 120 13.83 .71 Obra de rectificación .069 .103 Traviesas Azud.... Traviesas No es necesario colocar Obra de rectificación No es necesario colocar Obra de rectificación Traviesas Traviesas No es necesario colocar Obra de rectificación No es necesario colocar Obra de rectificación 420 14.309 .901 .056 .103 Traviesas .103103 .789 Azud.... Traviesas 480 14.309 .291 .056 3,221

Figura 3.28 Resultados de obras transversales.

Fuente:http://www.hydrovlab.utpl.edu.ec/hydrovlexperimentos/diseño/DisenoCauces/DisenoCauces.aspx

3.5. Limitaciones y desventajas de la aplicación.

La aplicación soporta hasta 100 perfiles transversales y 50 abscisas para cada perfil transversal.

Se deben ingresar dos archivos los cuales se deben llamar "XXXXXperfiles.txt" y "XXXXXcurvas.txt". Estos archivos tienen su propio formato. Es necesario que el usuario lea el manual para el uso de la aplicación.

No toma en cuenta la variación de caudal y material del lecho de fondo a lo largo del tramo en estudio. Cada vez que el caudal y/o las características del material de fondo cambien, se debe ingresar a la aplicación como un nuevo trabajo.

3.6. Ventajas de la aplicación.

Es una herramienta útil que considera tres métodos diferentes para el análisis de cauces estables según su material de fondo.

Admite de manera fácil y rápida la verificación de los perfiles de cada una de las abscisas ingresadas por el usuario. Además que nos permite diferenciar y detallar los diferentes valores del coeficiente de rugosidad de Manning, tanto para la zona de inundación como la de fondo del cauce.

Permite al usuario realizar la división del cauce según crea conveniente. El usuario debe fijarse en el perfil longitudinal para agrupar las abscisas según la similitud de pendientes.

Calcula la posible colocación de obras transversales. Si no estamos satisfechos con la ubicación y tipo de estructura, cambiamos los parámetros ("ALTURA MÁXIMA DEL UMBRAL" Y "DISTANCIA MÁXIMA ENTRE TRAVIESAS") y volvemos a calcular

Puede descargar un archivo con extensión .txt del resumen de resultados.

CAPÍTULO IV

4. ANÁLISIS Y COMPARACIÓN DE RESULTADOS

4.1. Introducción

Para realizar la comparación de resultados arrojados por la herramienta se tomaron tres ejemplos

El primer ejemplo es parte de la quebrada Puliche (Ubicación: PARROQUIA VILCABAMBA; SECTOR "VILCABAMBA"). Se escogió un tramo el cual se presenta 8 curvas horizontales en total. Podemos comparar los resultados para cauces aluviales y diseño de de umbral de fondo y azud.

El segundo ejemplo es el un tramo de la misma quebrada aguas arriba. En este ejemplo nos servirá para comparar los resultados obtenidos para un cauce arenoso.

El tercer ejemplo utiliza los datos de topografía del segundo ejemplo. Este ejemplo compara los resultados para un cauce con material cohesivo.

4.2. Ejemplo 1

El tramo de cauce de la quebrada Puliche es de la abscisa 2+ 971.28 a la 2+ 060.72. El muestreo de las secciones transversales del cauce se las realizo cada 20 m. El eje del cauce no presenta curvas horizontales. La topografía del cauce se muestra en el anexo 1.1

Debido a que las abscisas de este cauce se encuentran en contra del movimiento del agua. Se ha optado por transcribir las abscisas cambiando el sentido del eje del río a favor del movimiento del agua. Esto se consigue al restar el valor de la abscisas de "3000". De la operación indicada se obtiene las abscisas equivalentes (tabla 4.1). Esta transformación se lo hace con el único propósito de poder comparar los resultados arrojados por la aplicación.

Tabla 4.1. Transcripción de abscisas

Abscisas				
Reales	Equivalente			
(m)	(m)			
2+ 971.28	0+028.72			
2+ 854.18	0+145.82			
2+ 684.95	0+315.05			
2+ 217.72	0+782.28			
2+ 060.62	0+939.38			

Fuente: El autor

4.2.1. Datos de entrada

<u>Secciones transversales</u>.- Las secciones transversales del cauce se las tomó de la topografía. Se obtiene un perfil transversal para cada abscisa longitudinal. En la gráfico 4.1 se muestra el perfil transversal de la abscisa "0+028.72". En la tabla 4.2 se muestran los datos de este perfil.

28.720

1681.000

1680.000

1679.000

1677.000

1676.000

1675.000

-20.000 -15.000 -10.000 -5.000 0.000 5.000 10.000 15.000 20.000

Gráfico 4.1. Sección transversal de la abscisa 0+ 028.72

<u>Coeficiente de rugosidad de Manning</u>.- El valor del coeficiente de rugosidad de Manning fue tomado del diseño (Esparza & Espinoza, 2003).

Tabla 4.2.Datos de la sección transversal de la abscisa 0+ 028.72

Abscisa Longitudinal (m)	Abscisa Transversal (m)	Cota (m)	Manning
0+028.72	-16.000	1678.740	0.103
0+028.73	-11.000	1677.995	0.103
0+028.74	-6.000	1677.094	0.103
0+028.75	-5.000	1676.858	0.103
0+028.76	-3.000	1676.238	0.103
0+028.77	-2.000	1675.985	0.103
0+028.78	-1.000	1675.897	0.103
0+028.79	0.000	1675.288	0.103
0+028.80	1.000	1674.982	0.103
0+028.81	2.000	1674.961	0.103
0+028.82	5.000	1674.966	0.103
0+028.83	6.000	1674.982	0.103
0+028.84	7.000	1675.108	0.103
0+028.85	10.000	1675.906	0.103
0+028.86	11.000	1676.336	0.103
0+028.87	12.000	1676.849	0.103
0+028.88	13.000	1678.781	0.103
0+028.89	14.000	1680.224	0.103

Fuente: El autor

<u>Caudal de crecida</u>.- Para determinar el caudal se deben sumar los diferentes aportes. En la tabla 4.3 se presentan los aportes de cada quebrada.

Según (Esparza & Espinoza, 2003) se juntan las quebradas 4, 5, 6, 7, 9 por lo que resulta que el caudal es de 15.63 m^3/s

<u>Peso específico del material de fondo</u>.- Según (Esparza & Espinoza, 2003). El peso específico del material de fondo de es de 1.8 gr/cm^3

El diámetro medio.- según (Esparza & Espinoza, 2003). El diámetro medio del material de fondo es de $4.56 \ mm$

En la tabla 4.4 se muestra la granulometría para el tramo de estudio. Esta granulometría es de la abscisa 2+240, la cual corresponde al mismo tramo de estudio que escogimos.

Tabla 4.3. Caudales de aporte de cada quebrada

Oughrada	Área	Qc	Q. Apor.	Q. Acum.
Quebrada	m^2	m ³ /s/Km ²	m³/s	m³/s
1	0.43	2.934	1.26	1.26
2	0.49	2.934	1.44	2.7
3	0.83	2.934	2.44	5.13
4	0.53	2.934	1.55	6.69
5	0.97	2.934	2.85	9.54
6	0.23	2.934	0.67	10.21
7	0.14	2.934	0.41	10.62
8	3.46	2.934	10.15	20.77
9	3.46	2.934	10.15	30.92

Fuente: (Esparza & Espinoza, 2003)

Tabla 4.4. Granulometría de la abscisa 2+240

Tamiz	Peso	Porcentaje	Porcentaje	Porcentaje	Porcentaje
(mm)	Retenido	Retenido	Ret. Real	Acumulado	que pasa
90	0.00	0.00	0.00	0.00	100.00
75	0.00	0.00	0.00	0.00	100.00
63	562.21	3.98	2.11	2.11	97.89
50	763.40	5.41	2.87	4.98	95.02
37.5	1185.20	8.39	4.46	9.44	90.56
25	3037.00	21.51	11.42	20.86	79.14
19	2015.60	14.28	7.58	28.44	71.56
12.5	2105.70	14.91	7.92	36.35	63.65
9.5	1615.20	11.44	6.07	42.43	57.57
4.75	2834.18	20.07	10.66	53.08	46.92
2.36	450.04	20.80	9.76	62.84	37.16
1.18	369.00	17.05	8.00	70.84	29.16
0.6	297.00	13.72	6.44	77.28	22.72
0.3	405.50	18.74	8.79	86.07	13.93
0.15	504.00	23.29	10.93	97.00	3.00
0.075	0.05	0.00	0.00	97.00	3.00
Fondo	138.39	6.40	3.00	100.00	0.00

Fuente: (Esparza & Espinoza, 2003)

4.2.2. Cálculo de la curva de remanso mediante Leach.

Comienza calculando desde la última sección. Tomamos los perfiles de las dos últimas secciones (0+ 939.38 y 0+ 920).

$$Q = 15.63 \ m^3/s$$

Calcula la pendiente del tramo

$$S = \frac{1622.012 - 1620.938}{939.38} = 0.0554$$
$$K_{d1} = \frac{Q}{\sqrt{S}} = \frac{15.63}{\sqrt{0.0554}} = 63.39$$

Asume un calado y_2 de 0.001 m para la abscisa 0+920, por lo que el calado para 0+939.38 es

$$y_1 = 0.001 + (1622.012 - 1620.938) = 1.075 m$$

Determina el área, perímetro y Manning para cada sección (0+939.38 y 0+920). Suma las aéreas, perímetros y promedia el coeficiente de rugosidad de Manning.

$$A = A_1 + A_2 = 21.79 + 0.000011 = 21.79 m^2$$

$$P = P_1 + P_2 = 58.62 + 0.022 = 58.643 m$$

$$n = \frac{n_1 + n_2}{2} = \frac{0.103 + 0.103}{2} = 0.103$$

Calcula el k_{d2} con la ecuación (2.23)

$$K_{d2} = \frac{1}{n} x R^{2/3} x A = \frac{1}{0.103} x \left(\frac{21.79}{58.643}\right)^{2/3} 21.79 = 109.34$$

Como k_{d2} es mayor que K_{d1} , el calado de la última sección es correcto y continúa con el cálculo.

Los resultados del cálculo se presentan en el anexo 1.2

Determina el valor de $Z_{(i+1)}$ con la ecuación (2.26). Toma el valor de K_{d1} calculado en la última sección.

$$Z_{(i+1)} = Cota\ de\ fondo + y_1 = 1620.938 + 1.075 = 1622.013\ m$$

$$EI K_{d(s+1)} = 63.39$$

Asume un calado para la nueva sección $y=1.097\,.$ Calcula la cota $Z_{(i)}$ con la ecuación (2.26)

$$Z_{(i+1)} = Cota \ de \ fondo + y_1 = 1622.013 + 1.097 = 1623.109 \ m$$

Determina el área, perímetro mojado y Manning para esta sección

$$A_i = 15.741 \, m^2$$
; $P_i = 56.398 \, m$; $n_i = 0.103$

Calcula el $k_{d(s)}$ con la ecuación (2.23).

$$K_{d(s)} = \frac{1}{n} x R^{2/3} x A = \frac{1}{0.103} \left(\frac{15.741}{56.398} \right)^{2/3} 15.741 = 65.27$$

Determina $\frac{1}{K_d^2}$ con la ecuación (2.28)

$$\frac{1}{K_d^2} = \frac{1}{2} x \left(\frac{1}{k_{d(s)}^2} + \frac{1}{k_{d(s+1)}^2} \right) = \frac{1}{2} x \left(\frac{1}{65.27^2} + \frac{1}{63.39^2} \right) = 0.0000231$$

Halla el valor de $Z_{(i+1)}$ con la ecuación (2.29)

$$Z_{i+1} = Z_i - \frac{LxQ^2}{K_d^2} = 1623.109 - 19.38x15.63^2x0.0000231 = 1622.016 m$$

Compara el $Z_{(i+1)}$ calculado con las ecuaciones (2.29 y 2.26). Donde el valor computado con la ecuación (2.29) debe ser mayor.

En el anexo 1.3 se presentan los cálculos realizados para la curva de remanso.

En el anexo 1.4 se presenta el resumen de cálculo de la curva de remanso

4.2.3. Control vertical, Método de Altunin.

Antes de empezar el cálculo del control vertical debemos tener en cuenta el material de fondo. Para un lecho aluvial se utiliza el método de Altunin.

Se debe dividir el cauce en tramos. La principal condicionante es la semejanza de pendientes. En el presente ejemplo se dividirá al cauce en cuatro tramos.

- Primer tramo (0+ 028.72 a 0+ 145.82).
- Segundo tramo (0+ 145.82 a 0+ 315.05).
- Tercer tramo (0+ 315.05 a 0+ 782.28).
- Cuarto tamos (0+ 782.28 a 0+ 939.38)

Para el primer tramo utilizamos los datos de caudal $(Q=15.63\ m^3/s)$, Manning (n=0.103), radio hidráulico $(Rh=0.6011\ m)$, pendiente $(S=0.0692\ m/m)$ y velocidad $(V=1.8193\ m/s)$. Estos son determinados en la curva de remanso y son promediados según el tramo de estudio.

Empieza calculando la densidad relativa de los sedimentos según la ecuación (2.9)

$$\Delta = \frac{\gamma_s - \gamma}{\gamma} = \frac{1.8 - 1}{1} = 0.8$$

Calcula los coeficientes m y A según las ecuaciones (2.35) y (2.36). El valor de K = 9 según (Esparza & Espinoza, 2003).

$$m = 0.72x \left(\frac{\Delta x D_m}{RxS}\right)^{0.1} = 0.72 \left(\frac{0.8x0.00456}{0.6011x0.0692}\right)^{0.1} = 0.56$$
$$A = \left(nxK^{5/3}\right)^{3/(3+5xm)} = \left(0.103x9^{5/3}\right)^{3/(3+5x0.56)} = 2.05$$

Calcula la velocidad de caída de las partículas con las ecuaciones Hallermeier (1981).

Determina es parámetro a dimensional $\left(D_{gr}\right)$ según la ecuación (2.8). Donde la viscosidad cinemática del agua a 25 °C es $0.000001007~m^2/s$.

$$D_{gr} = d^3 x \sqrt{\frac{g \times \Delta}{v^2}} = 0.00456^3 \sqrt{\frac{9.81 \times 0.8}{0.000001007^2}} = 90.1983$$

Como $D_{gr} > 21.54$ utiliza la ecuación (2.12)

$$Re_p = 1.05 \times D_{gr}^{1.5} = 1.05 \times 90.1983^{1.5} = 899.470$$

Calcula la velocidad de caída de las partículas de sedimento con la ecuación (2.7)

$$Re_p = \frac{w_s \times d}{v}$$

$$w_s = \frac{Re_p \times v}{d} = \frac{899.470 \times 0.00001007}{0.00456} = 0.199 \text{ m/s}$$

Asume un valor de pendiente (S = 0.0691). Calcula el ancho y calado regulado del cauce con las ecuaciones (2.37) y (2.38)

$$B_{r} = \frac{AxQ^{0.5}}{S^{0.2}} = \frac{2.25x15.63^{0.5}}{0.0691^{0.2}} = 13.830 m$$

$$H_{mr} = \left(\frac{Q xn}{B_{r} xS^{0.5}}\right)^{0.6} = \left(\frac{15.63x0.103}{13.830x 0.0691^{0.5}}\right)^{0.6} = 0.613 m$$

Calcula el ancho y calado regulado del cauce con las expresiones (2.40) y (2.39)

$$H_{mn} = \left(\frac{Vxn}{S^{0.5}}\right)^{3/2} = \left(\frac{1.819x0.103}{0.0691^{0.5}}\right)^{3/2} = 0.602 \text{ m}$$

$$B_n = \frac{Q}{VxH_{mn}} = \frac{15.63}{1.819x0.602} = 14.274 \text{ m}$$

Chequea que cumpla la primera condición dada por (2.41)

$$B_r^{\text{m}} = KxH_{mr}$$

$$13.830^{0.56} = 9x0.613$$

$$4.35 \approx 5.52$$

Podemos decir que esta condición se cumple.

Continúa con la velocidad media del cauce V_{mc} según la ecuación (2.42)

$$V_{mc} = \frac{Q}{B_r x H_{mr}} = \frac{15.63}{13.830 x 0.613} = 1.842 \text{ m/s}$$

Calcula la producción de sedimentos del cauce regulado y natural con las ecuaciones (2.43) y (2.44)

$$\begin{split} P_r &= 0.022 x \left(\frac{V_{mc}}{w}\right)^{3/2} x (H_{mr} x S)^{0.5} \\ &= 0.022 x \left(\frac{1.842}{0.199}\right)^{3/2} x (0.613 x 0.0691)^{0.5} \\ P_r &= 0.1276 \\ P_n &= 0.022 x \left(\frac{V}{w}\right)^{3/2} x (H_{mn} x S)^{0.5} \\ &= 0.022 x \left(\frac{1.819}{0.199}\right)^{3/2} (0.602 x 0.0691)^{0.5} \\ P_n &= 0.1264 \end{split}$$

La segunda condición que se debe cumplir es $P_r > P_n$.

Sigue con el cálculo de la velocidad de arrastre del torrente regulado y natural con las ecuaciones (2.46) y (2.47)

$$V_{or} = 3.83 \text{xd}_{m}^{-1/3} \text{xH}_{mr}^{-1/6} = 3.83 \text{x} \\ 0.00456^{1/3} \text{x} \\ 0.613^{1/6} = 0.585 \text{ m/s}$$

$$V_{on} = 3.83 \text{xd}_{m}^{-1/3} \text{xH}_{mn}^{-1/6} = 3.83 \text{x} \\ 0.00456^{1/3} \text{x} \\ 0.602^{1/6} = 0.584 \text{ m/s}$$

Continúa con el cálculo de la capacidad de arrastre de sedimentos de fondo regulado y natural con las expresiones (2.48) y (2.49)

$$q_{fr} = 0.95 \text{xd}_{\text{m}}^{0.5} \text{x} \left(\frac{V_{\text{mc}}}{V_{\text{or}}}\right)^{3} \text{x} (V_{\text{mc}} - V_{\text{or}}) \text{x} \left(\frac{d_{\text{m}}}{H_{\text{mr}}}\right)^{1/4}$$

$$q_{fr} = 0.95 \text{x} 0.00456^{0.5} \text{x} \left(\frac{1.842}{0.585}\right)^{3} \text{x} (1.842 - 0.585) \text{x} \left(\frac{0.00456}{0.613}\right)^{1/4} = 0.738$$

$$\begin{aligned} q_{fn} &= 0.95 x d_m^{0.5} x \left(\frac{V_m}{V_{on}}\right)^3 x (V_m - V_{on}) x \left(\frac{d_m}{H_{mn}}\right)^{1/4} \\ q_{fn} &= 0.95 x 0.00456^{0.5} x \left(\frac{1.819}{0.584}\right)^3 x (1.819 - 0.584) x \left(\frac{0.00456}{0.602}\right)^{1/4} = 0.709 \end{aligned}$$

Calcula el caudal de sedimentos de fondo regulado y natural con las fórmulas (2.50) y (2.51)

$$Q_{fr} = q_{fr}xB_rxK_1 = 0.738x13.830x0.5 = 5.104$$

 $Q_{fn} = q_{fn}xB_nxK_1 = 0.709x14.274 x0.5 = 5.057$

La tercera condición que se debe cumplir es $Q_{fr} > Q_{fn}$.

Continúa con el cálculo del caudal unitario con la ecuación (2.52)

$$q = H_{mr}xV_{mc} = 0.613x1.842 = 1.130$$

Determina la velocidad de límite superior y la velocidad de fondo con las ecuaciones (2.53) y (2.54)

$$\begin{split} V_{ls} &= 6x{d_m}^{1/3}x{H_{mr}}^{1/6} = 6x0.00456^{1/3}x0.613^{1/6} = 0.917 \\ V_f &= \frac{1.25xq}{H_{mr}x\log\left(6.15x\frac{H_{mr}}{d_m}\right)} = \frac{1.25x1.130}{0.613x\log\left(6.15x\frac{0.613}{0.00456}\right)} = 0.789 \end{split}$$

La cuarta condición que se debe cumplir es $\,V_{ls} > V_{f}.\,$

Los resultados del análisis se presentan en el anexo 1.5

4.2.4. Control horizontal

Calcula una curva sinusoidal teniendo en cuenta el ángulo de deflexión del eje y la ubicación de la curva.

La ubicación de la primera curva sinusoidal se encuentra en la abscisa 0+040.94 (segundo tramo) con un ángulo $(\theta)=67.201^\circ$. El ancho de cauce regulado (B_r) es 13.830~m.

Determina el radio y el ancho de la curva sinusoidal con las ecuaciones (2.87) y (2.89).

$$R = (4 \ a \ 6) \times B_r = 5 \times 13.830 = 69 \ m$$

$$B_c = (0.81 - 0.95) \times B_r = 0.88 \times 13.83 = 12.17 \ m$$

Halla el valor de los parámetros k_1, x_0, y_0 con las expresiones (2.90), (2.91) y (2.92).

$$K_1 = \tan\left(\frac{\theta}{2}\right) = \tan\left(\frac{67.201^{\circ}}{2}\right) = 0.6644$$

$$x_o = \frac{\pi}{2} x K_1 x R = \frac{\pi}{2} x 0.6644 x 69 = 72.012$$

$$y_o = K_1^2 x R = 0.6644^2 x 69 = 30.459$$

En el anexo 1.6 se muestra el resultado de cálculo de las curvas en el tramo.

4.2.5. Profundidades medias y máximas

Calcula las alturas máximas de los tramos rectos según la ecuación (2.93). El valor de *K* para cauces montañosos y sub montañosos es 1.4 a 1.6. Se adopta el valor de 1.5.

Para el primer tramo tenemos

$$H_{\text{max}(r)} = KxH_{mr} = 1.5x0.613 = 0.920 m$$

Calcula la altura máxima de las curvas. Se determina la relación entre el radio y el ancho, para la curva N°01.

$$\frac{R}{B} = \frac{69}{13.830} = 5.0$$

Con este parámetro entramos a la tabla 2.4 y determinamos el valor de $K_t=0.27~y~e_1=1.84$. El valor de $e_2=0.7$ se lee de la tabla 2.5, por ser las pendiente de los taludes mayor a 2.

Determina la altura media de la curva ($H_{\rm mrc}$), y la altura máxima de la curva (H_{maxc}), con las ecuaciones (2.94) y (2.95).

$$H_{\text{mrc}} = H_{mr} \mathbf{x} (1 + K_t) = 0.613 \mathbf{x} (1 + 0.27) = 0.779 \ m$$

 $H_{\text{maxc}} = e_1 \mathbf{x} e_2 \mathbf{x} H_{mrc} = 1.84 \mathbf{x} 0.7 \mathbf{x} 0.728 = 1.003 \ m$

El cuadro de resultados se presenta en el anexo 1.7.

4.2.6. Socavación en tramos rectos, material no cohesivo.

Para el primer tramo $A = 8.767 \, m^2$, $B = 14.832 \, m$.

Calcula el caudal unitario del tramo mediante la ecuación (4.1).

$$q_u = \frac{Q}{B}$$

$$q_u = \frac{Q}{B} = \frac{15.63}{14.832} = 1.054$$
(4.1)

Determina la altura media del cauce mediante la fórmula (4.2).

$$H_{med} = \frac{A}{B}$$

$$H_{med} = \frac{A}{B} = \frac{8.767}{14.832} = 0.591 m$$
(4.2)

Halla los valores de β , x, con las ecuaciones (2.98) y (2.103). El valor de Ψ se lo obtiene de la tabla 2.8. Calcula el valor de α con la ecuación (2.97).

$$\beta = 0.7929 + 0.0973 \times \log T_r = 0.7929 + 0.0973 \log 25 = 0.93$$

$$x = 0.394557 - 0.04136 \times \log d_m - 0.00891 \times (\log d_m)^2$$

$$x = 0.394557 - 0.04136 \times \log 4.56 - 0.00891 \times (\log 4.56)^2 = 0.32$$

$$\alpha = \frac{Q}{H_m^{5/3} \times \beta \times \mu} = \frac{15.63}{0.591^{5/3} \times 0.95 \times 1} = 2.531$$

Calcula la socavación general (H_s) con la ecuación (2.102). El valor de $H_o=0.613\,m$ corresponde al valor de calado determinado por Altunin.

$$H_s = \left(\frac{\alpha x H_o^{5/3}}{0.68 x d_m^{0.28} x \beta x \Psi}\right)^{\frac{1}{x+1}} = \left(\frac{2.531 x 0.613^{5/3}}{0.68 x 0.00456^{0.28} x 0.93 x 1.06}\right)^{0.73} = 1.070 m$$

La socavación en el tramo viene de restar el valor H_0 de H_s

$$H_s - H_o = 1.070 - 0.613 = 0.457 m$$

El cuadro de resultados se presenta en el anexo 1.8

4.2.7. Cuadro de resumen de resultados

En el cuadro de resultados se presenta los datos de pendiente, ancho, socavación y altura de diseño para los muros laterales. La altura de diseño viene dada por la suma de la socavación general, socavación transitoria de la avenida y la altura media del agua.

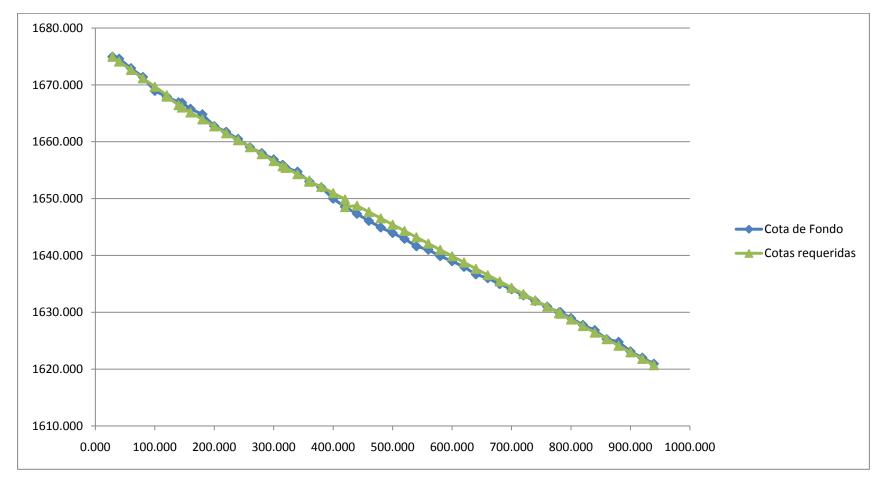
La tabla resumen se muestra en el anexo 1.9.

4.2.8. Obras transversales

El tipo de obra transversal que se utiliza son: umbral de fondo y azud. Se determina la cota necesaria para cada abscisa.

Para el presente proyecto se determina la cota requerida cada 60 m. La primera obra transversal se encuentra en la abscisa 0+ 120.

$$Cota\ requeria\ 930 = Cota\ 0 + 028.72 - 120S$$


$$Cota\ regueria\ 930 = 1674.961 - 120x0.0691 = 1668.654\ m$$

Altura de traviesa = Cota requerida - Cota de fondo

 $Altura\ de\ traviesa = 1668.654 - 1667.944 = 0.710\ m$

La gráfica 4.2 nos muestra los perfiles del cauce, con los datos mostrados en el anexo 1.10.

Gráfico 4.2 Perfiles del cauce, Abscisa 0+ 28.72 - 0+ 939.38, Q =15.63 m³/s

4.2.8.1. Azud

En la abscisa 0+ 120 se coloca un azud de 0.710 m de altura. Se recolectan los siguientes datos:

- Caudal $(Q) = 15.63 \, m^3/s$.
- m = 1.84, para vertederos de pared gruesa o azud trapezoidal.
- Ancho del Vertedero (b) = 13.830 m.
- Coeficiente de rugosidad de Manning (n) = 0.103.
- Pendiente del tramo $(S) = 0.0691 \, m/m$.

Calcula el tirante de agua sobre el azud. Utilizamos la ecuación (2.124).

$$H = \left[\frac{Q}{mxb}\right]^{2/3} = \left[\frac{15.63}{1.84x13.83}\right]^{2/3} = 0.723 \, m$$

$$Area = Hxb = 0.723x13.83 = 9.993$$

$$Velocidad = \frac{Q}{4xea} = \frac{15.63}{9.993} = 1.564 \, m/s$$

Determina de la altura de velocidad.

$$h_a = \frac{V^2}{2xg} = \frac{1.564^2}{2x9.81} = 0.125 m$$

$$h_d = H - h_a = 0.723 - 0.125 = 0.598 m$$

Utiliza las ecuaciones (2.125) y (2.126), para determinar el perfil Creager.

$$Q = CxLxH_e^{1.5} = 1.84x13.83 H_e^{1.5} = 15.63$$

$$h_d = 0.723$$

$$X^{1.85} = 2xH_d^{0.85}Y$$

$$X^{1.85} = 0.659 Y$$

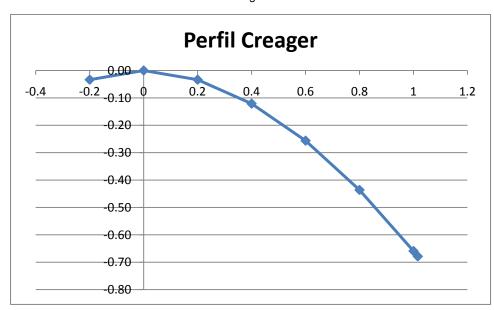

El perfil Creager que se muestra en la gráfico 4.3. Los datos del perfil son mostrados en la tabla 4.5.

Tabla 4.5 Datos del perfil Creager

Perfil Creager				
Х	Υ			
-0.2	-0.03			
0	0.00			
0.2	-0.03			
0.4	-0.12			
0.6	-0.26			
0.8	-0.44			
1	-0.66			
1.016	-0.68			

Fuente: El autor

Gráfico 4.3. Perfil Creager en la abscisa 0+ 420

En el anexo 1.11 se presenta el resumen de los resultados de las dimensiones de las obras transversales.

4.2.8.2. Umbrales de fondo

En la abscisa 0+480 se coloca un umbral de fondo de 0.291 m de altura. Se recolectan los siguientes datos

- Caudal $(Q) = 15.63 \, m^3/s$.
- Coeficiente de sumergimiento (k) = 1.
- Ancho del Vertedero (b) = 14.309 m.
- Coeficiente de rugosidad de Manning (n) = 0.103.
- Pendiente del tramo $(S) = 0.0555 \, m/m$.

Determina el tirante sobre la estructura hidráulica. Utiliza las ecuaciones (2.108), (2.109) y (2.110). Se supone un valor inicial de m=0.3557 y e=0.9896.

$$H_o = \left(\frac{Q}{4.43 \times m \times e \times k \times b}\right)^{2/3} = \left(\frac{15.63}{4.43 \times 0.3557 \times 0.9896 \times 1 \times 14.309}\right)^{2/3} = 0.789 \, m$$

$$m = 0.32 + 0.01 \left(\frac{3H_o - P}{0.46 \times H_o - 0.75 \times P}\right) = 0.32 + 0.01 \left(\frac{3 \times 0.789 - 0.291}{0.46 \times 0.789 - 0.75 \times 0.291}\right)$$

$$m = 0.3557$$

$$e = 1 - 0.2 \left(\frac{H_o}{H_o + b} \right) = 1 - 0.2 \left(\frac{0.789}{0.789 + 14.309} \right) = 0.9896$$

Calcula la profundidad crítica del agua con las expresiones (2.111), (2.112) y (2.113).

Profundidad crítica del agua (h_c) .

Sección rectangular.

$$h_{cr} = \left(\frac{Q^2}{g \times e^2 \times b^2}\right)^{1/3} = \left(\frac{15.63^2}{9.81 \times 0.9896^2 \times 14.309^2}\right)^{1/3} = 0.50 \ m$$

Sección Trapezoidal.

Para sección rectangular m = 1.

$$S = \frac{mxh_{cr}}{b} = \frac{1x0.50}{14.309} = 0.03$$

$$h_{ct} = \left(1 - \frac{S}{3} + 0.105xS^2\right)xh_{cr} = \left(1 - \frac{0.03}{3} + 0.105x0.03^2\right)x0.50 = 0.493$$

Calcula de las características críticas utilizando las ecuaciones (2.114) y (2.115).

Determina de la velocidad crítica (V_{cr}).

$$V_{cr} = \frac{Q}{bx(h_{ct} + P) + {h_{ct}}^2} = \frac{15.63}{14.98x(0.493 + 0.291) + 0.493^2} = 1.36 \, m/s$$

Altura crítica del agua sobre el vertedero (h_{cr})

$$h_{cr} = \frac{V_{cr}^2}{2xg} = \frac{1.36^2}{2x9.81} = 0.09 m$$

Calcula de las características hidráulicas del resalto al pie de la estructura hidráulica Determinar los conjugados con las ecuaciones (2.116), (2.117) y (2.118).

$$Y_1^3 - \left(P + h_{ct} + \frac{V_{cr}^2}{2xg}\right) x Y_1^2 + \frac{Q^2}{2xgxb^2} = 0$$

$$Y_1^3 - \left(0.291 + 0.493 + \frac{1.36^2}{2x9.81}\right) x Y_1^2 + \frac{15.63^2}{2x9.81x14.309^2} = 0$$

$$Y_1 = 0.334 m$$

$$V_1 = \frac{Q}{Y_1 \times b} = \frac{15.63}{0.334 \times 14.309} = 3.27 \text{ m/s}$$
$$F_1 = \frac{{V_1}^2}{a \times V_2} = \frac{3.27^2}{9.81 \times 0.334} = 3.26$$

$$Y_2 = \frac{Y_1}{2} x ((1 + 8xF_1)^{1/2} - 1) = \frac{0.334}{2} x ((1 + 8x3.26)^{1/2} - 1) = 0.70 m$$

Calcula la altura aguas debajo (Y_3) de la estructura con la ecuación (2.119). Se supone un valor inicial de $Y_3 = 0.621 \, m$.

$$Q = \frac{1}{n} x \left(\frac{(b x Y_3)^{5/3}}{(b + 2 x Y_3)^{2/3}} \right) x S^{1/2} = \frac{1}{0.103} \left(\frac{(14.98 \times 0.621)^{5/3}}{(14.98 + 2 \times 0.621)^{2/3}} \right) x S^{1/2} = 15.63 \ \frac{m^3}{s}$$

Como el caudal $Q=15.63\ m^3/s$, podemos decir que el calado agua abajo $Y_3=0.621\ m$.

La longitud del resalto la podemos estimar con la ecuación (2.119)

$$L_s = 6.9x(Y_2 - Y_1) = 6.9x(0.70 - 0.334) = 2.54 m$$

<u>La profundidad del revestimiento</u> se la puede estimar con las ecuaciones (2.121), (2.122) y (2.123)

$$r = 0.15 \text{xV}_1 \text{xY}_1^{1/2} = 0.15 \text{x} 3.27 \text{x} 0.334^{0.5} = 0.28 \text{m}$$

Se aconseja que r deba estar entre 0.50 y 1.00

$$Z = (P + Ho) - Y2 = (0.291 + 0.789) - 0.70 = 0.38$$

$$r = 0.22 \times q^{1/2} \times Z^{1/4} = 0.22 \times \left(\frac{15.63}{14.309}\right)^{1/2} \times 0.38^{1/4} = 0.18 \, m$$

Por lo que el revestimiento del umbral de fondo es de 0.28 m

4.3. Ejemplo 2

El tramo de la quebrada Puliche que se utiliza para este ejemplo es de la abscisa 0+ 000 a la 0+ 130. El muestreo de las secciones transversales del cauce se las realizo cada 10 m.

En los anexos del 2.1 al 2.11 se presentan los resultados del cálculo de este tramo de cauce.

4.3.1. Datos de entrada

<u>Caudal de crecida</u>.- Para el caudal de este tramo en estudio se supone un caudal $20 \ m^3/s$.

<u>Peso específico del material de fondo</u>.- Se supone el peso específico del material de fondo es $1.8 \ gr/cm^3$.

El diámetro medio.- El diámetro medio de del material de fondo es de 4.56 mm. En la tabla 4.4 se muestra la granulometría para los tramos de estudio.

<u>D90, D84, D50</u>.- Estos parámetros corresponden al tamaño de las partículas del lecho de fondo correspondientes al 90%, 84% y 50% obtenidas de un análisis granulométrico. Estas variables están expresadas en metros.

<u>Viscosidad agua sedimento</u>. Se supuso el valor de $1.05 \ m^2/s$.

4.3.2. Control Vertical, Maza y Cruickshank

El Material de fondo del cauce es del tipo arenoso. Se utiliza el método de Maza y Cruickshank para la estimación de las dimensiones estables del cauce.

Las relaciones hidráulicas del primer tramo son:

- Radio hidráulico, $R = 0.3906 \,\mathrm{m}$,
- Pendiente, S = 0.0436 m/m,
- Velocidad, $V = 3.1508 \,\text{m/s}$,
- n = 0.035

Calcula la densidad relativa del cauce con la ecuación (2.9).

$$\Delta = \frac{\gamma_s - \gamma}{\gamma} = \frac{1.8 - 1}{1} = 0.8$$

Determina el coeficiente de rugosidad debida a las partículas n' con la ecuación (2.16). Con $D_{90} = 51 \ mm$

$$n' = \frac{D_{90}^{1/3}}{26} = \frac{0.051^{1/3}}{26} = 0.014$$

Estima el valor de esfuerzo cortante τ , con la ecuación (2.18).

$$\tau = \frac{\gamma x R x S}{(\gamma_s - \gamma) x D_m} = \frac{R x S}{\Delta x D_m} = \frac{0.3906 \times 0.0436}{0.8 \times 0.0456} = 4.671$$

Computa el valor el caudal de sedimentos (Q_B) con la ecuación (2.15).

$$Q_B = 8x\gamma_s x \left(gx\Delta x D_m^3\right)^{1/2} \left[\left(\frac{n'}{n}\right)^{3/2} x\tau - 0.047 \right]^{3/2}$$

$$Q_B = 8x1800 x (9.81x0.8x0.00456^3)^{1/2} x \left[\left(\frac{0.014}{0.035}\right)^{3/2} x4.671 - 0.047 \right]^{3/2}$$

$$Q_B = 15.685 \ kg/(mxs)$$

Calcula el exponente m según la ecuación (2.35).

$$m = 0.72 \times \left(\frac{\Delta \times D_m}{R \times S}\right)^{0.1} = 0.72 \left(\frac{0.8 \times 0.00456}{0.3906 \times 0.0436}\right)^{0.1} = 0.62$$

Determina la velocidad de caída de las partículas para los cual utilizamos las ecuaciones Hallermeier (1981)

Estima es parámetro a dimensional D_{gr} según la ecuación 2.8. Se utiliza la viscosidad cinemática del agua para 25 °C (0.00001007 m^2/s), Donde $D_{50} = 5.6 \, mm$.

$$D_{gr} = D_{50}^{3} \times \sqrt{\frac{g \times \Delta}{v^{2}}} = 0.0056^{3} \sqrt{\frac{9.81 \times 0.8}{0.000001007^{2}}} = 90.1983$$

Como $D_{gr} > 21.54$ utilizamos la ecuación (2.12).

$$Re_p = 1.05 \times D_{gr}^{1.5} = 1.05 \times 90.1983^{1.5} = 899.470$$

Computa la velocidad de caída de las partículas de sedimento con la ecuación (2.7).

$$Re_p = \frac{w_s \times d}{v}$$

$$w_{50} = \frac{Re_p \times v}{D_{50}} = \frac{899.470 \times 0.00001007}{0.0056} = 0.22 \text{ m/s}$$

Calcula los parámetros a dimensionales α , ϵ , N y w con las ecuaciones (2.57), (2.60), (2.61), (2.72), donde $D_{84} = 42 \ mm$.

$$\alpha = 7.58x \frac{w_{50}}{D_{84}^{0.634} \text{x} \Delta^{0.456}} = 7.58x \frac{0.22}{0.042^{0.634} \text{x} 0.8^{0.456}} = 13.777$$

$$\epsilon = 8x (gx\Delta x D_m)^{-\frac{1}{2}} = 8x (9.81x0.8x0.00456)^{-\frac{1}{2}} = 1.513$$

$$N = \left(\frac{n'}{n}\right)^{1.5} x \left(\frac{1}{\Delta x D_m}\right) = \left(\frac{0.014}{0.035}\right)^{1.5} x \left(\frac{1}{0.8x0.00456}\right) = 71.313$$

$$w = 1 + 1.634xm = 1 + 1.634x0.62 = 2.013$$

Continúa con las dimensiones del cauce con las ecuaciones (2.69), (2.70), (2.71) donde K=10, para obras de ingeniería.

Suponer un valor inicial e ir cambiando el valor de cada una de las dimensiones hasta que la igualdad se cumpla.

$$B^{2.583m+1.526} \mathbf{x} \left[\left(\frac{Q_B}{\epsilon} \right)^{2/3} + 0.047 \mathbf{x} B^{2/3} \right] = N \mathbf{x} K^{2.583} \mathbf{x} \left(\frac{Q}{\alpha} \right)^{2.193}$$

$$B^{2.583m+1.526} \mathbf{x} \left[\left(\frac{15.685}{1.513} \right)^{2/3} + 0.047 \mathbf{x} B^{2/3} \right] = 71.313 \mathbf{x} 10^{2.583} \mathbf{x} \left(\frac{20}{13.777} \right)^{2.193}$$

$$B = 20.22 \, m$$

$$H^{\frac{2.583m+1.526}{m}} \mathbf{x} \left[\left(\frac{Q_B}{\epsilon} \right)^{2/3} + 0.047 \mathbf{x} (K \mathbf{x} H)^{\frac{2}{3m}} \right] \mathbf{x} K^{\frac{1.526}{m}} = N \mathbf{x} \left(\frac{Q}{\alpha} \right)^{2.193}$$

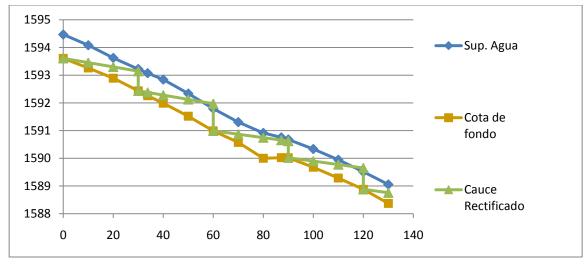
$$H^{\frac{2.583x0.62+1.526}{0.62}} \mathbf{x} \left[\left(\frac{15.685}{1.513} \right)^{2/3} + 0.047 \mathbf{x} (10 \mathbf{x} H)^{\frac{2}{3m}} \right] 10^{\frac{1.526}{0.62}} = 71.313 \mathbf{x} \left(\frac{20}{13.777} \right)^{2.193}$$

$$H = 0.677 \, m$$

$$S^{\frac{0.304}{w}} \mathbf{x} \left(\frac{Q_B}{\epsilon} \right)^{2/3} + 0.047 \mathbf{x} K^{\frac{1.089}{w}} \mathbf{x} \left(\frac{Q}{\alpha} \right)^{\frac{2}{3m}} = N \mathbf{x} \left(\frac{Q}{\alpha} \right)^{\frac{0.667+m}{w}} \mathbf{x} K^{\frac{0.089}{w}} \mathbf{x} S^{\frac{1+1.178}{w}}$$

$$S^{\frac{0.304}{2.013}} \mathbf{x} \left(\frac{15.685}{1.513} \right)^{\frac{3}{3}} + 0.047 \mathbf{x} 10^{\frac{1.089}{2.013}} \mathbf{x} \left(\frac{20}{13.777} \right)^{\frac{2}{370.62}}$$

$$= 71.333 \mathbf{x} \left(\frac{20}{13.777} \right)^{\frac{0.667+0.62}{0.62}} \mathbf{x} 10^{\frac{0.089}{2.013}} \mathbf{x} S^{\frac{1+1.178}{2.013}}$$


$$S = 0.0123 \, m/m$$

Los resultados se este procedimiento se encuentran descritos en el anexo 2.4.

4.3.3. Obras transversales

El tipo de obra transversal que se utilizar es el azud. El procedimiento para determinar la altura de la obra transversal se describe en el apartado 4.2.8. El procedimiento para el diseño de azud se presenta en apartado 4.2.8.1. La figura 4.4 muestra los perfiles del cauce

Gráfico 4.4 Perfiles del cauce

Fuente: El autor

4.4. Ejemplo 3

El tramo de la quebrada Puliche que se utiliza para este ejemplo es de la abscisa 0+ 000 a la 0+ 130. El muestreo de las secciones transversales del cauce se las realizo cada 10 m.

4.4.1. Datos de Entrada

<u>Caudal de crecida</u>.- Para el caudal de este tramo en estudio se da un caudal $Q = 20 \ m^3/s$

<u>Peso específico del material de fondo</u>.- El peso específico del material de fondo de es de $1.8 \ gr/cm^3$,

El diámetro medio.- El diámetro medio de del material de fondo es de $4.56 \, mm$. En la tabla $4.4 \, se$ muestra la granulometría para los tramos de estudio.

Concentración de las partículas (C). Concentración del material arrastrado en la capa de fondo. Para este ejemplo se supuso el valor de 47.67 *ppm*.

<u>Viscosidad agua sedimento</u>. Se supuso el valor de $1.05 \ m^2/s$.

4.4.2. Control vertical, Blench.

El Material de fondo del cauce es del tipo cohesivo. Se utiliza el método de Blench para la estimación de las dimensiones estables del cauce. Para este método no es necesario dividir al cauce en tramos, ya que solo depende del material de fondo que tiene el cauce.

Los datos del lecho del fondo son:

- peso específico $(\gamma) = 1.8 \ gr/cm^3$.
- diámetro medio del fondo del cauce y de las orillas $(D_m) = 0.00456 m$.
- Concentración de las partículas de sedimento (C) = 47.67 ppm.
- Viscosidad agua sedimento $(\vartheta) = 9.20x10^{-7}m^2/s$.

Calcula de los factores de fondo y de orilla según las ecuaciones (2.73), (2.74) y (2.75).

$$F_{bo} = 60.1 \text{x} D_m^{1/2} = 60.1 \text{x} 0.00456^{1/2} = 4.058$$

$$F_b = F_{bo} \text{x} (1 + 0.012 \text{x} C) = 4.058 \text{x} (1 + 0.012 \text{x} 47.67) = 6.38$$

$$F_s = \frac{F_{bs}^2}{8} = \frac{6.38^2}{8} = 5.08$$

El factor de orilla mayor que 0.3, por lo que $F_s = 0.3$

Calcula de las dimensiones estables con las ecuaciones (2.80), (2.81), (2.82) y (2.83).

$$b_m = 1.81 \text{x} \left(\frac{F_b \text{x} Q}{F_s}\right)^{1/2} = 1.81 \left(\frac{4.058 \text{x} 20}{0.3}\right)^{1/2} = 37.329 \, m$$

$$d = \left(\frac{F_s \text{x} Q}{F_b^2}\right)^{1/3} = \left(\frac{0.3 \text{x} 20}{4.058^2}\right)^{1/3} = 0.528 \, m$$

$$K = 3.63 \text{x} \frac{g}{\vartheta^{1/4}} = 3.63 \text{x} \frac{9.81}{0.000000929^{1/4}} = 1147.02$$

$$S = \frac{F_b^{5/6} \text{x} F_s^{1/12}}{3.28 \text{x} K \text{x} Q^{1/6} \text{x} \left(1 + \frac{C}{2333}\right)} = \frac{4.058^{5/6} \text{x} 0.3^{1/12}}{3.28 \text{x} 1147.02 \text{x} 20^{1/6} \left(1 + \frac{47.67}{2333}\right)} = 0.0007$$

4.4.3. Socavación de tramos rectos, material cohesivo

Para el tramo se tiene que el área hidráulica promedio del tramo ($A = 6.732 m^2$), el ancho medio del tramo (B = 17.728 m).

Calcula el caudal unitario del tramo mediante la ecuación (4.1)

$$q_u = \frac{Q}{B} = \frac{20}{17.728} = 1.128$$

Determina la altura media del cauce mediante la fórmula (4.2)

$$H_{med} = \frac{A}{B} = \frac{6.732}{17.728} = 0.38 \, m$$

Determina los valores de β , x, con las ecuaciones (2.98) y (2.103). El valor de Ψ se lo obtiene de la tabla 2.8. El valor de μ = 1. Calcular el valor de α con la ecuación (2.97)

$$\beta = 0.7929 + 0.0973 \times \log T_r = 0.7929 + 0.0973 \log 25 = 0.93$$

$$x = 0.394557 - 0.04136 \times \log d_m - 0.00891 \times (\log d_m)^2$$

$$x = 0.394557 - 0.04136 \times \log 4.56 - 0.00891 \times (\log 4.56)^2 = 0.32$$

$$S = \frac{1593.609 - 1588.371}{130 - 0} = 0.0403$$

$$\alpha = \frac{Q}{H_m^{5/3} \times \beta \times \mu} = \frac{1}{n} \times S^{1/2} = \frac{1}{0.103} \cdot 0.0403^{1/2} = 5.735$$

Calcula la socavación general (H_s) con la ecuación (2.100). El valor de $H_o = 0.528 \, m$ corresponde al valor de calado en el tramo calculado por Blench.

$$H_s = \left(\frac{\alpha x H_0^{5/3}}{0.6 \gamma_d^{1.18} \beta}\right)^{\frac{1}{x+1}} = \left(\frac{5.735 \times 0.528^{5/3}}{0.6 \times 1.8^{1.18} \times 0.945}\right)^{\frac{1}{x+1}} = 1.535 \ m$$

La socavación en el tramo viene de restar el valor de H_0 de H_s

$$H_s - H_o = 1.535 - 0.528 = 1.007 m$$

4.5. Simulación y comparación de resultados.

Para simular los ejemplos 1,2 y 3 dentro del laboratorio virtual de hidrología (HYDROVLAB) se sigue el procedimiento descrito en el apartado 3.4

Los datos de entrada del ejemplo 1, 2 y 3 se citan en los aparatados 4.2.1, 4.3.1 y 4.4.1.

En el anexo 3.1 se muestran los resultados obtenidos por la simulación dentro de la aplicación.

Luego de calcular la curva de remanso se muestran los datos del perfil de la lámina de agua en el cuadro de resultados. Estos datos se comparan los obtenidos en la tabla de resumen del cálculo de Leach mostrados en el anexo 1.4 (ejemplo 1) y en anexo 2.3 (ejemplo 2 y 3)

Luego de ejecutar el análisis se puede descargar un archivo de la aplicación con extensión ".txt". Dentro del archivo nos muestra:

- El replanteo de curvas sinusoidales.
- El cuadro de resumen del cálculo.
- El cuadro de resumen de las Obras Transversales a implementarse.

Para el ejemplo 1 los resultados a compararse se muestran en los anexos 1.6, 1.9, 1.11 y para el ejemplo 2 se muestran en los anexos 2.5, 2.8 y 2.11

4.5.1. Ejemplo 1

Como se indicio en el apartado 4.2. Se transcribió las abscisas invirtiendo el sentido del eje. Los tramos 1, 2, 3 y 4 corresponden a los tramos T5, T4, T3 y T2 del diseño (Esparza & Espinoza, 2003).

Tabla 4.6. Comparación de resultados

		TRAMO 1		TRAMO 2					
	Hojas	Aplicación	Realizado	Hojas	Aplicación	Realizado			
S (m/m)	0.0691	0.0691	0.057	0.0644	0.0644	0.0540			
B (m)	13.830	13.830	11.920	13.890	13.890	12.050			
H (m)	0.613	0.613	0.71	0.625	0.625	0.72			
		TRAMO 3			TRAMO 4				
	Hojas	Aplicación	Realizado	Hojas	Aplicación	Realizado			
S (m/m)	0.0555	0.0555	0.053	0.0577	0.0577	0.0790			
B (m)	14.309	14.309	12.090	13.919	13.919	11.170			
H (m)	0.642	0.642	0.72	0.645	0.645	0.67			

Fuente: El autor

Como se puede observar en la tabla 4.6 las dimensiones de las hojas de cálculo y de la aplicación son idénticas. Mientras que las del diseño de (Esparza & Espinoza, 2003), son aproximadas. Esto se debe en gran parte a la diferencia en la estimación de los diversos parámetros. En las tablas 4.7 y 4.8, se comparan los diferentes parámetros estimados, por la aplicación y por el diseño (Esparza & Espinoza, 2003)

Tabla 4.7. Comparación de Relaciones hidráulicas

		Relaciones Hidráulicas								
		Tran	no 1	Tran	no 2					
Parámetros	3	Aplicación	Esparza & Espinoza 2003	Aplicación	Esparza & Espinoza 2003					
Manning		0.103	0.103	0.103	0.103					
Radio Hidráulico	(m)	0.601		0.532						
Pendiente Natural	(m/m)	0.0692	0.0623	0.0645	0.053					
Velocidad	(m/s)	1.819	1.78	1.318	1.55					
		Trar	no 3	Tramo 4						
Parámetros	3	Aplicación	Esparza & Espinoza 2003	Aplicación	Esparza & Espinoza 2003					
Manning		0.103	0.103	0.103	0.103					
Radio Hidráulico	(m)	0.56		0.313						
Pendiente Natural	(m/m)	0.0555	0.0626	0.0577	0.0609					
Velocidad	(m/s)	1.478	1.54	0.999	2.01					

Fuente: El autor

Los valores de velocidad, y pendiente natural de cauce son aproximada excepto en el tramo 4. La diferencia de estos valores se debe a que no se utilizo las mismas secciones transversales que se en el diseño (Esparza & Espinoza, 2003) a causa de información

En la aplicación los factores de m, A, son estimados a partir del promedio de las características hidráulicas del cauce. En el diseño (Esparza & Espinoza, 2003), estos

factores son extraídos de tablas en función de las características morfológicas del cauce (ejemplo la tabla 2.2)

Tabla 4.8. Comparación de coeficientes en los tramos

	Relacione	s Hidráulicas				
	Trar	no 1	Tramo 2			
Parámetros	Aplicación	Esparza & Espinoza 2003	Aplicación	Esparza & Espinoza 2003		
Exponente m	0.56	0.75	0.58	0.75		
Coeficiente A	2.05	1.70	2.03	1.70		
Coeficiente K	10.00	10.00	10.00	10.00		
Velocidad de caída w	0.199	0.220	0.199	0.220		
	Trar	no 3	Tramo 4			
Parámetros	Aplicación	Esparza & Espinoza 2003	Aplicación	Esparza & Espinoza 2003		
Exponente m	0.58	0.75	0.61	0.75		
Coeficiente A	2.03	1.70	1.99	1.70		
Coeficiente K	10.00	10.00	10.00	10.00		
Velocidad de caída w	0.199	0.220	0.199	0.220		

Fuente: El autor

Para cauces aluviales. La elección de la pendiente estable del cauce se la realiza tratando de aproximar el perfil rectificado al perfil del cauce. Minimizando las obras necesarias para la corrección de la pendiente

Los resultados mostrados en el anexo 1.6 son iguales a los mostrados en el anexo 3.1. Los valores de x_o y y_o se encuentran dentro de la tabla de replanteo.

Los valores que se presentan en el anexo 1.9 y 1.11 son iguales a los presentados en el anexo 3.1.

4.5.2. Ejemplo 2

En el anexo 2.8 y 2.11 son iguales a los mostrados en el anexo 3.2. Las dimensiones estables de un cauce areno son estimadas por el método de Maza y Cruickshank. Los cuales son mostrados en el anexo 2.4

4.5.3. Ejemplo 3

Para este ejemplo los resultados se muestran en el apartado 4.4.2 y 4.4.3. En el apartado 3.3 se muestran los resultados obtenidos por el programa

CAPÍTULO V

5. CONCLUSIONES Y RECOMENDACIONES

5.1. Conclusiones

- El control de torrentes se basa en condiciones críticas donde se determina la geométrica del cauce. El único propósito es de mantener el flujo de sedimentos constante, permitiendo un equilibrio entre las fuerzas erosivas y las fuerzas resistivas.
- El tratamiento de cauces con material de lecho de fondo arenoso es diferente al cauce con lecho de fondo aluvial. Siendo las dimensiones del cauce arenoso menores que con respecto a las del cauce aluvial
- La implementación de obras transversales como Umbrales de Fondo y Azud,
 nos permiten modificar la pendiente del cauce
- Los tramos que se deben escoger para el análisis deben tener un caudal constante a lo largo del tramo. Si existe una entrada importante en el cauce se debe utilizar como otro tramo y hacer un análisis independiente al primero.
- La aplicación necesariamente implementa obras de rectificación de la pendiente. Cuando el programa no implementa obra de rectificación en una abscisa dada es porque la cota de rectificación es menor que la cota del cauce
- El programa basa la elección de las dimensiones estables, en aproximar el perfil rectificado al perfil del cauce (Solo para el método de Altunin). Esto minimiza enormemente la colocación de obras de rectificación de pendiente.
- La aplicación en la web solo trabaja con la versión del Framework 2.0. Para versiones superiores presenta diversos problemas porque la web fue creada con Visual Studio 2005
- La aplicación fue creada con el Lenguaje de programación Visual Basic el cual es un lenguaje de fácil manejo.
- Al variar solamente el caudal. Las dimensiones de la sección y la altura de socavación aumentan al incrementar el caudal y/o al disminuir el coeficiente de rugosidad de Manning.
- Para el cálculo del método de Altunin suponemos una pendiente y determinamos el ancho y calado para una sección. Por lo que existe un rango de variación para el cual las dimensiones del cauce son estables. La aplicación

determina el mejor valor de pendiente con el criterio de cumplir la estabilidad del cauce y aproximar a la pendiente del cauce natural.

- Los métodos de Maza y Cruickshank y Blench determinan un solo valor para las variables de la sección y de pendiente de cauce. En comparación con el método de Altunin.
- El método de Blench no considera las relaciones hidráulicas calculadas en la curva de remanso. Por esto no es necesario hacer una división por tramos para un cauce de lecho de fondo cohesivo.
- Si un cauce con material de lecho areno se analiza con el método de Altunin.
 Sus dimensiones son sobrestimadas.
- Al aumentar el diámetro del material de fondo disminuye el ancho estable y la altura de socavación. Mientras que el calado aumenta.

5.2. Recomendaciones

- La calibración del coeficiente de rugosidad de Manning debe ser completamente implementada en las secciones. Esta variable es muy sensible dentro de la estimación de las dimensiones estables
- Si las características del material de fondo o el caudal cambia considerablemente de abscisa a abscisa. Se los debe considerar un tramo independiente. La aplicación no considera variaciones de caudal o de las características del lecho de fondo
- El eje del río debe ser un eje sin curvas. La aplicación replantea las curvas necesitando como datos; la ubicación de la curva y el ángulo de deflexión que se forma entre los dos alineamientos.
- Se recomienda agregar una opción para la cual se puedan calcular las abscisas donde se puede implementar una obra de rectificación dada su altura.

Referencia Bibliográfica

Aguilar, C. (2006). Análisis de Obras Transversales no tradicionales para el control de aluviones en la quebrada Mackay del cerro Divisadero, COYHAIQUE, XI Región. Valdivia - Chile: Universidad Austral de Chile.

Aparicio Mijares, F. J. (1992). Fundamentos de Hidrología de Superficie. Mexico: Limusa.

Barberis, M., Accattatis, D., & Selzer, C. (2005). *Descripción del comportamiento de las obras de revestimiento de colchones gavionadas, Rio Liman, Neoquen y negro.* Argentina: ISBN 987-20109-4-3.

Blanco, L. M. (2002). *Programación en Visual Basic.NET.* Madrid (España): Editorial: Grupo EIDOS.

Calviño, M., & Asociados. (2009). Obras de emergencia de protección de costas en la Localidad. Buenos Aires.

Delgadillo Pelcastre, D. A., & Lopez Orozco, R. (2009). *Estabilidad de Cauces y Diseño de Canales Estables*. Mexico: Instituto Politécnico Nacional.

Esparza, J. L., & Espinoza, J. E. (2003). *Encauzamiento y Protección de la quebrada "Puliche" Parroquia Vilcabamba*. Loja: Tesis UTPL.

Fuentes Mariles, Ó., & Franco, V. (1993). *Manual de Ingeniería de ríos, Cap 3 Estudio Hidrológico para Obras de Protección.* Mexico: CNA, Comisión Nacional del Agua.

Hernandez, H., Molina, J., & Salatiel, C. *Manual de Practica, Ingenieria de Rios 9no Semestre.* UMSNH.

Lopez Cardenas del Llano, F. (1988). *Corrección de Torrentes y estabilización de cauces.* Roma: Organización de las Naciones para la Agricultura y la Alimentación.

Martin Vide, J. P. (2003). *Ingenieria de Rios* (segunda edicion ed.). Editorial: Escuela Colombia de ingenieria.

Maza Álvarez, J. A., & García Flores, M. (1993). *Manual de Ingenieria de Rios, Cap 12 Cauces Estables*. Mexico: CNA, Comisión Nacional del Agua.

Maza, J. (1967). Erosión del cauce de un río en el cruce de un puente. Revista Ingeniería Hidráulica en México., vol. 21 - No. 1-2.

Ministerio del medio Ambiente y medio rural y marino. (2008). Obras longitudinales de corrección de cauces torrenciales: Diseño de obras de defensa de margenes. *Inventario de Tecnologías disponoibles en españa para la lucha contra la desertificación*.

Nava, A., & Cortes Bow, D. (2006). *Morfología, Tecnicas de Medición y muestreo en ríos.* Mexico: Instituto Politécnico Nacional.

Olguín Gómez, S. (2009). Obras de Protección y Control de Cauces. Mexico: Instituto Politécnico Nacional.

Oñate, F. Hidrología. Loja: Documento no Puplicado.

Quezada Poma, E. G. (2004). Estudio y diseño de la infraestructura hidraulica fluvial para estabilizar riveras del rio Zamora en la zona influenciada por el parque ecologico labanda. Loja: Tesis UTPL.

Rocha Felices, A. (1998). *Introducción a la Hidraulica Fluvial*. Lima: Universidad Nacional de Ingeniería.

Salinas, H., Garcia, J., & Diaz, C. (2008). Analisis experimental del efecto de la turbulencia en la velocidad de caida de sedimentos en suspención. *Red de Revistas cientificas de America Latina y el Caribe, España y Portugar*, 11.

Santiago Casanova, M. E. (2007). *Hidráulica de Ríos Socavación en Ríos Puentes y Carreteras*. Mexico: Instituto Politécnico Nacional.

Schreider, M., Scacchi, G., & Franco, F. (2001). *Aplicación del mpetodo de Lischtva y Lebediev al cálculo de la erosión general.* Mexico.

ANEXO I

ENCAUZAMIENTO DE LA QUEBRADA PULICHE CALCULO INICIAL DE LA CURVA DE REMANSO MEDIANTE LEECH ABSCISAS 0+028.72 - 0+939.38, Q=15.63 $\binom{m^3}{s}$

Q = i =	15.630 0.05541796	(m³/s) (m/m)		Kn =	66.395
Sección	1	Abscisa:	0+939.38		
Cota de	calado	C. Fondo	Área	Perimetro	coeficiente
fondo (m)	(m)	+ calado (m)	(m^2)	Mojado (m)	rugosidad
1620.938	1.074	1622.012	21.732	58.380	0.103
	1.174	1622.112	27.702	60.784	0.103
	1.084	1622.022	22.318	58.927	0.103
	1.075	1622.013	21.790	58.620	0.103
Sección	2	Abscisa:	0+920		
Cota de	calado	C. Fondo	Área	Perimetro	coeficiente
fondo (m)	(m)	+ calado (m)	(m^2)	Mojado (m)	rugosidad

Cota de fondo (m)	calado (m)	C. Fondo + calado (m)	Área (m²)	Perimetro Mojado (m)	coeficiente rugosidad
1622.042		4622.042	0.000	0.000	0.400
1622.012	0 0.1	1622.012 1622.112	0.000 0.110	0.000 2.113	0.103 0.103
	0.01	1622.022	0.001	0.224	0.103
	0.001	1622.013	0.000	0.022	0.103

C. Fondo + calado (m)	Área (m²)	Perimetro Mojado (m)	coeficiente rugosidad	kd	Condicion kd > Kn
1622.012	21.732	58.380	0.103	109.182	OK
1622.112	27.813	62.897	0.103	156.728	OK
1622.022	22.319	59.151	0.103	113.151	OK
1622.013	21.790	58.643	0.103	109.343	ОК

ENCAUZAMIENTO DE LA QUEBRADA PULICHE **CURVA DE REMANSO POR EL METODO DE LEACH** ABSCISAS 0+028.72 - 0+939.38, Q=15.63 $\left(m^3/s\right)$

Q =	15.63	(m^{3}/s)						(/					
Abscisas (m)	Longitud (m)	S%	Calados (m)	Z(i+1)	Z(i)	Área (m²)	Perimetro	Rugosidad	K(s+1)	K(s)	L*Q^2/K^2	Zs - IQ^2/k^2	Comaparación
939.380	19.380	0.0554		(1) 1622.013	(m)	(m-)	mojado (m)	manning	66.395			(2)	(1) < (2)
939.380	19.560	0.0334	0.100	1022.013	1622.112	0.110	2.113	0.103	00.595	0.150	105676.373	-104054.261	NO
920.000			1.000		1623.012	10.438	47.246	0.103		37.034	2.263	1620.749	NO
			1.100		1623.012	15.910	56.476	0.103		66.378	1.074	1622.038	SI
			1.090		1623.112	15.347	56.265	0.103		62.671	1.140	1621.962	NO
			1.100		1623.102	15.910	56.476	0.103		66.378	1.074	1622.038	SI
			1.096		1623.112	15.685	56.379	0.103		64.894	1.099	1622.009	NO
			1.097		1623.109	15.741	56.398	0.103		65.268	1.093	1622.016	SI
920.000	20.000	0.0552	1.037	1623.109	1023.103	13.741	30.330	0.103	65.268	03.200	1.033	1022.010	31
900.000			0.100		1623.216	0.075	1.508	0.103		0.098	255014.700	-253391.484	NO
			1.000		1624.116	14.294	53.698	0.103		57.424	1.314	1622.802	NO
			1.100		1624.216	19.800	56.173	0.103		95.925	0.839	1623.377	SI
			1.040		1624.156	16.465	55.305	0.103		71.275	1.054	1623.102	NO
			1.050		1624.166	17.018	55.566	0.103		75.069	1.007	1623.159	SI
			1.041		1624.157	16.520	55.345	0.103		71.638	1.050	1623.107	NO
			1.042		1624.158	16.576	55.385	0.103		72.002	1.045	1623.113	SI
900.000	20.000	0.0836		1624.158					72.002				
880.000			0.100		1624.888	0.918	17.008	0.103		1.274	1506.390	118.498	NO
			0.400		1625.188	11.925	48.254	0.103		45.595	1.646	1623.542	NO
			0.500		1625.288	16.793	49.202	0.103		79.626	0.857	1624.431	SI
			0.45		1625.238	14.348	48.728	0.103		61.652	1.114	1624.124	NO
			0.46		1625.248	14.835	48.823	0.103		65.096	1.048	1624.200	SI
			0.454		1625.242	14.542	48.766	0.103		63.020	1.086	1624.156	NO
			0.455		1625.243	14.591	48.775	0.103		63.364	1.080	1624.163	SI
880.000	20.000	0.0242		1625.243					63.364				
860.000			0.100		1625.372	0.536	10.377	0.103		0.723	4679.916	-3054.544	NO
			0.700		1625.972	18.090	40.016	0.103		103.448	0.837	1625.135	NO
			0.800		1626.072	23.170	54.597	0.103		127.032	0.760	1625.312	SI
			0.77		1626.042	21.538	54.351	0.103		112.816	0.800	1625.242	NO
			0.78		1626.052	22.081	54.433	0.103		117.479	0.785	1625.267	SI
			0.771		1626.043	21.592	54.359	0.103		113.279	0.799	1625.244	SI
860.000	20.000	0.0791	0.300	1626.043	4627 4540	40.7030	FO 2422	0.4030	113.279	22.474	2.444	4624742	N/O
840.000			0.300		1627.1540	10.7030	59.3433	0.1030		33.171	2.411	1624.743	NO
			0.400		1627.2540	16.6640	59.9868	0.1030		68.880	0.705	1626.549	SI
			0.350		1627.2040	13.6759	59.6651	0.1030		49.729	1.178	1626.026	NO
			0.360		1627.2140	14.2723	59.7294	0.1030		53.357	1.048	1626.166	SI
			0.351		1627.2050	13.7355	59.6715	0.1030		50.087	1.164	1626.041	NO
			0.352		1627.2060	13.7951	59.6779	0.1030		50.446	1.150	1626.056	SI

ENCAUZAMIENTO DE LA QUEBRADA PULICHE CURVA DE REMANSO POR EL METODO DE LEACH ABSCISAS 0+028.72 - 0+939.38, Q=15.63 (m^3/s)

Q =	15.63	(m^{3}/s)											
Abscisas (m)	Longitud (m)	S %	Calados (m)	Z(i+1)	Z(i)	Área	Perimetro	Rugosidad	K(s+1)	K(s)	L*Q^2/K^2	Zs - IQ^2/k^2	Comaparación
Abscisas (III)	Longitud (III)	3%	Calados (III)	(1)	(m)	(m^2)	mojado (m)	manning	K(5+1)	K(5)	L*Q^2/K^2	(2)	(1) < (2)
840.000	20.000	0.0455		1627.206					50.446				
820.000			0.100		1627.864	0.797	15.371	0.103		1.077	2108.832	-480.968	NO
			0.600		1628.364	20.629	63.050	0.103		95.097	1.230	1627.134	NO
			0.700		1628.464	26.977	64.131	0.103		147.040	1.073	1627.391	SI
			0.620		1628.384	21.890	63.266	0.103		104.743	1.183	1627.201	NO
			0.630		1628.394	22.522	63.374	0.103		109.708	1.163	1627.231	SI
			0.621		1628.385	21.953	63.277	0.103		105.236	1.181	1627.204	NO
			0.622		1628.386	22.016	63.288	0.103		105.729	1.179	1627.207	SI
820.000	20.000	0.0606		1628.386					105.729				
800.000			0.100		1629.075	0.174	2.915	0.103		0.258	36654.496	-35025.421	NO
			0.600		1629.575	9.600	47.963	0.103		31.890	2.621	1626.954	NO
			0.700		1629.675	14.904	56.859	0.103		59.265	0.914	1628.761	SI
			0.660		1629.635	12.660	54.422	0.103		46.494	1.349	1628.286	NO
			0.670		1629.645	13.210	55.663	0.103		49.161	1.229	1628.416	SI
			0.667		1629.642	13.044	55.290	0.103		48.351	1.264	1628.378	NO
			0.668		1629.643	13.099	55.414	0.103		48.620	1.252	1628.391	SI
800.000	17.720	0.0578		1629.643					48.620				
782.280			0.100		1630.100	0.820	10.281	0.103		1.476	995.058	635.042	NO
			0.700		1630.700	16.332	38.577	0.103		89.399	1.186	1629.514	NO
			0.800		1630.800	20.301	40.963	0.103		123.435	1.058	1629.742	SI
			0.750		1630.750	18.287	39.770	0.103		105.768	1.109	1629.641	NO
			0.760		1630.760	18.685	40.009	0.103		109.198	1.097	1629.663	SI
			0.751		1630.751	18.327	39.794	0.103		106.109	1.108	1629.643	SI
782.280	2.280	-0.0048		1630.751					106.109				
780.000			0.100		1630.089	0.541	6.653	0.103		0.985	287.214	1342.875	NO
			0.800		1630.789	15.511	37.681	0.103		83.329	0.065	1630.724	NO
			0.900		1630.889	19.382	39.896	0.103		116.286	0.045	1630.844	SI
			0.820		1630.809	16.267	38.124	0.103		89.513	0.059	1630.750	NO
			0.830		1630.819	16.649	38.346	0.103		92.681	0.057	1630.762	SI
			0.821		1630.810	16.305	38.146	0.103		89.827	0.059	1630.751	NO
			0.822		1630.811	16.343	38.168	0.103		90.142	0.059	1630.752	SI
780.000	20.000	0.0502		1630.811					90.142				
760.000			0.700		1631.693	9.778	34.366	0.103		41.069	1.749	1629.944	NO
			0.800		1631.793	13.525	39.873	0.103		63.867	0.900	1630.893	SI
			0.780		1631.773	12.734	39.276	0.103		58.351	1.018	1630.755	NO
			0.790		1631.783	13.128	39.632	0.103		61.022	0.957	1630.826	SI
			0.787		1631.780	13.010	39.559	0.103		60.180	0.975	1630.805	NO
			0.788		1631.781	13.049	39.584	0.103		60.460	0.969	1630.812	SI

ENCAUZAMIENTO DE LA QUEBRADA PULICHE CURVA DE REMANSO POR EL METODO DE LEACH ABSCISAS 0+028.72 - 0+939.38, Q=15.63 $\binom{m^3/s}{}$

Q =	15.63	(m^{3}/s)											
Abscisas (m)	Longitud (m)	S %	Calados (m)	Z(i+1)	Z(i)	Área	Perimetro	Rugosidad	K(s+1)	K(s)	L*Q^2/K^2	Zs - IQ^2/k^2	Comaparación
Abscisas (III)	Longituu (iii)	3/0	Calados (III)	(1)	(m)	(m^2)	mojado (m)	manning	K(STI)	K(S)	L Q^2/K^2	(2)	(1) < (2)
760.000	20.000	0.0488		1631.781					60.460				
740.000			0.100		1632.069	0.605	7.845	0.103		1.063	2162.555	-530.486	NO
			0.800		1632.769	10.070	19.219	0.103		63.537	1.273	1631.496	NO
			0.900		1632.869	12.045	20.794	0.103		81.266	1.038	1631.831	SI
			0.880		1632.849	11.638	20.479	0.103		77.521	1.075	1631.774	NO
			0.890		1632.859	11.841	20.636	0.103		79.381	1.056	1631.803	SI
			0.882		1632.851	11.678	20.510	0.103		77.891	1.071	1631.780	NO
			0.883		1632.852	11.699	20.526	0.103		78.077	1.069	1631.783	SI
740.000	20.000	0.0501		1632.852					78.077				
720.000			0.100		1633.072	0.628	7.589	0.103		1.159	1820.207	-187.135	NO
			0.800		1633.772	9.439	16.300	0.103		63.669	1.003	1632.769	NO
			0.900		1633.872	11.092	17.123	0.103		80.629	0.777	1633.095	SI
			0.820		1633.792	9.763	16.464	0.103		66.907	0.946	1632.846	NO
			0.830		1633.802	9.927	16.547	0.103		68.555	0.921	1632.881	SI
			0.821		1633.793	9.780	16.473	0.103		67.071	0.944	1632.849	NO
			0.822		1633.794	9.796	16.481	0.103		67.235	0.941	1632.853	SI
720.000	20.000	0.0538		1633.794					67.235				
700.000			0.100		1634.149	0.203	3.110	0.103		0.319	24018.793	-22384.644	NO
			0.900		1634.949	9.066	18.081	0.103		55.553	1.332	1633.617	NO
			1.000		1635.049	10.929	19.319	0.103		72.577	1.004	1634.045	SI
			0.930		1634.979	9.612	18.546	0.103		60.207	1.214	1633.765	NO
			0.940		1634.989	9.796	18.701	0.103		61.806	1.180	1633.809	SI
			0.936		1634.985	9.722	18.639	0.103		61.164	1.193	1633.792	NO
			0.937		1634.986	9.741	18.655	0.103		61.324	1.190	1633.796	SI
700.000	20.000	0.0455		1634.986					61.324				
680.000			0.100		1635.059	0.881	10.975	0.103		1.590	966.748	668.311	NO
			0.900		1635.859	13.263	18.231	0.103		104.150	0.875	1634.984	NO
			1.000		1635.959	15.071	18.614	0.103		127.106	0.801	1635.158	SI
			0.910		1635.869	13.442	18.270	0.103		106.359	0.866	1635.003	SI
			0.901		1635.860	13.280	18.235	0.103		104.370	0.874	1634.986	SI
680.000	20.000	0.0519		1635.860					104.370				
660.000			0.100		1636.097	0.314	4.077	0.103		0.551	8055.047	-6418.950	NO
			0.800		1636.797	7.579	18.110	0.103		41.164	1.666	1635.131	NO
			0.900		1636.897	9.499	20.482	0.103		55.257	1.024	1635.873	SI
			0.890		1636.887	9.296	20.245	0.103		53.721	1.071	1635.816	NO
			0.900		1636.897	9.499	20.482	0.103		55.257	1.024	1635.873	SI
			0.897		1636.894	9.438	20.411	0.103		54.793	1.038	1635.856	NO
			0.898		1636.895	9.458	20.435	0.103		54.947	1.350	1635.545	SI

ENCAUZAMIENTO DE LA QUEBRADA PULICHE CURVA DE REMANSO POR EL METODO DE LEACH ABSCISAS 0+028.72 - 0+939.38, Q=15.63 (m^3/s)

Q =	15.63	(m^3/s)											
Abscisas (m)	Longitud (m)	S %	Calados (m)	Z(i+1) (1)	Z(i) (m)	Área (m^2)	Perimetro mojado (m)	Rugosidad manning	K(s+1)	K(s)	L*Q^2/K^2	Zs - IQ^2/k^2 (2)	Comaparació (1) < (2)
660.000	20.000	0.0330		1636.895					54.947				
640.000			0.100		1636.757	0.184	2.935	0.103		0.281	30890.708	-29253.951	NO
			1.200		1637.857	21.315	49.242	0.103		118.414	0.983	1636.874	NO
			1.300		1637.957	26.191	49.503	0.103		166.339	0.897	1637.060	SI
			1.210		1637.867	21.802	49.268	0.103		122.913	0.971	1636.896	SI
			1.209		1637.866	21.753	49.265	0.103		122.460	0.972	1636.894	NO
			1.210		1637.867	21.802	49.268	0.103		122.913	0.971	1636.896	SI
640.000	20.000	0.0662		1637.867					122.913				
620.000			0.100		1638.080	0.765	8.739	0.103		1.465	1138.117	499.963	NO
			0.700		1638.680	8.225	16.479	0.103		50.251	1.129	1637.551	NO
			0.800		1638.780	9.905	17.769	0.103		65.130	0.738	1638.042	SI
			0.750		1638.730	9.049	17.124	0.103		57.429	0.902	1637.828	NO
			0.760		1638.740	9.218	17.253	0.103		58.927	0.865	1637.875	SI
			0.758		1638.738	9.184	17.227	0.103		58.626	0.872	1637.866	NO
			0.759		1638.739	9.201	17.240	0.103		58.777	0.869	1637.870	SI
620.000	20.000	0.0500		1638.739					58.777				
600.000			0.100		1639.081	0.688	7.754	0.103		1.327	1387.510	251.571	NO
			0.900		1639.881	11.626	24.228	0.103		69.183	1.218	1638.663	NO
			1.000		1639.981	14.543	34.769	0.103		78.967	1.099	1638.882	SI
			0.930		1639.911	12.389	27.228	0.103		71.152	1.190	1638.721	NO
			0.940		1639.921	12.664	28.305	0.103		71.924	1.179	1638.742	SI
			0.938		1639.919	12.608	28.090	0.103		71.759	1.182	1638.737	NO
			0.939		1639.920	12.636	28.198	0.103		71.841	1.180	1638.740	SI
600.000	20.000	0.0444		1639.920					71.841				
580.000			0.100		1639.969	0.340	6.796	0.103		0.448	12174.402	-10534.433	NO
			0.900		1640.769	11.981	20.795	0.103		80.536	0.850	1639.919	NO
			1.000		1640.869	14.125	22.452	0.103		100.689	0.714	1640.155	SI
			0.910		1640.779	12.188	20.961	0.103		82.432	0.833	1639.946	SI
			0.901		1640.770	12.001	20.812	0.103		80.724	0.848	1639.922	SI
580.000	20.000	0.0563		1640.770					80.724				
560.000			0.100	-	1641.095	0.349	4.038	0.103		0.663	5564.637	-3923.542	NO
			0.900		1641.895	7.369	14.303	0.103		45.982	1.530	1640.365	NO
			1.000		1641.995	8.856	17.196	0.103		55.247	1.175	1640.820	SI
			0.970		1641.965	8.394	15.403	0.103		54.371	1.201	1640.764	NO
			0.980		1641.975	8.547	15.542	0.103		55.696	1.162	1640.813	SI
			0.971		1641.966	8.409	15.420	0.103		54.496	1.198	1640.768	NO
			0.972		1641.967	8.424	15.436	0.103		54.621	1.194	1640.773	SI

ENCAUZAMIENTO DE LA QUEBRADA PULICHE CURVA DE REMANSO POR EL METODO DE LEACH ABSCISAS 0+028.72 - 0+939.38, Q=15.63 (m^3/s)

Q =	15.63	(m^3/s)											
Abscisas (m)	Longitud (m)	S%	Calados (m)	Z(i+1)	Z(i)	Área	Perimetro	Rugosidad	K(s+1)	K(s)	L*Q^2/K^2	Zs - IQ^2/k^2	Comaparación
Abscisas (III)	Longitud (m)	3%	Calados (III)	(1)	(m)	(m^2)	mojado (m)	manning	K(S+1)	K(S)	L*Q^2/K^2	(2)	(1) < (2)
560.000	20.000	0.0304		1641.967					54.621				
540.000			0.100		1641.702	0.251	4.427	0.103		0.359	18946.829	-17305.127	NO
			1.300		1642.902	13.405	14.243	0.103		124.994	0.975	1641.927	NO
			1.400		1643.002	14.787	14.614	0.103		144.696	0.936	1642.066	SI
			1.320		1642.922	13.679	14.318	0.103		128.832	0.966	1641.956	NO
			1.330		1642.932	13.817	14.355	0.103		130.770	0.962	1641.970	SI
			1.327		1642.929	13.775	14.343	0.103		130.188	0.963	1641.966	NO
			1.328		1642.930	13.789	14.347	0.103		130.382	0.963	1641.967	SI
540.000	20.000	0.0656		1642.930					130.382				
520.000			0.100		1643.015	0.776	11.275	0.103		1.265	1526.041	116.974	NO
			0.700		1643.615	8.498	14.315	0.103		58.276	0.863	1642.752	NO
			0.800		1643.715	9.916	14.708	0.103		74.025	0.590	1643.125	SI
			0.740		1643.655	9.061	14.473	0.103		64.385	0.733	1642.922	NO
			0.750		1643.665	9.203	14.512	0.103		65.952	0.705	1642.960	SI
			0.742		1643.657	9.090	14.480	0.103		64.697	0.727	1642.930	NO
			0.743		1643.658	9.104	14.484	0.103		64.854	0.725	1642.933	SI
520.000	20.000	0.0517		1643.658					64.854				
500.000			0.100		1644.048	0.710	9.748	0.103		1.202	1691.203	-47.155	NO
			0.800		1644.748	9.259	13.868	0.103		68.662	1.099	1643.649	NO
			0.900		1644.848	10.623	14.202	0.103		84.985	0.919	1643.929	SI
			0.810		1644.758	9.394	13.903	0.103		70.223	1.076	1643.682	SI
			0.802		1644.750	9.286	13.875	0.103		68.973	1.094	1643.656	NO
			0.803		1644.751	9.299	13.879	0.103		69.129	1.092	1643.659	SI
500.000	20.000	0.0483		1644.751					69.129				
480.000			0.100		1645.015	0.730	11.151	0.103		1.150	1847.234	-202.219	NO
			0.700		1645.615	9.397	17.123	0.103		61.152	1.164	1644.451	NO
			0.800		1645.715	11.123	17.905	0.103		78.624	0.906	1644.809	SI
			0.780		1645.695	10.772	17.749	0.103		74.970	0.946	1644.749	NO
			0.790		1645.705	10.947	17.827	0.103		76.787	0.926	1644.779	SI
			0.781		1645.696	10.790	17.757	0.103		75.150	0.944	1644.752	SI
480.000	20.000	0.0579		1645.696					75.150				
460.000			0.100		1646.173	0.278	4.394	0.103		0.428	13347.634	-11701.461	NO
			0.800		1646.873	8.767	17.521	0.103		53.644	1.282	1645.591	NO
			0.900		1646.973	10.575	18.860	0.103		69.809	0.934	1646.039	SI
			0.810		1646.883	8.941	17.655	0.103		55.158	1.236	1645.647	NO
			0.820		1646.893	9.118	17.788	0.103		56.695	1.193	1645.700	SI
			0.819		1646.892	9.100	17.775	0.103		56.540	1.197	1645.695	NO
			0.820		1646.893	9.118	17.788	0.103		56.695	1.193	1645.700	SI

ENCAUZAMIENTO DE LA QUEBRADA PULICHE CURVA DE REMANSO POR EL METODO DE LEACH ABSCISAS 0+028.72 - 0+939.38, Q=15.63 $\left(m^3/s\right)$

Q = 15.63 (m^3/s)

Q =	15.63	(m^3/s)											
Abscisas (m)	Longitud (m)	S%	Calados (m)	Z(i+1) (1)	Z(i) (m)	Área (m^2)	Perimetro mojado (m)	Rugosidad manning	K(s+1)	K(s)	L*Q^2/K^2	Zs - IQ^2/k^2 (2)	Comaparaciór (1) < (2)
460.000	20.000	0.0620		1646.893	(,	()	mojado (m)		56.695			(-)	(1) (2)
440.000			0.100		1647.413	0.235	3.717	0.103		0.361	18735.031	-17087.618	NO
			0.900		1648.213	9.444	16.397	0.103		63.470	1.366	1646.847	NO
			1.000		1648.313	11.234	19.997	0.103		74.257	1.203	1647.110	SI
			0.910		1648.223	9.606	16.629	0.103		64.691	1.344	1646.879	NO
			0.920		1648.233	9.772	17.017	0.103		65.544	1.329	1646.904	SI
			0.915		1648.228	9.689	16.823	0.103		65.112	1.336	1646.892	NO
			0.916		1648.229	9.705	16.862	0.103		65.197	1.335	1646.894	SI
440.000	20.000	0.061		1648.229					65.197				
420.000			0.100		1648.636	0.443	6.359	0.103		0.729	4595.502	-2946.866	NO
			0.700		1649.236	9.507	23.157	0.103		50.984	1.515	1647.721	NO
			0.800		1649.336	11.923	25.305	0.103		70.090	1.072	1648.264	SI
			0.790		1649.326	11.672	25.099	0.103		68.019	1.103	1648.223	NO
			0.800		1649.336	11.923	25.305	0.103		70.090	1.072	1648.264	SI
			0.791		1649.327	11.697	25.120	0.103		68.225	1.100	1648.227	NO
			0.792		1649.328	11.722	25.140	0.103		68.431	1.096	1648.232	SI
420.000	20.000	0.0721		1649.328					68.431				
400.000			0.900		1650.877	6.287	12.751	0.103		38.095	2.205	1648.672	NO
			1.000		1650.977	7.596	13.801	0.103		49.534	1.517	1649.460	SI
			0.970		1650.947	7.193	13.486	0.103		45.927	1.680	1649.267	NO
			0.980		1650.957	7.326	13.591	0.103		47.112	1.622	1649.335	SI
			0.978		1650.955	7.299	13.570	0.103		46.874	1.634	1649.321	NO
			0.979		1650.956	7.313	13.580	0.103		46.993	1.628	1649.328	SI
400.000	20.000	0.1000		1650.956					46.993				
380.000			0.100		1652.077	0.194	3.884	0.103		0.255	37567.344	-35915.267	NO
			0.800		1652.777	8.232	18.099	0.103		47.271	2.200	1650.577	NO
			0.900		1652.877	10.147	20.434	0.103		61.775	1.746	1651.131	SI
			0.860		1652.837	9.353	19.508	0.103		55.629	1.896	1650.941	NO
			0.870		1652.847	9.548	19.740	0.103		57.123	1.855	1650.992	SI
			0.862		1652.839	9.392	19.555	0.103		55.925	1.887	1650.952	NO
			0.863		1652.840	9.412	19.578	0.103		56.074	1.883	1650.957	SI
380.000	20.000	0.0504		1652.840		<u> </u>			56.074				
360.000			1.200		1654.185	9.682	15.562	0.103		68.504	1.298	1652.887	SI
			1.180		1654.165	9.381	15.115	0.103		66.263	1.333	1652.832	NO
			1.190		1654.175	9.530	15.338	0.103		67.370	1.315	1652.860	SI
			1.182		1654.167	9.410	15.160	0.103		66.482	1.330	1652.837	NO
			1.183		1654.168	9.425	15.182	0.103		66.592	1.328	1652.840	SI

ENCAUZAMIENTO DE LA QUEBRADA PULICHE CURVA DE REMANSO POR EL METODO DE LEACH ABSCISAS 0+028.72 - 0+939.38, Q=15.63 $\left(m^3/s\right)$

Q = 15.63 (m^3/s)

Q =	15.63	(m^3/s)											
Abscisas (m)	Longitud (m)	S%	Calados (m)	Z(i+1)	Z(i)	Área	Perimetro	Rugosidad	K(s+1)	K(s)	L*Q^2/K^2	Zs - IQ^2/k^2	Comaparación
Abscisas (III)	Longituu (iii)	3/0	Calados (III)	(1)	(m)	(m^2)	mojado (m)	manning	K(3+1)	K(S)	L Q^2/K^2	(2)	(1) < (2)
360.000	20.000	0.0874		1654.168					66.592				
340.000			0.100		1654.833	0.215	4.067	0.103		0.293	28418.265	-26763.432	NO
			0.800		1655.533	6.885	14.017	0.103		41.608	1.962	1653.571	NO
			0.900		1655.633	8.359	16.147	0.103		52.321	1.443	1654.190	SI
			0.890		1655.623	8.202	15.934	0.103		51.147	1.485	1654.138	NO
			0.900		1655.633	8.359	16.147	0.103		52.321	1.443	1654.190	SI
			0.895		1655.628	8.280	16.041	0.103		51.731	1.464	1654.164	NO
			0.896		1655.629	8.296	16.062	0.103		51.849	1.460	1654.169	SI
340.000	20.000	0.0358		1655.629					51.849				
320.000			0.100		1655.548	0.097	1.870	0.103		0.131	142742.007	-141086.459	NO
			1.200		1656.648	19.097	29.798	0.103		137.825	1.037	1655.611	NO
			1.300		1656.748	22.121	31.101	0.103		171.128	0.992	1655.756	SI
			1.210		1656.658	19.394	29.928	0.103		141.000	1.032	1655.626	NO
			1.220		1656.668	19.692	30.058	0.103		144.209	1.026	1655.642	SI
			1.211		1656.659	19.424	29.941	0.103		141.320	1.031	1655.628	NO
			1.212		1656.660	19.453	29.954	0.103		141.639	1.031	1655.629	SI
320.000	4.950	0.0976		1656.660					141.639				
315.050			0.100		1656.031	0.830	17.391	0.103		1.061	537.549	1118.482	NO
			0.700		1656.631	16.370	29.319	0.103		107.770	0.082	1656.549	NO
			0.800		1656.731	19.340	30.359	0.103		139.019	0.061	1656.670	SI
			0.790		1656.721	19.039	30.255	0.103		135.735	0.063	1656.658	NO
			0.800		1656.731	19.340	30.359	0.103		139.019	0.061	1656.670	SI
			0.791		1656.722	19.069	30.266	0.103		136.062	0.063	1656.659	NO
			0.792		1656.723	19.099	30.276	0.103		136.389	0.063	1656.660	SI
315.050	15.050	0.0641		1656.723					136.389				
300.000			0.600		1657.495	8.889	25.109	0.103		43.187	1.084	1656.411	NO
			0.700		1657.595	11.529	27.790	0.103		62.265	0.573	1657.022	SI
			0.640		1657.535	9.913	26.181	0.103		50.371	0.823	1656.712	NO
			0.650		1657.545	10.176	26.449	0.103		52.259	0.772	1656.773	SI
			0.641		1657.536	9.939	26.208	0.103		50.558	0.818	1656.718	NO
200.000	20.000	0.0550	0.642	1657 507	1657.537	9.965	26.235	0.103	50.745	50.745	0.813	1656.724	SI
300.000	20.000	0.0550	0.500	1657.537	4650 505	46 577	25.624	0.400	50.745	06.500	4 244	4657.004	
280.000			0.600		1658.595	16.577	35.684	0.103		96.532	1.211	1657.384	NO
			0.700		1658.695	20.238	37.634	0.103		129.931	1.093	1657.602	SI
			0.660		1658.655	18.749	37.215	0.103		115.250	1.133	1657.522	NO
			0.670		1658.665	19.120	37.471	0.103		118.532	1.123	1657.542	SI
			0.667		1658.662	19.008	37.394	0.103		117.542	1.126	1657.536	NO
			0.668		1658.663	19.045	37.420	0.103		117.872	1.125	1657.538	SI

ENCAUZAMIENTO DE LA QUEBRADA PULICHE CURVA DE REMANSO POR EL METODO DE LEACH ABSCISAS 0+028.72 - 0+939.38, Q=15.63 $\left(m^3/s\right)$

Q = 15.63 (m^3/s)

Q =	15.63	(m^3/s)											
Abscisas (m)	Longitud (m)	S %	Calados (m)	Z(i+1)	Z(i)	Área	Perimetro	Rugosidad	K(s+1)	K(s)	L*Q^2/K^2	Zs - IQ^2/k^2	Comaparació
Abscisas (III)	Longituu (III)	3/0	Calados (III)	(1)	(m)	(m^2)	mojado (m)	manning	1(3+1)	K(3)	L Q 2/K 2	(2)	(1) < (2)
280.000	20.000	0.0521		1658.663					117.872				
260.000			0.100		1659.137	0.208	3.468	0.103		0.310	25403.444	-23744.307	NO
			0.800		1659.837	8.742	19.865	0.103		49.102	1.189	1658.648	NO
			0.900		1659.937	10.787	21.259	0.103		66.625	0.726	1659.211	SI
			0.810		1659.847	8.940	20.005	0.103		50.737	1.125	1658.722	SI
			0.801		1659.838	8.762	19.879	0.103		49.265	1.182	1658.656	NO
			0.802		1659.839	8.781	19.893	0.103		49.427	1.176	1658.663	SI
260.000	20.000	0.0728		1659.839					49.427				
240.000			0.100		1660.594	0.356	7.068	0.103		0.471	11034.983	-9374.389	NO
			0.700		1661.194	10.424	24.569	0.103		57.141	1.748	1659.446	NO
			0.800		1661.294	12.880	24.915	0.103		80.551	1.376	1659.918	SI
			0.770		1661.264	12.140	24.811	0.103		73.191	1.456	1659.808	NO
			0.780		1661.274	12.387	24.846	0.103		75.613	1.427	1659.847	SI
			0.777		1661.271	12.313	24.835	0.103		74.883	1.436	1659.835	NO
			0.778		1661.272	12.337	24.839	0.103		75.126	1.433	1659.839	SI
240.000	20.000	0.0628		1661.272					75.126				
220.000			0.100		1661.850	0.170	3.409	0.103		0.224	48785.978	-47124.128	NO
			0.800		1662.550	7.995	18.740	0.103		43.992	1.695	1660.855	NO
			0.900		1662.650	9.973	21.006	0.103		58.931	1.136	1661.514	SI
			0.850		1662.600	8.956	19.873	0.103		51.112	1.368	1661.232	NO
			0.860		1662.610	9.155	20.099	0.103		52.619	1.315	1661.295	SI
			0.856		1662.606	9.075	20.009	0.103		52.013	1.336	1661.270	NO
			0.857		1662.607	9.095	20.031	0.103		52.164	1.331	1661.276	SI
220.000	20.000	0.0501		1662.607					52.164				
200.000			0.100		1662.852	0.162	3.245	0.103		0.213	53982.774	-52319.922	NO
			0.900		1663.652	16.564	29.262	0.103		110.049	1.100	1662.552	NO
			1.000		1663.752	19.484	29.898	0.103		142.185	1.019	1662.733	SI
			0.920		1663.672	17.144	29.389	0.103		116.200	1.079	1662.593	NO
			0.930		1663.682	17.434	29.453	0.103		119.328	1.069	1662.613	SI
			0.927		1663.679	17.347	29.433	0.103		118.386	1.072	1662.607	NO
			0.928		1663.680	17.376	29.440	0.103		118.699	1.071	1662.609	SI
200.000	20.000	0.1036		1663.680					118.699				
180.000			0.600		1665.423	6.997	17.888	0.103		36.336	2.024	1663.399	NO
			0.700		1665.523	8.804	18.766	0.103		51.612	1.090	1664.433	SI
			0.610		1665.433	7.174	17.975	0.103		37.758	1.887	1663.546	NO
			0.620		1665.443	7.352	18.063	0.103		39.203	1.763	1663.680	SI
			0.619		1665.442	7.334	18.054	0.103		39.058	1.775	1663.667	NO
			0.620		1665.443	7.352	18.063	0.103		39.203	1.763	1663.680	SI

ENCAUZAMIENTO DE LA QUEBRADA PULICHE CURVA DE REMANSO POR EL METODO DE LEACH ABSCISAS 0+028.72 - 0+939.38, Q=15.63 $\left(m^3/s\right)$

Q = $15.63 \quad (m^3/s)$

Q =	15.63	(m^{3}/s)											
Abscisas (m)	Longitud (m)	S %	Calados (m)	Z(i+1)	Z(i)	Área	Perimetro	Rugosidad	K(s+1)	K(s)	L*Q^2/K^2	Zs - IQ^2/k^2	Comaparación
Auscisas (III)	Longituu (III)	3/0	Calados (III)	(1)	(m)	(m^2)	mojado (m)	manning	K(STI)	K(5)	L Q^2/K^2	(2)	(1) < (2)
180.000	20.000	0.0486		1665.443					39.203				
160.000			0.100		1665.895	0.584	11.529	0.103		0.776	4056.166	-2390.271	NO
			1.200		1666.995	36.263	36.735	0.103		349.040	1.610	1665.385	NO
			1.300		1667.095	39.920	37.274	0.103		405.698	1.604	1665.491	SI
			1.250		1667.045	38.086	37.005	0.103		376.927	1.607	1665.438	NO
			1.260		1667.055	38.451	37.059	0.103		382.611	1.606	1665.449	SI
			1.254		1667.049	38.232	37.026	0.103		379.196	1.607	1665.442	NO
			1.255		1667.050	38.268	37.032	0.103		379.765	1.606	1665.444	SI
160.000	14.180	0.0747		1667.050					379.765				
145.820			0.100		1666.954	0.443	8.453	0.103		0.602	4787.284	-3120.330	NO
			0.600		1667.454	8.978	24.341	0.103		44.828	0.874	1666.580	NO
			0.700		1667.554	11.455	25.450	0.103		65.314	0.418	1667.136	SI
			0.670		1667.524	10.700	25.117	0.103		58.817	0.513	1667.011	NO
			0.680		1667.534	10.951	25.228	0.103		60.949	0.478	1667.056	SI
			0.678		1667.532	10.900	25.206	0.103		60.520	0.485	1667.047	NO
			0.679		1667.533	10.925	25.217	0.103		60.735	0.482	1667.051	SI
145.820	5.820	0.0125		1667.533					60.735				
140.000			0.100		1667.027	0.366	5.311	0.103		0.597	1993.938	-326.911	NO
			0.900		1667.827	7.710	13.982	0.103		50.331	0.473	1667.354	NO
			1.000		1667.927	9.206	16.607	0.103		60.315	0.388	1667.539	SI
			0.990		1667.917	9.044	16.328	0.103		59.221	0.395	1667.522	NO
			1.000		1667.927	9.206	16.607	0.103		60.315	0.388	1667.539	SI
			0.996		1667.923	9.141	16.495	0.103		59.874	0.391	1667.532	NO
			0.997		1667.924	9.157	16.523	0.103		59.983	0.390	1667.534	SI
140.000	20.000	0.0509		1667.924					59.983				
120.000			1.100		1669.044	8.680	11.866	0.103		68.415	1.201	1667.843	NO
			1.200		1669.144	9.860	12.384	0.103		82.231	1.040	1668.104	SI
			1.120		1669.064	8.912	11.970	0.103		71.079	1.163	1667.901	NO
			1.130		1669.074	9.029	12.021	0.103		72.430	1.145	1667.929	SI
			1.128		1669.072	9.006	12.011	0.103		72.159	1.148	1667.924	NO
			1.129		1669.073	9.017	12.016	0.103		72.294	1.146	1667.927	SI
120.000	20.000	0.0496		1669.073					72.294				
100.000			1.700		1670.637	5.942	9.755	0.103		41.455	1.889	1668.748	NO
			1.800		1670.737	6.879	10.663	0.103		49.870	1.450	1669.287	SI
			1.750		1670.687	6.400	10.219	0.103		45.480	1.648	1669.039	NO
			1.760		1670.697	6.494	10.308	0.103		46.334	1.605	1669.092	SI
			1.756		1670.693	6.456	10.273	0.103		45.991	1.622	1669.071	NO
			1.757		1670.694	6.466	10.281	0.103		46.077	1.618	1669.076	SI

ENCAUZAMIENTO DE LA QUEBRADA PULICHE CURVA DE REMANSO POR EL METODO DE LEACH ABSCISAS 0+028.72 - 0+939.38, Q=15.63 $\left(m^3/s\right)$

Q = $15.63 (m^3/s)$

Q =	15.63	(m^{s}/s)											
Abscisas (m)	Longitud (m)	S %	Calados (m)	Z(i+1)	Z(i)	Área	Perimetro	Rugosidad	K(s+1)	K(s)	L*Q^2/K^2	Zs - IQ^2/k^2	Comaparación
				(1)	(m)	(m^2)	mojado (m)	manning		. ,		(2)	(1) < (2)
100.000	20.000	0.1227		1670.694					46.077				
80.000			0.100		1671.490	0.104	2.098	0.103		0.137	129937.571	-128266.081	NO
			1.000		1672.390	8.353	13.691	0.103		58.339	1.868	1670.522	NO
			1.100		1672.490	9.710	14.040	0.103		73.730	1.600	1670.890	SI
			1.040		1672.430	8.893	13.830	0.103		64.319	1.741	1670.689	NO
			1.050		1672.440	9.028	13.865	0.103		65.850	1.714	1670.726	SI
			1.041		1672.431	8.906	13.834	0.103		64.471	1.738	1670.693	NO
			1.042		1672.432	8.920	13.837	0.103		64.624	1.736	1670.696	SI
80.000	20.000	0.0772		1672.432					64.624				
60.000			0.100		1673.035	0.419	6.938	0.103		0.626	6241.031	-4567.996	NO
			0.700		1673.635	7.449	15.768	0.103		43.869	1.854	1671.781	NO
			0.800		1673.735	9.027	16.622	0.103		58.338	1.303	1672.432	SI
			0.790		1673.725	8.866	16.537	0.103		56.805	1.342	1672.383	NO
			0.799		1673.734	9.011	16.614	0.103		58.184	1.307	1672.427	NO
			0.800		1673.735	9.027	16.622	0.103		58.338	1.303	1672.432	SI
60.000	20.000	0.0832		1673.735					58.338				
40.000			0.100		1674.700	0.244	6.297	0.103		0.272	33006.317	-31331.617	NO
			0.600		1675.200	9.168	23.533	0.103		47.482	1.801	1673.399	NO
			0.700		1675.300	11.525	23.915	0.103		68.774	1.234	1674.066	SI
			0.640		1675.240	10.107	23.686	0.103		55.617	1.508	1673.732	NO
			0.650		1675.250	10.343	23.724	0.103		57.731	1.451	1673.799	SI
			0.641		1675.241	10.131	23.690	0.103		55.827	1.502	1673.739	SI
40.000	11.280	0.0320		1675.241					55.827				
28.720			0.100		1675.061	0.504	5.902	0.103		0.949	1531.180	143.881	NO
			1.000		1675.961	8.468	12.199	0.103		64.459	0.774	1675.187	NO
			1.100		1676.061	9.701	13.035	0.103		77.345	0.672	1675.389	SI
			1.020		1675.981	8.708	12.477	0.103		66.521	0.753	1675.228	NO
			1.030		1675.991	8.830	12.573	0.103		67.734	0.742	1675.249	SI
			1.026		1675.987	8.781	12.546	0.103		67.205	0.747	1675.240	NO
			1.027		1675.988	8.793	12.553	0.103		67.337	0.746	1675.242	SI

ENCAUZAMIENTO DE LA QUEBRADA PULICHE CURVA DE REMANSO POR EL METODO DE LEACH ABSCISAS 0+028.72 - 0+939.38, Q=15.63 (m^3/s)

Al	Cota de	Pendiente	Calado	05 · W (· ·)	Área	Perimetro		DIL ()	Vsec	Anchos de	A
Abscisas (m)	fondo (m)	(m/m)	(m)	CF+Y (m)	(m^2)	(m)	n	RH (m)	(m/s)	sección (m)	Anchos (m)
28.720	1674.961		1.027	1675.988	8.793	12.553	0.103	0.701	1.777	12.203	
40.000	1674.600	0.032	0.641	1675.241	10.131	23.690	0.103	0.428	1.543	23.533	17.868
60.000	1672.935	0.083	0.800	1673.735	9.027	16.622	0.103	0.543	1.731	16.176	19.854
80.000	1671.390	0.077	1.042	1672.432	8.920	13.837	0.103	0.645	1.752	13.550	14.863
100.000	1668.937	0.123	1.757	1670.694	6.466	10.281	0.103	0.629	2.417	9.440	11.495
120.000	1667.944	0.050	1.129	1669.073	9.017	12.016	0.103	0.750	1.733	11.696	10.568
140.000	1666.927	0.051	0.997	1667.924	9.157	16.523	0.103	0.554	1.707	16.249	13.973
145.820	1666.854	0.013	0.679	1667.533	10.925	25.217	0.103	0.433	1.431	25.080	20.665
160.000	1665.795	0.075	1.255	1667.050	38.268	37.032	0.103	1.033	0.408	36.593	30.836
180.000	1664.823	0.049	0.620	1665.443	7.352	18.063	0.103	0.407	2.126	17.829	27.211
200.000	1662.752	0.104	0.928	1663.680	17.376	29.440	0.103	0.590	0.900	29.064	23.446
220.000	1661.750	0.050	0.857	1662.607	9.095	20.031	0.103	0.454	1.719	19.940	24.502
240.000	1660.494	0.063	0.778	1661.272	12.337	24.839	0.103	0.497	1.267	24.643	22.291
260.000	1659.037	0.073	0.802	1659.839	8.781	19.893	0.103	0.441	1.780	19.796	22.220
280.000	1657.995	0.052	0.668	1658.663	19.045	37.420	0.103	0.509	0.821	37.151	28.474
300.000	1656.895	0.055	0.642	1657.537	9.965	26.235	0.103	0.380	1.568	26.191	31.671
315.050	1655.931	0.064	0.792	1656.723	19.099	30.276	0.103	0.631	0.818	30.126	28.158
320.000	1655.448	0.098	1.212	1656.660	19.453	29.954	0.103	0.649	0.803	29.747	29.936
340.000	1654.733	0.036	0.896	1655.629	8.296	16.062	0.103	0.516	1.884	15.702	22.724
360.000	1652.985	0.087	1.183	1654.168	9.425	15.182	0.103	0.621	1.658	14.908	15.305
380.000	1651.977	0.050	0.863	1652.840	9.412	19.578	0.103	0.481	1.661	19.445	17.176
400.000	1649.977	0.100	0.979	1650.956	7.313	13.580	0.103	0.538	2.137	13.393	16.419
420.000	1648.536	0.072	0.792	1649.328	11.722	25.140	0.103	0.466	1.333	25.011	19.202
440.000	1647.313	0.061	0.916	1648.229	9.705	16.862	0.103	0.576	1.610	16.600	20.806
460.000	1646.073	0.062	0.820	1646.893	9.118	17.788	0.103	0.513	1.714	17.683	17.142

ENCAUZAMIENTO DE LA QUEBRADA PULICHE CURVA DE REMANSO POR EL METODO DE LEACH ABSCISAS 0+028.72 - 0+939.38, Q=15.63 (m^3/s)

Abscisas (m)	Cota de	Pendiente	Calado	CF+Y (m)	Area	Perimetro	n	RH (m)	Vsec	Anchos de	Anchos (m)
400.000	fondo (m)	(m/m)	(m)	1645 606	(m ²)	(m)	0.400	0.600	(m/s)	sección (m)	47.506
480.000	1644.915	0.058	0.781	1645.696	10.790	17.757	0.103	0.608	1.449	17.488	17.586
500.000	1643.948	0.048	0.803	1644.751	9.299	13.879	0.103	0.670	1.681	13.514	15.501
520.000	1642.915	0.052	0.743	1643.658	9.104	14.484	0.103	0.629	1.717	14.160	13.837
540.000	1641.602	0.066	1.328	1642.930	13.789	14.347	0.103	0.961	1.133	13.749	13.955
560.000	1640.995	0.030	0.972	1641.967	8.424	15.436	0.103	0.546	1.855	15.236	14.493
580.000	1639.869	0.056	0.901	1640.770	12.001	20.812	0.103	0.577	1.302	20.641	17.938
600.000	1638.981	0.044	0.939	1639.920	12.636	28.198	0.103	0.448	1.237	27.980	24.311
620.000	1637.980	0.050	0.759	1638.739	9.201	17.240	0.103	0.534	1.699	16.903	22.441
640.000	1636.657	0.066	1.210	1637.867	21.802	49.268	0.103	0.443	0.717	48.697	32.800
660.000	1635.997	0.033	0.898	1636.895	9.458	20.435	0.103	0.463	1.652	20.341	34.519
680.000	1634.959	0.052	0.901	1635.860	13.280	18.235	0.103	0.728	1.177	17.924	19.133
700.000	1634.049	0.046	0.937	1634.986	9.741	18.655	0.103	0.522	1.605	18.519	18.222
720.000	1632.972	0.054	0.822	1633.794	9.796	16.481	0.103	0.594	1.596	16.312	17.416
740.000	1631.969	0.050	0.883	1632.852	11.699	20.526	0.103	0.570	1.336	20.265	18.289
760.000	1630.993	0.049	0.788	1631.781	13.049	39.584	0.103	0.330	1.198	39.501	29.883
780.000	1629.989	0.050	0.822	1630.811	16.343	38.168	0.103	0.428	0.956	38.093	38.797
782.280	1630.000	-0.005	0.751	1630.751	18.327	39.794	0.103	0.461	0.853	39.720	38.906
800.000	1628.975	0.058	0.668	1629.643	13.099	55.414	0.103	0.236	1.193	55.326	47.523
820.000	1627.764	0.061	0.622	1628.386	22.016	63.288	0.103	0.348	0.710	63.182	59.254
840.000	1626.854	0.045	0.352	1627.206	13.795	59.678	0.103	0.231	1.133	59.623	61.402
860.000	1625.272	0.079	0.771	1626.043	21.592	54.359	0.103	0.397	0.724	54.277	56.950
880.000	1624.788	0.024	0.455	1625.243	14.591	48.775	0.103	0.299	1.071	48.724	51.500
900.000	1623.116	0.084	1.042	1624.158	16.576	55.385	0.103	0.299	0.943	55.172	51.948
920.000	1622.012	0.055	1.097	1623.109	15.741	56.398	0.103	0.279	0.993	56.257	55.715
939.380	1620.938	0.055	1.075	1622.013	21.790	58.620	0.103	0.372	0.717	58.488	41.566

ENCAUZAMIENTO DE LA QUEBRADA PULICHE CONTROL VERTICAL, METODO DE ALTUNIN ABSCISAS 0+028.72 - 0+939.38, Q=15.63 (m^3/s) TRAMO N°01

Q =	15.630	(m^{3}/s)	S = 0.0692							Y s = 1.8 (gr/cm ³)					w= 0.199 m/s			Nume	ro del Tr		1	
n =	0.103					k =	9		Υ = 1 (gr/cm^3)						coef k1	0.5		Abscis	a inicial o	del Tran	no (m)	0+028.72
Rh =	0.601	(m)				m =	0.56			Δ =	0.8							Abscis	a final de	el Tramo	o (m)	0+145.82
V =	1.819	(m/s)				A =	2.05		Dm =		0.00456 m						Longit	ud Tramo	o (m)		117.1	
Pendiente	Anc	ho estable	Profun	ndidad	Indica	dores	Condici	Velocia	Trasp	orte de	Condicio	Vo de	arastre	Quni S	edim de	Capac	idad de	Condi Caudal		Velo Lim		Condicion
compesacior	Br	Bn	Hm. R	HM n	Br^m	K. Hmr	^m=K. Hı	Vcm	pr	pn	Pr>=Pn	(Vo)r	(Vo)n	(q.fon)r	(q.fon)n	(Q.fon)r	(Q.fon)n	3	q	Vfon	Vprb	4
0.1070	12.672	19.814	0.567	0.434	4.146	5.103	SI	2.175	0.196	0.171	SI	0.578	0.553	1.638	0.929	10.380	9.203	SI	1.233	0.943	0.905	NO
0.1040	12.745	19.396	0.570	0.443	4.159	5.129	SI	2.152	0.190	0.168	SI	0.578	0.555	1.556	0.913	9.917	8.852	SI	1.226	0.932	0.906	NO
0.1010	12.819	18.974	0.573	0.453	4.173	5.156	SI	2.128	0.185	0.165	SI	0.579	0.557	1.476	0.896	9.461	8.505	SI	1.219	0.921	0.907	NO
0.0980	12.897	18.550	0.576	0.463	4.187	5.184	SI	2.104	0.180	0.161	SI	0.579	0.559	1.398	0.880	9.013	8.161	SI	1.212	0.910	0.908	NO
0.0974	12.913	18.465	0.577	0.465	4.190	5.190	SI	2.099	0.179	0.160	SI	0.579	0.559	1.382	0.877	8.925	8.093	SI	1.210	0.908	0.908	SI
0.0950	12.977	18.123	0.579	0.474	4.201	5.213	SI	2.079	0.174	0.158	SI	0.580	0.561	1.321	0.863	8.573	7.821	SI	1.204	0.899	0.908	SI
0.0920	13.061	17.692	0.583	0.486	4.216	5.243	SI	2.054	0.169	0.154	SI	0.580	0.563	1.246	0.846	8.140	7.485	SI	1.197	0.887	0.909	SI
0.0890	13.148	17.257	0.586	0.498	4.232	5.275	SI	2.028	0.164	0.151	SI	0.581	0.565	1.174	0.829	7.715	7.153	SI	1.189	0.875	0.910	SI
0.0860	13.238	16.819	0.590	0.511	4.248	5.307	SI	2.002	0.158	0.147	SI	0.582	0.568	1.102	0.812	7.297	6.825	SI	1.181	0.863	0.911	SI
0.0830	13.333	16.377	0.593	0.525	4.265	5.341	SI	1.975	0.153	0.144	SI	0.582	0.570	1.033	0.794	6.888	6.501	SI	1.172	0.850	0.912	SI
0.0800	13.431	15.931	0.597	0.539	4.283	5.377	SI	1.948	0.147	0.140	SI	0.583	0.573	0.966	0.776	6.488	6.182	SI	1.164	0.838	0.913	SI
0.0770	13.534	15.481	0.602	0.555	4.301	5.414	SI	1.920	0.142	0.136	SI	0.584	0.576	0.901	0.758	6.095	5.866	SI	1.155	0.825	0.914	SI
0.0740	13.642	15.026	0.606	0.572	4.321	5.453	SI	1.891	0.136	0.133	SI	0.584	0.579	0.837	0.739	5.712	5.555	SI	1.146			SI
0.0710	13.756	14.567	0.610	0.590	4.341	5.494	SI	1.862	0.131	0.129	SI	0.585	0.582	0.776	0.721	5.337	5.249	SI	1.136			SI
0.0691	13.830	14.274	0.613	0.602	4.354	5.520	SI	1.842	0.128	0.126	SI	0.585	0.584	0.738	0.709	5.104	5.057	SI	1.130	0.789	0.917	SI
0.0680	13.875	14.103	0.615	0.609	4.362	5.536	SI	1.831	0.126	0.125	SI	0.586	0.585	0.717	0.702	4.971	4.947	SI	1.126	0.784	0.918	SI
0.0669	13.920	13.931	0.617	0.617	4.370	5.553	SI	1.820	0.124	0.124	SI	0.586	0.586	0.695	0.695	4.839	4.838	SI	1.123	0.779	0.918	SI
0.0650	14.001	13.634	0.620	0.630	4.384	5.582	NO	1.800	0.120	0.121	NO	0.587	0.588	0.659	0.682	4.614	4.650	NO	1.116	0.770	0.919	SI
0.0620	14.134	13.159	0.625	0.653	4.407	5.629	NO	1.768	0.115	0.117	NO	0.587	0.592	0.604	0.662	4.267	4.358	NO	1.106		0.920	SI
0.0590	14.275	12.678	0.631	0.678	4.432	5.680	NO	1.735	0.109	0.113	NO	0.588	0.595	0.551	0.642	3.929	4.071	NO	1.095		0.921	SI
0.0560	14.424	12.192	0.637	0.705	4.458	5.733	NO	1.701	0.104	0.109	NO	0.589	0.599	0.499	0.622	3.601	3.790	NO	1.084	0.725	0.923	SI
0.0530	14.584	11.699	0.643	0.734	4.485	5.790	NO	1.666	0.098	0.105	NO	0.590	0.603	0.450	0.601	3.284	3.514	NO	1.072	0.709	0.924	SI
0.0500	14.755	11.198	0.650	0.767	4.514	5.851	NO	1.629	0.093	0.101	NO	0.591	0.608	0.404	0.579	2.977	3.243	NO	1.059	0.692	0.926	SI
0.0470	14.939	10.691	0.657	0.804	4.546	5.917	NO	1.591	0.087	0.097	NO	0.592	0.612	0.359	0.557	2.681	2.978	NO	1.046	0.675	0.928	SI
0.0440	15.137	10.175	0.665	0.844	4.580	5.988	NO	1.552	0.082	0.092	NO	0.593	0.617	0.317	0.535	2.396	2.720	NO	1.033	0.657	0.930	SI
0.0410	15.352	9.650	0.674	0.890	4.616	6.064	NO	1.511	0.077	0.088	NO	0.595	0.623	0.277	0.511	2.123	2.468	NO	1.018	0.638	0.932	SI
0.0380	15.588	9.115	0.683	0.943	4.655	6.148	NO	1.468	0.071	0.083	NO	0.596	0.629	0.239	0.488	1.861	2.223	NO	1.003	0.619	0.934	SI

ENCAUZAMIENTO DE LA QUEBRADA PULICHE CONTROL VERTICAL, METODO DE ALTUNIN ABSCISAS 0+028.72 - 0+939.38, Q=15.63 (m^3/s) TRAMO N°02

Q =	15.630	(m^{3}/s)	S =			S =	0.0645 Ys =				1.8 (gr/cm ³)				w=	0.199	m/s	Nume	ro del Tr	amo:		2
n =	0.103					k =	9	Υ=		1	(gr/cm ³)			coef k1	0.5		Abscis	a inicial (del Tran	no (m)	0+145.82	
Rh =	0.532	(m)				m =	0.58			Δ =	0.8							Abscis	a final de	el Tramo	o (m)	0+315.05
V =	1.318	(m/s)				A =	2.03			Dm =	0.00456	m						Longit	ud Tramo	o (m)		169.23
Pendiente	_		Profundidad Indicadores		1	Condici	Velocia	Traspo	orte de	Condicio			Quni S	edim de	Capaci	dad de	Condi Caudal		Velo	Lim	0 11 1	
d	Anc	ho estable	me	dia	Indica	idores	on	dad	sedimentos		n2	n2 Vo de ara		fo	ndo	Arra	astre	cion	Uni	Supe	erior	Condicion
compesacior	Br	Bn	Hm. R	HM n	Br^m	K. Hmr	^m=K. Hı	Vcm	pr	pn	Pr>=Pn	(Vo)r	(Vo)n	(q.fon)r	(q.fon)n	(Q.fon)r	(Q.fon)n	3	q	Vfon	Vprb	4
0.1250	12.164	49.870	0.555	0.238	4.259	4.991	SI	2.317	0.230	0.065	SI	0.576	0.500	2.193	0.357	13.338	8.914	SI	1.285	1.008	0.902	NO
0.1200	12.264	48.366	0.559	0.245	4.280	5.028	SI	2.281	0.221	0.064	SI	0.576	0.502	2.038	0.348	12.499	8.422	SI	1.274	0.991	0.903	NO
0.1150	12.369	46.846	0.563	0.253	4.301	5.067	SI	2.245	0.212	0.064	SI	0.577	0.505	1.888	0.339	11.679	7.939	SI	1.264	0.974	0.904	NO
0.1100	12.479	45.310	0.567	0.262	4.323	5.107	SI	2.207	0.203	0.064	SI	0.578	0.508	1.743	0.329	10.878	7.463	SI	1.252	0.957	0.905	NO
0.1050	12.596	43.757	0.572	0.271	4.346	5.150	SI	2.168	0.194	0.063	SI	0.579	0.511	1.603	0.320	10.096	6.995	SI	1.241	0.939	0.907	NO
0.1000	12.720	42.185	0.577	0.281	4.371	5.196	SI	2.129	0.185	0.063	SI	0.580	0.514	1.468	0.310	9.335	6.536	SI	1.229	0.920	0.908	NO
0.0969	12.800	41.200	0.581	0.288	4.387	5.225	SI	2.103	0.179	0.063	SI	0.580	0.516	1.387	0.304	8.874	6.255	SI	1.221	0.909	0.909	SI
0.0950	12.851	40.593	0.583	0.292	4.397	5.244	SI	2.087	0.176	0.062	SI	0.580	0.517	1.338	0.300	8.595	6.085	SI	1.216	0.901	0.909	SI
0.0900	12.991	38.979	0.588	0.304	4.425	5.295	SI	2.045	0.167	0.062	SI	0.581	0.521	1.213	0.290	7.876	5.643	SI	1.203	0.882	0.911	SI
0.0850	13.140	37.344	0.594	0.318	4.454	5.350	SI	2.001	0.158	0.062	SI	0.582	0.525	1.093	0.279	7.179	5.211	SI	1.190	0.861	0.912	SI
0.0800	13.300	35.684	0.601	0.332	4.486	5.409	SI	1.956	0.149	0.061	SI	0.583	0.529	0.978	0.268	6.505	4.788	SI	1.175	0.840	0.914	SI
0.0750	13.473	33.998	0.608	0.349	4.519	5.472	SI	1.908	0.139	0.061	SI	0.585	0.533	0.869	0.257	5.855	4.375	SI	1.160	0.819	0.916	SI
0.0700	13.660	32.283	0.616	0.367	4.556	5.540	SI	1.859	0.130	0.060	SI	0.586	0.538	0.765	0.246	5.228	3.973	SI	1.144	0.796	0.918	SI
0.0650	13.864	30.538	0.624	0.388	4.595	5.614	SI	1.807	0.121	0.060	SI	0.587	0.543	0.668	0.235	4.627	3.582	SI	1.127	0.772	0.920	SI
0.0644	13.890	30.326	0.625	0.391	4.600	5.624	SI	1.801	0.120	0.059	SI	0.587	0.543	0.656	0.233	4.557	3.536	SI	1.125	0.769	0.920	SI
0.0600	14.088	28.759	0.633	0.412	4.638	5.696	SI	1.753	0.112	0.059	SI	0.588	0.548	0.575	0.223	4.053	3.202	SI	1.109	0.748	0.922	SI
0.0550	14.335	26.942	0.643	0.440	4.685	5.786	SI	1.696	0.103	0.058	SI	0.590	0.554	0.489	0.210	3.505	2.834	SI	1.090	0.722	0.924	SI
0.0500	14.611	25.083	0.654	0.473	4.737	5.886	SI	1.636	0.094	0.058	SI	0.592	0.561	0.409	0.198	2.986	2.479	SI	1.070	0.694	0.927	SI
0.0450	14.922	23.177	0.667	0.512	4.795	5.999	SI	1.571	0.085	0.057	SI	0.594	0.568	0.335	0.184	2.498	2.138	SI	1.047	0.665	0.930	SI
0.0400	15.278	21.218	0.681	0.559	4.861	6.127	SI	1.503	0.075	0.056	SI	0.596	0.576	0.267	0.171	2.041	1.811	SI	1.023	0.634	0.933	SI
0.0357	15.629	19.483	0.695	0.609	4.926	6.254	SI	1.439	0.067	0.055	SI	0.598	0.585	0.214	0.158	1.676	1.542	SI	1.000	0.605	0.936	SI
0.0350	15.691	19.196	0.697	0.618	4.937	6.276	NO	1.428	0.066	0.055	SI	0.598	0.586	0.206	0.156	1.619	1.500	SI	0.996	0.600	0.937	SI
0.0300	16.183	17.100	0.717	0.694	5.026	6.453	NO	1.347	0.057	0.054	SI	0.601	0.598	0.152	0.141	1.233	1.206	SI	0.966	0.564	0.941	SI
0.0250	16.784	14.914	0.741	0.795	5.134	6.668	NO	1.257	0.048	0.053	NO	0.604	0.611	0.106	0.125	0.886	0.931	NO	0.931	0.524	0.946	SI
0.0200	17.550	12.616	0.771	0.940	5.268	6.941	NO	1.155	0.038	0.051	NO	0.608	0.629	0.067	0.107	0.584	0.678	NO	0.891	0.478	0.953	SI

Anexo 1.5

ENCAUZAMIENTO DE LA QUEBRADA PULICHE CONTROL VERTICAL, METODO DE ALTUNIN ABSCISAS 0+028.72 - 0+939.38, Q=15.63 (m^3/s) TRAMO N°03

Q =	15.630	(m^{3}/s)				S =	0.0555			Υs =	1.8	(gr/cm³)		w=	0.199	m/s	Nume	ro del Tr	amo:		3
n =	0.103					k =	9			Υ=	1	(gr/cm ³)			coef k1	0.5		Abscis	a inicial	del Tran	no (m)	0+315.05
Rh =	0.560	(m)				m =	0.58			Δ =	0.8							Abscis	a final de	el Tramo	o (m)	0+782.28
V =	1.478	(m/s)				A =	2.03			Dm =	0.00456	m						Longit	ud Tram	o (m)		467.23
0.1200	12.264	36.280	0.559	0.291	4.280	5.028	SI	2.281	0.221	0.083	SI	0.576	0.517	2.038	0.509	12.499	9.241	SI	1.274	0.991	0.903	NO
0.1150	12.369	35.140	0.563	0.301	4.301	5.067	SI	2.245	0.212	0.083	SI	0.577	0.520	1.888	0.496	11.679	8.714	SI	1.264	0.974	0.904	NO
0.1100	12.479	33.988	0.567	0.311	4.323	5.107	SI	2.207	0.203	0.082	SI	0.578	0.523	1.743	0.482	10.878	8.196	SI	1.252	0.957	0.905	NO
0.1050	12.596	32.823	0.572	0.322	4.346	5.150	SI	2.168	0.194	0.082	SI	0.579	0.526	1.603	0.468	10.096	7.686	SI	1.241	0.939	0.907	NO
0.1000	12.720	31.643	0.577	0.334	4.371	5.196	SI	2.129	0.185	0.081	SI	0.580	0.529	1.468	0.454	9.335	7.185	SI	1.229	0.920	0.908	NO
0.0969	12.800	30.905	0.581	0.342	4.387	5.225	SI	2.103	0.179	0.081	SI	0.580	0.531	1.387	0.445	8.874	6.878	SI	1.221	0.909	0.909	SI
0.0950	12.851	30.449	0.583	0.347	4.397	5.244	SI	2.087	0.176	0.081	SI	0.580	0.532	1.338	0.440	8.595	6.693	SI	1.216	0.901	0.909	SI
0.0900	12.991	29.239	0.588	0.362	4.425	5.295	SI	2.045	0.167	0.080	SI	0.581	0.536	1.213	0.425	7.876	6.210	SI	1.203	0.882	0.911	SI
0.0850	13.140	28.012	0.594	0.377	4.454	5.350	SI	2.001	0.158	0.080	SI	0.582	0.540	1.093	0.410	7.179	5.738	SI	1.190	0.861	0.912	SI
0.0800	13.300	26.767	0.601	0.395	4.486	5.409	SI	1.956	0.149	0.079	SI	0.583	0.544	0.978	0.394	6.505	5.276	SI	1.175	0.840		SI
0.0750	13.473	25.502	0.608	0.415	4.519	5.472	SI	1.908	0.139	0.079	SI	0.585	0.548	0.869	0.378	5.855	4.825	SI	1.160	0.819	0.916	SI
0.0700	13.660	24.216	0.616	0.437	4.556	5.540	SI	1.859	0.130	0.078	SI	0.586	0.553	0.765	0.362	5.228	4.384	SI	1.144	0.796	0.918	SI
0.0650	13.864	22.907	0.624	0.462	4.595	5.614	SI	1.807	0.121	0.077	SI	0.587	0.558	0.668	0.345	4.627	3.956	SI	1.127		0.920	SI
0.0600	14.088	21.572	0.633	0.490	4.638	5.696	SI	1.753	0.112	0.076	SI	0.588	0.564	0.575	0.328	4.053	3.540	SI	1.109	0.748	0.922	SI
0.0555	14.309	20.347	0.642	0.520	4.680	5.776	SI	1.702	0.104	0.076	SI	0.590	0.569	0.497	0.312	3.559	3.176	SI	1.092	0.724	0.924	SI
0.0550	14.335	20.210	0.643	0.523	4.685	5.786	SI	1.696	0.103	0.076	SI	0.590	0.570	0.489	0.310	3.505	3.136	SI	1.090	0.722	0.924	SI
0.0500	14.611	18.815	0.654	0.562	4.737	5.886	SI	1.636	0.094	0.075	SI	0.592	0.577	0.409	0.292	2.986	2.747	SI	1.070	0.694	0.927	SI
0.0450	14.922	17.386	0.667	0.608	4.795	5.999	SI	1.571	0.085	0.074	SI	0.594	0.585	0.335	0.273	2.498	2.372	SI	1.047	0.665	0.930	SI
0.0400	15.278	15.916	0.681	0.664	4.861	6.127	SI	1.503	0.075	0.073	SI	0.596	0.593	0.267	0.253	2.041	2.012	SI	1.023	0.634	0.933	SI
0.0384	15.403	15.436	0.686	0.685	4.884	6.172	SI	1.480	0.072	0.072	SI	0.596	0.596	0.247	0.246	1.902	1.901	SI	1.015		0.934	SI
0.0350	15.691	14.399	0.697	0.734	4.937	6.276	NO	1.428	0.066	0.071	NO	0.598	0.603	0.206	0.232	1.619	1.670	NO	0.996	0.600	0.937	SI
0.0300	16.183	12.827	0.717	0.824	5.026	6.453	NO	1.347	0.057	0.070	NO	0.601	0.615	0.152	0.210	1.233	1.346	NO	0.966	0.564	0.941	SI
0.0250	16.784	11.188	0.741	0.945	5.134	6.668	NO	1.257	0.048	0.068	NO	0.604	0.629	0.106	0.186	0.886	1.042	NO	0.931		0.946	SI
0.0200	17.550	9.464	0.771	1.117	5.268	6.941	NO	1.155	0.038	0.067	NO	0.608	0.647	0.067	0.161	0.584	0.761	NO	0.891	0.478	0.953	SI
0.0150 0.0100	18.589 20.159	7.627 5.627	0.812 0.874	1.386 1.879	5.447 5.709	7.310 7.864	NO NO	1.035 0.887	0.029 0.019	0.064 0.061	NO NO	0.613 0.621	0.671 0.706	0.036 0.013	0.133 0.101	0.331 0.135	0.507 0.285	NO NO	0.841 0.775	0.426 0.361	0.961 0.973	SI SI
0.0100	20.159	3.346	0.874	3.160	6.188	7.864 8.909	NO	0.887	0.019	0.051	NO	0.634	0.769	0.013	0.101	0.135	0.285	NO	0.775	0.361	0.973	SI

Anexo 1.5

ENCAUZAMIENTO DE LA QUEBRADA PULICHE CONTROL VERTICAL, METODO DE ALTUNIN ABSCISAS 0+028.72 - 0+939.38, Q=15.63 (m^3/s) TRAMO N°04

Q =	15.630	(m^3/s)				S =	0.0577	(m/m)		Υs =	1.8	(gr/cm³)		w=	0.199	(m/s)	Nume	ro del Tr	amo:		4
n =	0.103					k =	9			Υ=	1	(gr/cm ³)			coef k1	0.5		Abscis	a inicial (del Tran	no (m)	0+782.28
Rh =	0.313	(m)				m =	0.58			Δ =	0.8							Abscis	a final de	el Tramo	o (m)	0+939.38
V =	0.999	(m/s)				A =	2.03			Dm =	0.00456	m						Longit	ud Tram	o (m)		157.1
0.1200	12.023	96.621	0.565	0.162	4.558	5.088	SI	2.300	0.225	0.034	SI	0.578	0.469	2.090	0.135	12.562	6.512	SI	1.300	0.997	0.905	NO
0.1150	12.125	93.586	0.570	0.167	4.582	5.127	SI	2.263	0.216	0.034	SI	0.578	0.471	1.936	0.131	11.738	6.129	SI	1.289	0.980	0.906	NO
0.1100	12.234	90.517	0.574	0.173	4.607	5.169	SI	2.225	0.207	0.034	SI	0.579	0.474	1.787	0.127	10.933	5.753	SI	1.278	0.963	0.907	NO
0.1050	12.348	87.413	0.579	0.179	4.633	5.212	SI	2.186	0.197	0.034	SI	0.580	0.477	1.644	0.123	10.148	5.384	SI	1.266	0.945	0.908	NO
0.1000	12.469	84.273	0.584	0.186	4.661	5.258	SI	2.146	0.188	0.034	SI	0.581	0.480	1.505	0.119	9.384	5.022	SI	1.254	0.926	0.910	NO
0.0960	12.571	81.731	0.589	0.191	4.684	5.297	SI	2.113	0.181	0.034	SI	0.581	0.482	1.398	0.116	8.787	4.737	SI	1.243	0.911	0.911	SI
0.0950	12.598	81.092	0.590	0.193	4.690	5.307	SI	2.104	0.179	0.034	SI	0.582	0.483	1.372	0.115	8.640	4.667	SI	1.241	0.907	0.911	SI
0.0900	12.735	77.870	0.595	0.201	4.721	5.359	SI	2.061	0.170	0.033	SI	0.583	0.486	1.244	0.111	7.918	4.320	SI	1.227	0.887	0.913	SI
0.0850	12.881	74.602	0.602	0.210	4.754	5.414	SI	2.017	0.161	0.033	SI	0.584	0.490	1.121	0.107	7.218	3.980	SI	1.213	0.867	0.914	SI
0.0800	13.038	71.286	0.608	0.219	4.789	5.473	SI	1.971	0.151	0.033	SI	0.585	0.493	1.003	0.102	6.541	3.649	SI	1.199	0.846	0.916	SI
0.0750	13.207	67.918	0.615	0.230	4.827	5.537	SI	1.923	0.142	0.033	SI	0.586	0.497	0.892	0.098	5.888	3.326	SI	1.183		0.918	SI
0.0700	13.391	64.493	0.623	0.243	4.868	5.607	SI	1.874	0.133	0.032	SI	0.587	0.502	0.785	0.093	5.258	3.012	SI	1.167	0.801	0.919	SI
0.0650	13.591	61.006	0.631	0.256	4.912	5.682	SI	1.822	0.123	0.032	SI	0.588	0.506	0.685	0.089	4.654	2.707	SI	1.150	0.777	0.922	SI
0.0600	13.810	57.451	0.640	0.272	4.960	5.764	SI	1.767	0.114	0.032	SI	0.590	0.511	0.590	0.084	4.077	2.412	SI	1.132		0.924	SI
0.0577	13.919	55.791	0.645	0.280	4.984	5.805	SI	1.741	0.110	0.031	SI	0.590	0.514	0.549	0.082	3.820	2.280	SI	1.123	0.740		SI
0.0550	14.053	53.822	0.651	0.291	5.013	5.855	SI	1.710	0.105	0.031	SI	0.591	0.517	0.502	0.079	3.527	2.127	SI	1.112		0.926	SI
0.0500	14.323	50.109	0.662	0.312	5.072	5.957	SI	1.649	0.095	0.031	SI	0.593	0.523	0.420	0.074	3.005	1.853	SI	1.091		0.929	SI
0.0450	14.628	46.302	0.675	0.338	5.138	6.071	SI	1.584	0.086	0.031	SI	0.595	0.530	0.344	0.069	2.514	1.590	SI	1.068	0.669	0.932	SI
0.0400	14.977	42.387	0.689	0.369	5.212	6.201	SI	1.515	0.077	0.030	SI	0.597	0.538	0.274	0.063	2.055	1.340	SI	1.044	0.638	0.935	SI
0.0350	15.382	38.347	0.706	0.408	5.298	6.352	SI	1.440	0.067	0.030	SI	0.599	0.547	0.212	0.057	1.630	1.102	SI	1.016	0.604	0.939	SI
0.0300	15.864	34.161	0.726	0.458	5.398	6.530	SI	1.358	0.058	0.029	SI	0.602	0.558	0.157	0.051	1.242	0.879	SI	0.985	0.568	0.943	SI
0.0250	16.453	29.795	0.750	0.525	5.520	6.748	SI	1.267	0.048	0.028	SI	0.605	0.570	0.109	0.045	0.894	0.672	SI	0.950	0.527	0.948	SI
0.0200	17.204	25.203	0.781	0.621	5.672	7.025	SI	1.164	0.039	0.028	SI	0.609	0.587	0.069	0.038	0.589	0.482	SI	0.909	0.481	0.955	SI
0.0150	18.223	20.312	0.822	0.770	5.875	7.398	SI	1.043	0.029	0.027	SI	0.615	0.608	0.037	0.031	0.334	0.313	SI	0.858	0.428	0.963	SI
0.0139	18.502	19.184	0.833	0.815	5.929	7.500	SI	1.014	0.027	0.026	SI	0.616	0.614	0.031	0.029	0.286	0.279	SI	0.845		0.965	SI
0.0100	19.762	14.986	0.884	1.044	6.172	7.958	NO	0.894	0.020	0.025	NO	0.622	0.640	0.014	0.023	0.137	0.169	NO	0.791	0.363	0.975	SI
0.0050	22.701	8.911	1.002	1.756	6.717	9.016	NO	0.687	0.010	0.023	NO	0.635	0.698	0.001	0.013	0.012	0.057	NO	0.689	0.274	0.995	SI

ABSCISAS 0+028.72 - 0+939.38, Q=15.63 (m^3/s)

CURVA N°1

Abscisa inici	0+040.94		Bc=	12.170	m
θ =	67.201	۰	k1=	0.664	m
Br =	13.830	m	xo=	72.012	m
R =	69.000	m	yo=	30.459	m

x (m)	-72.012	-48.000	-24.000	0.000	24.000	48.000	72.012
y (m)	0.000	15.234	26.380	30.459	26.380	15.234	0.000

Abscisa inici	0+099.82		Bc=	12.170	m
θ =	82.008	0	k1=	0.869	m
Br =	13.830	m	xo=	94.231	m
R =	69.000	m	yo=	52.155	m

x (m)	-94.231	-62.800	-31.400	0.000	31.400	62.800	94.231
y (m)	0.000	26.093	45.172	52.155	45.172	26.093	0.000

ABSCISAS 0+028.72 - 0+939.38, Q=15.63 (m^3/s)

CURVA N°3

Abscisa inici	0+157.3		Bc=	9.723	m
θ =	6.975	•	k1=	0.061	m
Br =	13.890	m	xo=	6.605	m
R =	69.000	m	yo=	0.256	m

x (m)	-6.605	-4.400	-2.200	0.000	2.200	4.400	6.605
y (m)	0.000	0.128	0.222	0.256	0.222	0.128	0.000

Abscisa inici	0+201.81		Bc=	9.723	m
θ =	26.346	٥	k1=	0.234	m
Br =	13.890	m	xo=	25.368	m
R =	69.000	m	yo=	3.780	m

x (m)	-25.368	-17.000	-8.500	0.000	8.500	17.000	25.368
y (m)	0.000	1.872	3.268	3.780	3.268	1.872	0.000

ABSCISAS 0+028.72 - 0+939.38, Q=15.63 (m^3/s)

CURVA N°5

Abscisa inici	0+414.66		Bc=	10.016	m
θ =	16.773	٥	k1=	0.147	m
Br =	14.309	m	xo=	16.674	m
R =	72.000	m	yo=	1.565	m

x (m)	-16.674	-11.200	-5.600	0.000	5.600	11.200	16.674
y (m)	0.000	0.772	1.352	1.565	1.352	0.772	0.000

Abscisa inici	0+554.38		Bc=	10.016	m
θ =	16.697	٥	k1=	0.147	m
Br =	14.309	m	xo=	16.597	m
R =	72.000	m	yo=	1.551	m

x (m)	-16.597	-11.000	-5.500	0.000	5.500	11.000	16.597
y (m)	0.000	0.783	1.345	1.551	1.345	0.783	0.000

ABSCISAS 0+028.72 - 0+939.38, Q=15.63 (m^3/s)

CURVA N°7

Abscisa inici	0+652.57		Bc=	12.592	m
θ =	55.524	0	k1=	0.526	m
Br =	14.309	m	xo=	59.534	m
R =	72.000	m	yo=	19.950	m

x (m)	-59.534	-39.600	-19.800	0.000	19.800	39.600	59.534
y (m)	0.000	10.016	17.289	19.950	17.289	10.016	0.000

Abscisa inici	0+852.17		Bc=	9.743	m
θ =	5.662	•	k1=	0.049	m
Br =	13.919	m	xo=	5.437	m
R =	70.000	m	yo=	0.171	m

x (m)	-5.437	-3.600	-1.800	0.000	1.800	3.600	5.437
y (m)	0.000	0.087	0.149	0.171	0.149	0.087	0.000

ENCAUZAMIENTO DE LA QUEBRADA PULICHE PROFUNDIDADES MEDIAS Y MAXIMAS ABSCISAS 0+028.72 - 0+939.38, Q=15.63 $\left(m^3/s\right)$

TRAMOS RECTOS

Tramo	Absci	sa	Long rec (m)	Profundidad en recta		
ITAIIIO	inicial (m)	final (m)	Long rec (iii)	Hm.r (m)	Hmax (m)	
1.000	28.720	145.820	117.100	0.613	0.920	
2.000	145.820	315.050	169.230	0.625	0.938	
3.000	315.050	939.380	624.330	0.642	0.963	
4.000	782.280	939.380	157.100	0.645	0.968	

TF	RAMOS CURVO	os					media rec	media curv	max cur
n° CURVA	Radio	Ancho	R/B	Kt	e1	e2	Hm.r	Hmed(c)	Hmax(c)
II CURVA	(m)	(m)					(m)	(m)	(m)
1.000	69.000	13.830	5.000	0.270	1.840	0.700	0.613	0.779	1.003
2.000	69.000	13.830	5.000	0.270	1.840	0.700	0.613	0.779	1.003
3.000	69.000	13.890	5.000	0.270	1.840	0.700	0.625	0.794	1.022
4.000	69.000	13.890	5.000	0.270	1.840	0.700	0.625	0.794	1.022
5.000	72.000	14.309	5.000	0.270	1.840	0.700	0.642	0.815	1.050
6.000	72.000	14.309	5.000	0.270	1.840	0.700	0.642	0.815	1.050
7.000	72.000	14.309	5.000	0.270	1.840	0.700	0.642	0.815	1.050
8.000	70.000	13.919	5.000	0.270	1.840	0.700	0.645	0.819	1.055

ENCAUZAMIENTO DE LA QUEBRADA PULICHE SOCAVACIÓN EN TRAMOS RECTOS ABSCISAS 0+028.72 - 0+939.38, Q=15.63 $\left(m^3/s\right)$

 $\begin{array}{lll} Dm = & 0.00456 & (m) \\ \mu = & 1.000 \\ \beta = & 0.929 \\ \Psi = & 1.060 \\ 1/(x+1) & 0.755 \end{array}$

Abscisas	por el eje	Caudal del	Ancho medio	Caudal	Área	Tirante	Tirante	Socavación general			
rí inicial (m)	final (m)	Diseño (m^3/s)	libre del río Be (m)	Unitario $(m^3/s/m)$	Hidráulica $\binom{m^2}{}$	medio Hm (m)	máximo Ho (m)	alpha	levediev	ecuación típica	Hs - Ho (m)
28.720	145.820	15.630	14.832	1.054	8.767	0.591	0.613	2.531	1.069	1.856	0.456
145.820	315.050	15.630	26.339	0.593	14.948	0.568	0.625	1.525	0.749	1.266	0.124
315.050	782.280	15.630	20.963	0.746	11.288	0.538	0.642	2.092	0.982	1.474	0.340
782.280	939.380	15.630	53.361	0.293	16.989	0.318	0.645	1.973	0.945	0.791	0.300

Anexo 1.9 1 Hojas de 2

ENCAUZAMIENTO DE LA QUEBRADA PULICHE RESUMEN DEL CÁLCULO ABSCISAS 0+028.72 - 0+939.38, Q=15.63 (m^3/s)

#Tramo	Abscisas (m)	Pendiente	Ancho (m)	Altura Med	Altura Max	Socavación	Forma del	Altura de
#11aiii0	Auscisas (III)	(m/m)	Alicilo (III)	(m)	(m)	(m)	Tramo	diseño (m)
1	28.72	0.0691	13.830	0.613	1.003	0.457	Curvo	2.073
1	40	0.0691	13.830	0.613	1.003	0.457	Curvo	2.073
1	60	0.0691	13.830	0.613	1.003	0.457	Curvo	2.073
1	80	0.0691	13.830	0.613	1.003	0.457	Curvo	2.073
1	100	0.0691	13.830	0.613	1.003	0.457	Curvo	2.073
1	120	0.0691	13.830	0.613	1.003	0.457	Curvo	2.073
1	140	0.0691	13.830	0.613	1.003	0.457	Curvo	2.073
1	145.82	0.0691	13.830	0.613	1.003	0.457	Curvo	2.073
2	160	0.0644	13.890	0.625	1.022	0.123	Curvo	1.770
2	180	0.0644	13.890	0.625	1.022	0.123	Curvo	1.770
2	200	0.0644	13.890	0.625	1.022	0.123	Curvo	1.770
2	220	0.0644	13.890	0.625	1.022	0.123	Curvo	1.770
2	240	0.0644	13.890	0.625	0.938	0.123	Recto	1.685
2	260	0.0644	13.890	0.625	0.938	0.123	Recto	1.685
2	280	0.0644	13.890	0.625	0.938	0.123	Recto	1.685
2	300	0.0644	13.890	0.625	0.938	0.123	Recto	1.685
2	315.05	0.0644	13.890	0.625	0.938	0.123	Recto	1.685
3	320	0.0555	14.309	0.642	0.963	0.340	Recto	1.945
3	340	0.0555	14.309	0.642	0.963	0.340	Recto	1.945
3	360	0.0555	14.309	0.642	0.963	0.340	Recto	1.945
3	380	0.0555	14.309	0.642	0.963	0.340	Recto	1.945
3	400	0.0555	14.309	0.642	1.050	0.340	Curvo	2.032
3	420	0.0555	14.309	0.642	1.050	0.340	Curvo	2.032
3	440	0.0555	14.309	0.642	0.963	0.340	Recto	1.945
3	460	0.0555	14.309	0.642	0.963	0.340	Recto	1.945
3	480	0.0555	14.309	0.642	0.963	0.340	Recto	1.945
3	500	0.0555	14.309	0.642	0.963	0.340	Recto	1.945
3	520	0.0555	14.309	0.642	0.963	0.340	Recto	1.945
3	540	0.0555	14.309	0.642	1.050	0.340	Curvo	2.032
3	560	0.0555	14.309	0.642	1.050	0.340	Curvo	2.032
3	580	0.0555	14.309	0.642	1.050	0.340	Curvo	2.032
3	600	0.0555	14.309	0.642	1.050	0.340	Curvo	2.032
3	620	0.0555	14.309	0.642	1.050	0.340	Curvo	2.032
3	640	0.0555	14.309	0.642	1.050	0.340	Curvo	2.032
3	660	0.0555	14.309	0.642	1.050	0.340	Curvo	2.032
3	680	0.0555	14.309	0.642	1.050	0.340	Curvo	2.032
3	700	0.0555	14.309	0.642	1.050	0.340	Curvo	2.032
3	720	0.0555	14.309	0.642	1.050	0.340	Curvo	2.032
3	740	0.0555	14.309	0.642	0.963	0.340	Recto	1.945
3	760	0.0555	14.309	0.642	0.963	0.340	Recto	1.945
3	780	0.0555	14.309	0.642	0.963	0.340	Recto	1.945
3	782.28	0.0555	14.309	0.642	0.963	0.340	Recto	1.945

Anexo 1.9 2 Hojas de 2

ENCAUZAMIENTO DE LA QUEBRADA PULICHE RESUMEN DEL CÁLCULO ABSCISAS 0+028.72 - 0+939.38, Q=15.63 $\left(m^3/s\right)$

#Tramo	Abscisas (m)	Pendiente (m/m)	Ancho (m)	Altura Med (m)	Altura Max (m)	Socavación (m)	Forma del Tramo	Altura de diseño (m)
4	800	0.0577	13.919	0.645	0.9675	0.300	Recto	1.913
4	820	0.0577	13.919	0.645	0.9675	0.300	Recto	1.913
4	840	0.0577	13.919	0.645	0.9675	0.300	Recto	1.913
4	860	0.0577	13.919	0.645	0.9675	0.300	Recto	1.913
4	880	0.0577	13.919	0.645	0.9675	0.300	Recto	1.913
4	900	0.0577	13.919	0.645	0.9675	0.300	Recto	1.913
4	920	0.0577	13.919	0.645	0.9675	0.300	Recto	1.913
4	939.38	0.0577	13.919	0.645	0.9675	0.300	Recto	1.913

ENCAUZAMIENTO DE LA QUEBRADA PULICHE ALTURAS DE OBRAS TRANSVERSALES ABSCISAS 0+028.72 - 0+939.38, Q=15.63 $\left(m^3/s\right)$

Abscisas (m)	Cota de Fondo (m)	Cota de LA (m)	Pendiente (m/m)	Cotas requeridas (m)	Altura de traviesas (m)
28.720	1674.961	1675.988		1674.961	
40.000	1674.600	1675.241		1674.182	1
60.000	1672.935	1673.735		1672.800	1
80.000	1671.390	1672.432	0.0691	1671.418	1
100.000	1668.937	1670.694		1670.036	1
120.000	1667.944	1669.073		1668.654	0.710
120.000	1667.944	1669.073		1667.944	
140.000	1666.927	1667.924		1666.562	
145.820	1666.854	1667.533		1666.160	
160.000	1665.795	1667.050		1665.247	
180.000	1664.823	1665.443		1663.959	
200.000	1662.752	1663.680		1662.671	
220.000	1661.750	1662.607		1661.383	
240.000	1660.494	1661.272	0.0644	1660.095	
260.000	1659.037	1659.839		1658.807	
280.000	1657.995	1658.663		1657.519	
300.000	1656.895	1657.537		1656.231	
315.050	1655.931	1656.723		1655.261	
320.000	1655.448	1656.660		1654.987	
340.000	1654.733	1655.629		1653.877	
360.000	1652.985	1654.168		1652.767	
380.000	1651.977	1652.840		1651.657	
400.000	1649.977	1650.956		1650.547	
420.000	1648.536	1649.328		1649.437	0.901
420.000	1648.536	1649.328		1648.536	
440.000	1647.313	1648.229	0.0555	1647.426	
460.000	1646.073	1646.893		1646.316	
480.000	1644.915	1645.696		1645.206	0.291
480.000	1644.915	1645.696		1644.915	
500.000	1643.948	1644.751		1643.805	
520.000	1642.915	1643.658		1642.695	
540.000	1641.602	1642.930		1641.585	
560.000	1640.995	1641.967		1640.475]
580.000	1639.869	1640.770		1639.365	

ENCAUZAMIENTO DE LA QUEBRADA PULICHE ALTURAS DE OBRAS TRANSVERSALES ABSCISAS 0+028.72 - 0+939.38, Q=15.63 $\left(m^3/s\right)$

Abscisas (m)	Cota de Fondo (m)	Cota de LA (m)	Pendiente (m/m)	Cotas requeridas (m)	Altura de traviesas (m)
600.000	1638.981	1639.920		1638.255	
620.000	1637.980	1638.739		1637.145	
640.000	1636.657	1637.867		1636.035	
660.000	1635.997	1636.895		1634.925	
680.000	1634.959	1635.860		1633.815	
700.000	1634.049	1634.986	0.0555	1632.705	
720.000	1632.972	1633.794		1631.595	
740.000	1631.969	1632.852		1630.485	
760.000	1630.993	1631.781		1629.375	
780.000	1629.989	1630.811		1628.265	
782.280	1630.000	1630.751		1628.138	
800.000	1628.975	1629.643		1627.116	
820.000	1627.764	1628.386		1625.962	
840.000	1626.854	1627.206		1624.808	
860.000	1625.272	1626.043	0.0577	1623.654	
880.000	1624.788	1625.243		1622.500]
900.000	1623.116	1624.158		1621.346]
920.000	1622.012	1623.109		1620.192]
939.380	1620.938	1622.013		1619.074	

ENCAUZAMIENTO DE LA QUEBRADA PULICHE DIMENCIONES DE LAS OBRAS TRANSVERSALES ABSCISAS 0+028.72 - 0+939.38, Q=15.6 (m^3/s)

Obra	Abscisas (m)	Ancho (m)	Altura (m)	Pendiente (m/m)	Manning	Tirante (m)	Long Resalto (m)	Revestimiento (m)	Socavación (m)	
Traviesas	28.72	13.830	0.000	0.0690	0.103	0.613	0.000	0.000	0.000	
No es nece	sario colocar O	bra de rectific	ación							
Azud	120	13.830	0.710	0.0690	0.103	••••	••••		••••	
No es nece	sario colocar O	bra de rectific	ación							
No es nece	sario colocar O	bra de rectific	ación							
No es nece	sario colocar O	bra de rectific	ación							
No es nece	sario colocar O	bra de rectific	ación							
Azud	420	14.309	0.901	0.056	0.103	••••	••••		••••	
Traviesas	480	14.309	0.291	0.056	0.103	0.789	2.56	0.284	3.221	
No es nece	sario colocar O	bra de rectific	ación							
No es nece	sario colocar O	bra de rectific	ación							
No es nece	sario colocar O	bra de rectific	ación							
No es nece	lo es necesario colocar Obra de rectificación									
No es nece	lo es necesario colocar Obra de rectificación									
No es nece	lo es necesario colocar Obra de rectificación									
No es nece	sario colocar O	bra de rectific	ación							

ANEXO II

1589.080

1589.050

1589.060

1589.054

1589.055

7.195

6.560

6.767

6.643

6.663

ENCAUZAMIENTO DE LA QUEBRADA PULICHE CALCULO INICIAL DE LA CURVA DE REMANSO MEDIANTE LEECH MATERIAL ARENOSO, Q=20 $\left(m^3/s\right)$

Q = i =	20.000 0.0682	(m^3/s) (m/m)		Kn =	59.850
Sección	1	Abscisa:	1+160		
Cota de	calado	C. Fondo	Área	Perimetro	coeficiente
fondo (m)	(m)	+ calado (m)	(m^2)	Mojado (m)	rugosidad
1588.371	0.509	1588.88	0.000	11.494	0.035
	0.709	1589.08	6.327	13.147	0.035
	0.679	1589.05	5.942	12.808	0.035
	0.689	1589.06	6.069	12.921	0.035
	0.683	1589.054	5.993	12.853	0.035
	0.684	1589.055	6.006	12.865	0.035
Sección	2	Abscisa:	1+140		
Cota de	calado	C. Fondo	Área	Perimetro	coeficiente
fondo (m)	(m)	+ calado (m)	(m^2)	Mojado (m)	rugosidad
					·
1588.88	0.000	1588.880	0.000	3.814	0.035
	0.200	1589.080	0.868	8.874	0.035
	0.170	1589.050	0.618	7.909	0.035
	0.180	1589.060	0.698	8.231	0.035
	0.174	1589.054	0.649	8.038	0.035
	0.175	1589.055	0.657	8.070	0.035
C. Fondo	Area	Perimetro	coeficiente	kd	Condicion
+ calado (m)	(m^{2})	Mojado (m)	rugosidad	ΝU	kd > Kn
1588.880	0.000	15.309	0.035	0.000	NO
1 4 = 00 000					

22.022

20.717

21.152

20.891

20.934

0.035

0.035

0.035

0.035

0.035

ОК

NO

ОК

NO

OK

97.513

87.079

90.450

88.415

88.751

ENCAUZAMIENTO DE LA QUEBRADA PULICHE **CURVA DE REMANSO POR EL METODO DE LEACH** MATERIAL ARENOSO, Q=20 $\left(m^3/s ight)$

Q =	20	(m^{3}/s)					, ,	(/ - /					
Abscisas (m)	Longitud (m)	S %	Calados (m)	Z(i+1) (1)	Z(i) (m)	Área (m²)	Perimetro mojado (m)	Rugosidad manning	K(s+1)	K(s)	L*Q^2/K^2	Zs - IQ^2/k^2 (2)	Comaparació (1) < (2)
130.000	10.000	0.051		1589.055					88.751				
120.000			0.100		1588.980	0.221	3.814	0.035		0.942	2254.522	-665.542	NO
			0.600		1589.480	5.912	15.666	0.035		88.217	0.511	1588.969	NO
			0.700		1589.580	7.535	17.107	0.035		124.640	0.383	1589.197	SI
			0.630		1589.510	6.384	16.099	0.035		98.462	0.460	1589.050	NO
			0.640		1589.520	6.545	16.243	0.035		102.006	0.446	1589.074	SI
			0.632		1589.512	6.416	16.127	0.035		99.166	0.457	1589.055	NO
			0.633		1589.513	6.432	16.142	0.035		99.519	0.456	1589.057	SI
120.000	10.000	0.041		1589.513					99.519				
110.000			0.100		1589.386	0.155	2.257	0.035		0.739	3659.568	-2070.182	NO
			0.600		1589.886	5.342	16.284	0.035		72.600	0.581	1589.305	NO
			0.700		1589.986	7.016	17.580	0.035		108.654	0.371	1589.615	SI
			0.650		1589.936	6.163	16.869	0.035		89.981	0.449	1589.487	NO
			0.659		1589.945	6.314	16.997	0.035		93.214	0.432	1589.513	NO
			0.660		1589.946	6.330	17.011	0.035		93.577	0.430	1589.516	SI
110.000	10.000	0.039		1589.946					93.577				
100.000			0.100		1589.777	0.203	3.185	0.035		0.923	2347.871	-758.094	NO
			0.600		1590.277	6.344	18.565	0.035		88.589	0.483	1589.794	NO
			0.700		1590.377	8.268	20.163	0.035		130.374	0.346	1590.031	SI
			0.650		1590.327	7.286	19.364	0.035		108.494	0.398	1589.929	NO
			0.660		1590.337	7.479	19.524	0.035		112.711	0.386	1589.951	SI
			0.657		1590.334	7.421	19.476	0.035		111.438	0.389	1589.945	NO
			0.658		1590.335	7.440	19.492	0.035		111.861	0.388	1589.947	SI
100.000	10.000	0.034		1590.335					111.861				
90.000			0.100		1590.120	0.168	3.629	0.035		0.622	5176.202	-3586.082	NO
			0.600		1590.620	6.049	17.895	0.035		83.873	0.444	1590.176	NO
			0.700		1590.720	7.925	20.085	0.035		121.821	0.295	1590.425	SI
			0.650		1590.670	6.962	18.800	0.035		102.571	0.350	1590.320	NO
			0.660		1590.680	7.150	18.980	0.035		106.543	0.336	1590.344	SI
			0.656		1590.676	7.074	18.908	0.035		104.945	0.341	1590.335	NO
			0.657		1590.677	7.093	18.926	0.035		105.343	0.340	1590.337	SI
90.000	2.800	0.001		1590.677					105.343				
87.200			0.700		1590.723	8.425	21.680	0.035		128.191	0.085	1590.638	NO
			0.800		1590.823	10.664	23.433	0.035		180.253	0.068	1590.755	SI
			0.730		1590.753	9.078	22.206	0.035		142.879	0.078	1590.675	NO
			0.740		1590.763	9.300	22.381	0.035		147.951	0.076	1590.687	SI
			0.731		1590.754	9.100	22.223	0.035		143.382	0.078	1590.676	NO
			0.732		1590.755	9.122	22.241	0.035		143.886	0.078	1590.677	SI

ENCAUZAMIENTO DE LA QUEBRADA PULICHE **CURVA DE REMANSO POR EL METODO DE LEACH** MATERIAL ARENOSO, Q=20 $\left(m^3/s ight)$

Q =	20	(m^{3}/s)						(/-)					
Abscisas (m)	Longitud (m)	\$%	Calados (m)	Z(i+1) (1)	Z(i) (m)	Área (m²)	Perimetro mojado (m)	Rugosidad manning	K(s+1)	K(s)	L*Q^2/K^2	Zs - IQ^2/k^2 (2)	Comaparación (1) < (2)
87.200	7.200	-0.003		1590.755					143.886				
80.000			0.100		1590.100	0.101	2.007	0.035		0.391	9433.386	-7843.286	NO
			0.900		1590.900	7.468	17.497	0.035		120.963	0.168	1590.732	NO
			1.000		1591.000	9.421	24.401	0.035		142.719	0.140	1590.860	SI
			0.910		1590.910	7.640	17.749	0.035		124.452	0.163	1590.747	NO
			0.920		1590.920	7.815	18.002	0.035		128.018	0.157	1590.763	SI
			0.914		1590.914	7.710	17.850	0.035		125.869	0.160	1590.754	NO
			0.915		1590.915	7.727	17.875	0.035		126.225	0.160	1590.755	SI
80.000	10.000	0.057		1590.915					126.225				
70.000			0.100		1590.673	0.042	0.863	0.035		0.159	78704.918	-77114.245	NO
			0.700		1591.273	6.027	21.413	0.035		73.960	0.491	1590.782	NO
			0.800		1591.373	8.266	23.783	0.035		116.750	0.272	1591.101	SI
			0.730		1591.303	6.674	22.124	0.035		85.770	0.397	1590.906	NO
			0.740		1591.313	6.894	22.361	0.035		89.901	0.373	1590.940	SI
			0.732		1591.305	6.718	22.172	0.035		86.589	0.392	1590.913	NO
			0.733		1591.306	6.740	22.195	0.035		86.999	0.390	1590.916	SI
70.000	10.000	0.042		1591.306					86.999				
60.000			0.100		1591.091	0.089	1.787	0.035		0.342	17082.451	-15491.360	NO
			0.800		1591.791	7.009	21.424	0.035		95.069	0.486	1591.305	NO
			0.900		1591.891	9.280	24.252	0.035		139.758	0.367	1591.524	SI
			0.810		1591.801	7.223	21.707	0.035		99.098	0.468	1591.333	SI
			0.801		1591.792	7.030	21.453	0.035		95.468	0.484	1591.308	SI
60.000	10.000	0.053		1591.792					95.468				
50.000			0.1		1591.619	0.08033	1.619061029	0.035					
			0.8		1592.319	5.29452	15.92156948	0.035		72.60830764	0.598804655	1591.720195	NO
			0.9		1592.419	6.98999	18.27999902	0.035		105.214362	0.400107024	1592.018893	SI
			0.81		1592.329	5.4538	16.14925849	0.035		75.56635473	0.569685454	1591.759315	NO
			0.82		1592.339	5.61534	16.3769475	0.035		78.59644085	0.54320034	1591.7958	SI
			0.818		1592.337	5.58285	16.3314097	0.035		77.98462837	0.548300265	1591.7887	NO
			0.819		1592.338	5.59908	16.3541786	0.035		78.2901714	0.545738385	1591.792262	SI
50	10	0.0469		1592.338					78.2901714				
40			0.1		1592.088	0.1304	2.31529878	0.035		0.547452534	6673.57107	-5081.48307	NO
			0.8		1592.788	5.57851	13.22659458	0.035		89.63895474	0.575205433	1592.212795	NO
			0.9		1592.888	6.96637	14.75629034	0.035		120.6769198	0.463633928	1592.424366	SI
			0.85		1592.838	6.25349	13.99144246	0.035		104.4465709	0.509632236	1592.328368	NO
			0.86		1592.848	6.39303	14.14441204	0.035		107.5771736	0.499117126	1592.348883	SI
			0.854		1592.842	6.30912	14.05263029	0.035		105.6919594	0.505337186	1592.336663	NO
			0.855		1592.843	6.32307	14.06792725	0.035		106.0047325	0.504282219	1592.338718	SI

ENCAUZAMIENTO DE LA QUEBRADA PULICHE CURVA DE REMANSO POR EL METODO DE LEACH MATERIAL ARENOSO, Q= $20 \left(m^3/s\right)$

 $Q = 20 \qquad (m^3/s)$

Q =	20	(m^3/s)											
Abscisas (m)	Longitud (m)	S%	Calados (m)	Z(i+1)	Z(i)	Área	Perimetro	Rugosidad	K(s+1)	K(s)	L*Q^2/K^2	Zs - IQ^2/k^2	Comaparaciór
Abscisas (III)	Longituu (iii)	3/0	Calados (III)	(1)	(m)	(m^2)	mojado (m)	manning	K(3+1)	K(5)	L Q-2/K-2	(2)	(1) < (2)
40	6.26	0.0432907		1592.843					106.0047325				
33.74			0.1		1592.359	0.12838	2.356158391	0.035		0.527172148	4505.159332	-2912.800332	NO
			0.8		1593.059	6.20027	14.91552021	0.035		98.67126911	0.240012255	1592.818988	NO
			0.9		1593.159	7.83398	17.94292751	0.035		128.817086	0.186867283	1592.972133	SI
			0.81		1593.069	6.34986	15.23911487	0.035		101.2121572	0.233636673	1592.835363	NO
			0.82		1593.079	6.50267	15.55868301	0.035		103.8570559	0.227490901	1592.851509	SI
			0.814		1593.073	6.4106	15.36855273	0.035		102.2526271	0.231162051	1592.841838	NO
			0.815		1593.074	6.42587	15.4009122	0.035		102.5149025	0.230550124	1592.84345	SI
33.74	3.74	0.0473262		1593.074					102.5149025				
30			0.1		1592.536	0.19911	3.026061103	0.035		0.927161519	870.2145164	722.3214836	NO
			0.7		1593.136	5.34048	15.11065173	0.035		76.27413405	0.199747205	1592.936253	NO
			0.8		1593.236	6.97209	17.8061211	0.035		106.6165148	0.136979071	1593.099021	SI
			0.78		1593.216	6.62443	17.26702723	0.035		99.93129513	0.146077907	1593.069922	NO
			0.79		1593.226	6.79693	17.53657416	0.035		103.2341739	0.141361687	1593.084638	SI
			0.782		1593.218	6.65872	17.32093661	0.035		100.5855517	0.145106668	1593.072893	NO
			0.783		1593.219	6.6759	17.34789131	0.035		100.9138621	0.144626396	1593.074374	SI
30	10	0.0456		1593.219					100.9138621				
20			0.1		1592.992	0.28217	4.109496671	0.035		1.351798567	1094.671864	498.3201362	NO
			0.7		1593.592	5.7142	14.03108117	0.035		89.70092184	0.444956886	1593.147043	NO
			0.8		1593.692	7.28356	17.84373851	0.035		114.51115	0.348916742	1593.343083	SI
			0.73		1593.622	6.14362	14.94462345	0.035		97.04714821	0.40875001	1593.21325	NO
			0.74		1593.632	6.29409	15.35878274	0.035		99.21604321	0.399567148	1593.232433	SI
			0.732		1593.624	6.17338	15.0274553	0.035		97.47214981	0.406902203	1593.217098	NO
			0.733		1593.625	6.18833	15.06887123	0.035		97.68629916	0.405980256	1593.21902	SI
20	10	0.0369		1593.625					97.68629916				
10			0.1		1593.361	0.12876	2.261349809	0.035		0.544478285	6746.559583	-5153.198583	NO
			0.8		1594.061	6.55224	23.16252691	0.035		80.67224627	0.51689974	1593.5441	NO
			0.9		1594.161	8.92948	24.65858511	0.035		129.6173464	0.328629167	1593.832371	SI
			0.82		1594.081	7.01583	23.46173855	0.035		89.63762236	0.458500208	1593.6225	NO
			0.83		1594.091	7.24985	23.61134437	0.035		94.27571077	0.434610989	1593.656389	SI
			0.821		1594.082	7.03917	23.47669913	0.035		90.09677963	0.455969608	1593.62603	SI
10	10	0.0348		1594.082					90.09677963				
0			0.8		1594.409	5.4513	10.13741769	0.035		102.9945933	0.434922384	1593.974078	NO
			0.9		1594.509	6.47084	10.75337109	0.035		131.7759703	0.361558231	1594.147442	SI
			0.85		1594.459	5.95393	10.44539439	0.035		116.9467793	0.392619128	1594.066381	NO
			0.859		1594.468	6.04592	10.5008302	0.035		119.5510601	0.386317371	1594.081683	NO
			0.86		1594.469	6.05617	10.50698973	0.035		119.8421807	0.385638342	1594.083362	SI

ENCAUZAMIENTO DE LA QUEBRADA PULICHE CURVA DE REMANSO POR EL METODO DE LEACH MATERIAL ARENOSO, Q=20 $\left(m^3/s\right)$

Abscisas (m)	Cota de fondo (m)	Pendiente (m/m)	Calado (m)	CF+Y (m)	Área (m²)	Perimetro (m)	n	RH (m)	Vsec (m/s)	Anchos de sección (m)	Anchos (m)
0.000	1593.609		0.860	1594.469	6.056	10.507	0.035	0.576	3.302	10.252	
10.000	1593.261	0.0348	0.821	1594.082	7.039	23.477	0.035	0.300	2.841	23.343	16.798
20.000	1592.892	0.0369	0.733	1593.625	6.188	15.069	0.035	0.411	3.232	14.964	19.153
30.000	1592.436	0.0456	0.783	1593.219	6.676	17.348	0.035	0.385	2.996	17.196	16.080
33.740	1592.259	0.0473	0.815	1593.074	6.426	15.401	0.035	0.417	3.112	15.281	16.239
40.000	1591.988	0.0433	0.855	1592.843	6.323	14.068	0.035	0.449	3.163	13.954	14.618
50.000	1591.519	0.0469	0.819	1592.338	5.599	16.354	0.035	0.342	3.572	16.245	15.099
60.000	1590.991	0.0528	0.801	1591.792	7.030	21.453	0.035	0.328	2.845	21.339	18.792
70.000	1590.573	0.0418	0.733	1591.306	6.740	22.195	0.035	0.304	2.967	21.989	21.664
80.000	1590.000	0.0573	0.915	1590.915	7.727	17.875	0.035	0.432	2.588	17.464	19.726
87.200	1590.023	-0.0032	0.732	1590.755	9.122	22.241	0.035	0.410	2.192	22.071	19.767
90.000	1590.020	0.0011	0.657	1590.677	7.093	18.926	0.035	0.375	2.820	18.821	20.446
100.000	1589.677	0.0343	0.658	1590.335	7.440	19.492	0.035	0.382	2.688	19.365	19.093
110.000	1589.286	0.0391	0.660	1589.946	6.330	17.011	0.035	0.372	3.159	16.854	18.110
120.000	1588.880	0.0406	0.633	1589.513	6.432	16.142	0.035	0.398	3.109	15.990	16.422
130.000	1588.371	0.0509	0.684	1589.055	6.006	12.865	0.035	0.467	3.330	12.695	14.342

ENCAUZAMIENTO DE LA QUEBRADA PULICHE CONTROL VERTICAL, METODO DE CRUICKSHANK Y MAZA MATERIAL ARENOSO, Q=20 $\left(m^3/s\right)$ TRAMO N° 01

Q =	$20.000 \ (m^3/s)$	Υ=	$1000.000 (kg/m^3)$	τ =	4.671	w50 = 0.22	(m/s)
n =	0.035	Δ =	0.800	QB =	15.685 (kg/(mxs))		
Rh =	0.391 (m)	D90 =	0.05100 (m)	m =	0.620	Tramo	1
S =	0.044	D84 =	0.04200 (m)	=3	1.513	Abscisa inicial (m)	0+000
V =	3.151 (m/s)	D50 =	0.00560 (m)	N =	71.313	Abcisa final (m)	0+060
K =	10.000	Dm =	0.00456 (m)	α=	13.777	Longitud del tramo (m)	60
Ys =	$1800.000 (kg/m^3)$	n' =	0.014	ω =	2.013		

$$B^{(2.583m+1.526)} \left[\left(\frac{Q_B}{E} \right)^{2/3} + 0.047 B^{2/3} \right] = N K^{2.583} \left(\frac{Q}{\alpha} \right)^{2.193}$$

$$d_m \frac{\frac{2.583m+1.526}{m}}{\left[\left(\frac{Q_B}{E} \right)^{2/3} + 0.047 \left(K d_m \right)^{\frac{2}{3m}} \right]} K^{\frac{1.526}{m}} = N \left(\frac{Q}{\alpha} \right)^{2.193}$$

$$S^{\frac{0.304}{\varpi}} \left(\frac{Q_B}{E} \right)^{2/3} + 0.047 K^{\frac{1.089}{\varpi}} \left(\frac{Q}{\alpha} \right)^{\frac{2}{3m}} = N \left(\frac{Q}{\alpha} \right)^{\frac{0.667+m}{\varpi}} K^{\frac{0.089}{\varpi}} S^{\frac{1+1.178m}{\varpi}}$$

	AN	ICHO ESTAB	LE(B)	
(1)	(2)	(3)	(4)	(5)
Ancho del Cauce	Primer Miembro	Segundo miembro	Resta	Condicion
В			(2) - (3)	
1.000	4.801	61828.226	-61823.425	NO
20.000	59770.552		-2057.673	NO
21.000	69779.818		7951.592	S
20.200	61687.677		-140.548	NO
20.300	62661.909		833.683	S
20.210	61784.629		-43.597	NO
20.220	61881.684		53.459	S

	CAL	ADO ESTABI	LE (d)	
(1)	(2)	(3)	(4)	(5)
Ancho del Cauce	Primer Miembro	Segundo miembro	Resta	Condicion
0.100	0.013	161.505	-161.493	NO
0.600	111.629		-49.877	NO
0.700	245.711		84.205	S
0.640	155.289		-6.216	NO
0.650	168.113		6.607	S
0.644	160.320		-1.185	NO
0.645	161.598		0.093	S

	PENDI	ENTE ESTABL	.E (S)	
(1)	(2)	(3)	(4)	(5)
Ancho del Cauce	Primer Miembro	Segundo miembro	Resta	Condicion
0.010	2.615	1.913	0.702	NO
0.020	2.877	3.471	-0.595	S
0.015	2.765	2.711	0.054	NO
0.016	2.790	2.866	-0.076	S
0.015	2.775	2.773	0.002	NO
0.016	2.778	2.788	-0.011	S

ENCAUSAMIENTO DE LA QUEBRADA PULICHE CONTROL VERTICAL, METODO DE CRUICKSHANK Y MAZA MATERIAL ARENOSO, Q=20 $\left(m^3/s\right)$ TRAMO N° 01

Q =	$20.000 \ (m^3/s)$	Y=	$1000.000 (kg/m^3)$	τ =	3.913	w50 = 0.22	(m/s)
n =	0.035	Δ =	0.800	QB =	11.887 (kg/(mxs))		
Rh =	0.381 (m)	D90 =	0.05100 (m)	m =	0.630	Tramo	1
S =	0.037	D84 =	0.04200 (m)	=3	1.513	Abscisa inicial (m)	0+060
V =	2.877 (m/s)	D50 =	0.00560 (m)	N =	71.313	Abcisa final (m)	0+130
K =	10.000	Dm =	0.00456 (m)	α=	13.777	Longitud del tramo (m)	70
Ys =	$1800.000 (kg/m^3)$	n' =	0.014	ω =	2.029		

$$B^{(2.583m+1.526)} \left[\left(\frac{Q_B}{E} \right)^{2/3} + 0.047 B^{2/3} \right] = N K^{2.583} \left(\frac{Q}{\alpha} \right)^{2.193}$$

$$d_m \frac{\frac{2.583m+1.526}{m}}{\left[\left(\frac{Q_B}{E} \right)^{2/3} + 0.047 \left(K d_m \right)^{\frac{2}{3m}} \right]} K^{\frac{1.526}{m}} = N \left(\frac{Q}{\alpha} \right)^{2.193}$$

$$S^{\frac{0.304}{\varpi}} \left(\frac{Q_B}{E} \right)^{2/3} + 0.047 K^{\frac{1.089}{\varpi}} \left(\frac{Q}{\alpha} \right)^{\frac{2}{3m}} = N \left(\frac{Q}{\alpha} \right)^{\frac{0.667+m}{\varpi}} K^{\frac{0.089}{\varpi}} S^{\frac{1+1.178m}{\varpi}}$$

	AN	ICHO ESTAB	LE(B)	
(1)	(2)	(3)	(4)	(5)
Ancho del Cauce	Primer Miembro	Segundo miembro	Resta	Condicion
В			(2) - (3)	
1.000	3.998	61828.226	-61824.228	NO
20.000	54419.500		-7408.726	NO
21.000	63639.389		1811.163	S
20.800	61715.138		-113.088	NO
20.900	62672.156		843.930	S
20.810	61810.382		-17.844	NO
20.820	61905.727		77.501	S

	CAL	ADO ESTABI	LE (d)		
(1)	(1) (2)		(4)	(5)	
Ancho del Cauce	Primer Miembro	Segundo miembro	Resta	Condicion	
0.100	0.010	161.505	-161.495	NO	
0.600	87.432		-74.073	NO	
0.700	191.587		30.082	S	
0.670	153.274		-8.231	NO	
0.680	165.285		3.780	S	
0.676	160.393		-1.112	NO	
0.677	161.605		0.100	S	

	PENDI	ENTE ESTABL	.E (S)	
(1)	(2)	(3)	(4)	(5)
Ancho del Cauce	Primer Miembro	Segundo miembro	Resta	Condicion
0.010	2.222	1.921	0.301	NO
0.020	2.439	3.484	-1.045	S
0.012	2.277	2.247	0.030	NO
0.013	2.302	2.407	-0.105	S
0.012	2.282	2.279	0.003	NO
0.012	2.285	2.295	-0.010	S

ENCAUZAMIENTO DE LA QUEBRADA PULICHE CONTROL HORIZONTAL MATERIAL ARENOSO, Q=20 $\left(m^3/s\right)$

Abscisa	0+060		Bc=	14.154	m
θ =	8.290	•	k1=	0.072	m
Br =	20.220	m	xo=	11.498	m
R =	101.000	m	yo=	0.530	m

x (m)	-11.498	-7.600	-3.800	0.000	3.800	7.600	11.498
y (m)	0.000	0.269	0.461	0.530	0.461	0.269	0.000

ENCAUZAMIENTO DE LA QUEBRADA PULICHE PROFUNDIDADES MEDIAS Y MAXIMAS MATERIAL ARENOSO, Q=20 $\left(m^3/s\right)$

TRAMOS RECTOS

Tramo	Absci	sa	Long roc (m)	Profundidad en recta		
Tramo	inicial (m)	final (m)	Long rec (m)	Hm.r (m)	Hmax (m)	
1.000	0.000	60.000	60.000	0.645	0.968	
2.000	60.000	130.000	70.000	0.677	1.016	

L	TF	TRAMOS CURVOS						media rec	media curv	max cur
Ī	n° CURVA	Radio	Ancho	R/B	Kt	e1	e2	Hm.r	Hmed(c)	Hmax(c)
		(m)	(m)					(m)	(m)	(m)
I	1.000	101.000	20.220	5.000	0.270	1.840	0.700	0.645	0.819	1.055

Anexo 2.7

1 Hojas de 1

ENCAUZAMIENTO DE LA QUEBRADA PULICHE SOCAVACIÓN EN TRAMOS RECTOS MATERIAL ARENOSO, Q=20 (m^3/s)

$$\begin{array}{lll} \text{Dm} = & 0.00456 & \text{(m)} \\ \mu = & 1.000 \\ \beta = & 0.950 \\ \Psi = & 1.060 \\ 1/(\text{x+1}) & 0.730 \end{array}$$

Abscisas	s por el eje	Caudal del	Ancho medio	Caudal	Área	Tirante	Tirante	So	cavacion gene	eral	
ri	ίο	Diseño	libre del río	Unitario	Hidráulica	medio	máximo	alaba	lovodiov	ecuación	Hs - Ho
inicial (m)	final (m)	(m^3/s)	Be (m)	$(m^3/s/m)$	(m^2)	Hm (m)	Ho (m)	alpha	levediev	típica	(m)
0.000	60.000	20.000	16.858	1.186	6.385	0.379	0.645	5.984	2.093	2.009	1.448
60.000	130.000	20.000	18.473	1.083	7.030	0.381	0.677	5.418	2.065	1.890	1.388

Anexo 2.8 1 Hojas de 1

ENCAUZAMIENTO DE LA QUEBRADA PULICHE RESUMEN DEL CÁLCULO MATERIAL ARENOSO, Q=20 $\left(m^3/s\right)$

#Tramo	Abscisas (m)	Pendiente (m/m)	Ancho (m)	Altura Med (m)	Altura Max (m)	Socavacion (m)	Forma del Tramo	Altura de diseño (m)
1	0	0.0155	20.220	0.645	0.968	1.448	Recto	3.061
1	10	0.0155	20.220	0.645	0.968	1.448	Recto	3.061
1	20	0.0155	20.220	0.819	1.055	1.448	Curvo	3.323
1	30	0.0155	20.220	0.819	1.055	1.448	Curvo	3.323
1	33.74	0.0155	20.220	0.819	1.055	1.448	Curvo	3.323
1	40	0.0155	20.220	0.819	1.055	1.448	Curvo	3.323
1	50	0.0155	20.220	0.819	1.055	1.448	Curvo	3.323
1	60	0.0155	20.220	0.819	1.055	1.448	Curvo	3.323
2	70	0.0123	20.820	0.819	1.055	1.388	Curvo	3.262
2	80	0.0123	20.820	0.819	1.055	1.388	Curvo	3.262
2	87.2	0.0123	20.820	0.819	1.055	1.388	Curvo	3.262
2	90	0.0123	20.820	0.819	1.055	1.388	Curvo	3.262
2	100	0.0123	20.820	0.819	1.055	1.388	Curvo	3.262
2	110	0.0123	20.820	0.677	1.016	1.388	Recto	3.081
2	120	0.0123	20.820	0.677	1.016	1.388	Recto	3.081
2	130	0.0123	20.820	0.677	1.016	1.388	Recto	3.081

ENCAUZAMIENTO DE LA QUEBRADA PULICHE ALTURAS DE OBRAS TRANSVERSALES MATERIAL ARENOSO, Q=20 $\left(m^3/s\right)$

Abscisas	Cota de Fondo (m)	Cota de LA (m)	Pendiente (m/m)	Cotas requeridas (m)	Altura de traviesas (m)
0.000	1593.609	1594.469		1593.609	
10.000	1593.261	1594.082		1593.454	
20.000	1592.892	1593.625		1593.299	
30.000	1592.436	1593.219		1593.144	0.708
30.000	1592.436	1593.219	0.0155	1592.436	0.000
33.740	1592.259	1593.074		1592.378	
40.000	1591.988	1592.843		1592.281	
50.000	1591.519	1592.338		1592.126	
60.000	1590.991	1591.792		1591.971	0.980
60.000	1590.991	1591.792		1590.991	0.000
70.000	1590.573	1591.306		1590.868	
80.000	1590.000	1590.915		1590.745	
87.200	1590.023	1590.755		1590.656	
90.000	1590.020	1590.677		1590.622	0.602
90.000	1590.020	1590.677	0.0123	1590.020	0.000
100.000	1589.677	1590.335		1589.897	
110.000	1589.286	1589.946		1589.774	
120.000	1588.880	1589.513		1589.651	0.771
120.000	1588.880	1589.513		1588.880	0.000
130.000	1588.371	1589.055		1588.757	

ENCAUZAMIENTO DE LA QUEBRADA PULICHE DIMENCIONES DE LAS OBRAS TRANSVERSALES MATERIAL ARENOSO, Q=20 (m^3/s)

Obra	Abscisas (m)	Ancho (m)	Altura (m)	Pendiente (m/m)	Maning	Tirante (m)	Long Resalto (m)		Socavacion (m)
Traviesas	0	20.220	0.000	0.0160	0.035	0.645	0.000	0.000	0.000
Azud 1	30	20.220	0.708	0.0160	0.035				
Azud 2	60	20.22	0.98	0.016	0.035				
Azud 3	90	20.82	0.602	0.012	0.035				
Azud 4	120	20.82	0.771	0.012	0.035				

Azud 1	Abscisa 30		
Coor x(m)	Coor y (m)		
-0.200	-0.036		
0.000	0.000		
0.200	-0.036		
0.400	-0.130		
0.600	-0.276		
0.800	-0.470		
0.998	-0.708		

Pozo de Amortiguamiento Longidtud del pozo = 3.158 m Altura del dintel = .161 m

Azud 3	Abscisa 90
x(m)	y (m)
-0.200	-0.037
0.000	0.000
0.200	-0.037
0.400	-0.133
0.600	-0.281
0.800	-0.478
0.906	-0.602

Pozo de Amortiguamiento Longidtud del pozo = 2.913 m Altura del dintel = .141 m

Azud 2	Abscisa 60		
x(m)	y (m)		
-0.200	-0.036		
0.000	0.000		
0.200	-0.036		
0.400	-0.130		
0.600	-0.276		
0.800	-0.470		
1.000	-0.711		
1.190	-0.980		

Pozo de Amortiguamiento Longidtud del pozo = 3.617 m Altura del dintel = .221 m

Azud 4	Abscisa 120
x(m)	y (m)
-0.200	-0.037
0.000	0.000
0.200	-0.037
0.400	-0.133
0.600	-0.281
0.800	-0.478
1.000	-0.723
1.036	-0.771

Pozo de Amortiguamiento Longidtud del pozo = 3.238 m Altura del dintel = .181 m

ANEXO III

ENCAUSAMIENTO DE LA QUEBRADA PULICHE ABSCISAS 28.72 - 939.65, Q = 15.63 (m^3/s) EJEMPLO 1

CURVA DE REMANSO									
Abs (m)	CotaF (m)	CotaLA (m)	Ancho del	AreaH					
ADS (III)	Cotar (III)	CotalA (III)	cauce (m)	(m^2)					
28.72	1674.961	1675.988	12.203	8.793					
40	1674.600	1675.241	23.533	10.131					
60	1672.935	1673.735	16.176	9.027					
80	1671.390	1672.432	13.550	8.920					
100	1668.937	1670.694	9.440	6.466					
120	1667.944	1669.073	11.696	9.017					
140	1666.927	1667.924	16.249	9.157					
145.82	1666.854	1667.533	25.080	10.925					
160	1665.795	1667.050	36.593	38.268					
180	1664.823	1665.443	17.829	7.352					
200	1662.752	1663.680	29.064	17.376					
220	1661.750	1662.607	19.940	9.095					
240	1660.494	1661.272	24.643	12.337					
260	1659.037	1659.839	19.796	8.781					
280	1657.995	1658.663	37.151	19.045					
300	1656.895	1657.537	26.191	9.965					
315.05	1655.931	1656.723	30.126	19.099					
320	1655.448	1656.660	29.747	19.453					
340	1654.733	1655.629	15.702	8.296					
360	1652.985	1654.168	14.908	9.425					
380	1651.977	1652.840	19.445	9.412					
400	1649.977	1650.956	13.393	7.313					
420	1648.536	1649.328	25.011	11.722					
440	1647.313	1648.229	16.600	9.705					
460	1646.073	1646.893	17.683	9.118					
480	1644.915	1645.696	17.488	10.790					
500	1643.948	1644.751	13.514	9.299					
520	1642.915	1643.658	14.160	9.104					
540	1641.602	1642.930	13.749	13.789					
560	1640.995	1641.967	15.236	8.424					
580	1639.869	1640.770	20.641	12.001					
600	1638.981	1639.920	27.980	12.636					
620	1637.980	1638.739	16.903	9.201					
640	1636.657	1637.867	48.697	21.802					
660	1635.997	1636.895	20.341	9.458					
680	1634.959	1635.860	17.924	13.280					
700	1634.049	1634.986	18.519	9.741					
720	1632.972	1633.794	16.312	9.796					
740	1631.969	1632.852	20.265	11.699					
760	1630.993	1631.781	39.501	13.049					

ENCAUSAMIENTO DE LA QUEBRADA PULICHE ABSCISAS 28.72 - 939.65, Q = 15.63 (m^3/s) EJEMPLO 1

	CURVA DE REMANSO									
Abs (m)	CotaF (m)	CotaLA (m)	Ancho del	AreaH						
7		3000.2.1 (,	cauce (m)	(m^2)						
780	1629.989	1630.811	38.093	16.343						
782.28	1630.000	1630.751	39.720	18.327						
800	1628.975	1629.643	55.326	13.099						
820	1627.764	1628.386	63.182	22.016						
840	1626.854	1627.206	59.623	13.795						
860	1625.272	1626.043	54.277	21.592						
880	1624.788	1625.243	48.724	14.591						
900	1623.116	1624.158	55.172	16.576						
920	1622.012	1623.109	56.257	15.741						
939.38	1620.938	1622.013	58.488	21.790						

ENCAUSAMIENTO DE LA QUEBRADA PULICHE ABSCISAS 28.72 - 939.65, Q = 15.63 (m^3/s) EJEMPLO 1

Curva 1

R = 69 m Br = 13.8 m Bc = 12.144 m

Abscisa Inicial = 28.72 m Abscisa Final = 127.398 m

x (m)	-72.012	-48	-24	0	24	48	-72.012
y (m)	0	15.234	26.38	30.459	26.38	15.234	0

Curva 2

R = 69 m Br = 13.8 m Bc = 12.144 m

Abscisa Inicial = 28.72 m Abscisa Final = 224.685 m

	x (m)	-94.231	-62.8	-31.4	0	31.4	62.8	-94.231
ſ	y (m)	0	26.093	45.172	52.155	45.172	26.093	0

Curva 3

R = 70 m Br = 13.9 mBc = 9.73 m

Abscisa Inicial = 150.586 m Abscisa Final = 164.014 m

x (m)	-6.701	-4.4	-2.2	0	2.2	4.4	-6.701
y (m)	0	0.134	0.226	0.26	0.226	0.134	0

Curva 4

R = 70 m Br = 13.9 mBc = 9.73 m

Abscisa Inicial = 175.379 m Abscisa Final = 228.241 m

	x (m)	-25.735	-17.2	-8.6	0	8.6	17.2	-25.735
I	y (m)	0	1.909	3.318	3.835	3.318	1.909	0

ENCAUSAMIENTO DE LA QUEBRADA PULICHE ABSCISAS 28.72 - 939.65, Q = 15.63 (m^3/s) EJEMPLO 1

Curva 5

R = 72 m

Br = 14.3 m

Bc = 10.01 m

Abscisa Inicial = 397.806 m Abscisa Final = 431.514 m

x (m)	-16.674	-11.2	-5.6	0	5.6	11.2	-16.674
y (m)	0	0.772	1.352	1.565	1.352	0.772	0

Curva 6

R = 72 m

Br = 14.3 m

Bc = 10.01 m

Abscisa Inicial = 537.605 m Abscisa Final = 571.155 m

x (m)	-16.597	-11	-5.5	0	5.5	11	-16.597
y (m)	0	0.783	1.345	1.551	1.345	0.783	0

Curva 7

R = 72 m

Br = 14.3 m

Bc = 12.584 m

Abscisa Inicial = 585.292 m Abscisa Final = 719.848 m

	x (m)	-59.534	-39.6	-19.8	0	19.8	39.6	-59.534
ſ	y (m)	0	10.016	17.289	19.95	17.289	10.016	0

Curva 8

R = 70 m

Br = 13.9 m

Bc = 9.73 m

Abscisa Inicial = 846.726 m Abscisa Final = 857.614 m

x (m)	-5.437	-3.6	-1.8	0	1.8	3.6	-5.437
y (m)	0	0.087	0.149	0.171	0.149	0.087	0

ENCAUSAMIENTO DE LA QUEBRADA PULICHE ABSCISAS 28.72 - 939.65, Q = 15.63 (m^3/s) EJEMPLO 1

l	Abscisas	Pendient	Ancho	Alt Med	Alt Max	Alt Soca	Forma	Alt disñ
#Tramo	(m)	(m/m)	(m)	(m)	(m)	(m)	del Tra	(m)
1	28.72	0.0691	13.83	0.779	1.003	0.455	Curvo	2.237
1	40	0.0691	13.83	0.779	1.003	0.455	Curvo	2.237
1	60	0.0691	13.83	0.779	1.003	0.455	Curvo	2.237
1	80	0.0691	13.83	0.779	1.003	0.455	Curvo	2.237
1	100	0.0691	13.83	0.779	1.003	0.455	Curvo	2.237
1	120	0.0691	13.83	0.779	1.003	0.455	Curvo	2.237
1	140	0.0691	13.83	0.779	1.003	0.455	Curvo	2.237
1	145.82	0.0691	13.83	0.779	1.003	0.455	Curvo	2.237
2	160	0.0644	13.89	0.793	1.014	0.13	Curvo	1.937
2	180	0.0644	13.89	0.793	1.014	0.13	Curvo	1.937
2	200	0.0644	13.89	0.793	1.014	0.13	Curvo	1.937
2	220	0.0644	13.89	0.793	1.014	0.13	Curvo	1.937
2	240	0.0644	13.89	0.625	0.937	0.13	Recto	1.692
2	260	0.0644	13.89	0.625	0.937	0.13	Recto	1.692
2	280	0.0644	13.89	0.625	0.937	0.13	Recto	1.692
2	300	0.0644	13.89	0.625	0.937	0.13	Recto	1.692
2	315.05	0.0644	13.89	0.625	0.937	0.13	Recto	1.692
3	320	0.0555	14.309	0.642	0.963	0.34	Recto	1.945
3	340	0.0555	14.309	0.642	0.963	0.34	Recto	1.945
3	360	0.0555	14.309	0.642	0.963	0.34	Recto	1.945
3	380	0.0555	14.309	0.642	0.963	0.34	Recto	1.945
3	400	0.0555	14.309	0.815	1.042	0.34	Curvo	2.197
3	420	0.0555	14.309	0.815	1.042	0.34	Curvo	2.197
3	440	0.0555	14.309	0.642	0.963	0.34	Recto	1.945
3	460	0.0555	14.309	0.642	0.963	0.34	Recto	1.945
3	480	0.0555	14.309	0.642	0.963	0.34	Recto	1.945
3	500	0.0555	14.309	0.642	0.963	0.34	Recto	1.945
3	520	0.0555	14.309	0.642	0.963	0.34	Recto	1.945
3	540	0.0555	14.309	0.815	1.042	0.34	Curvo	2.197
3	560	0.0555	14.309	0.815	1.042	0.34	Curvo	2.197
3	580	0.0555	14.309	0.642	0.963	0.34	Recto	1.945
3	600	0.0555	14.309	0.815	1.042	0.34	Curvo	2.197
3	620	0.0555	14.309	0.815	1.042	0.34	Curvo	2.197
3	640	0.0555	14.309	0.815	1.042	0.34	Curvo	2.197
3	660	0.0555	14.309	0.815	1.042	0.34	Curvo	2.197
3	680	0.0555	14.309	0.815	1.042	0.34	Curvo	2.197
3	700	0.0555	14.309	0.815	1.042	0.34	Curvo	2.197
3	720	0.0555	14.309	0.642	0.963	0.34	Recto	1.945
3	740	0.0555	14.309	0.642	0.963	0.34	Recto	1.945
3	760	0.0555	14.309	0.642	0.963	0.34	Recto	1.945
3	780	0.0555	14.309	0.642	0.963	0.34	Recto	1.945

ENCAUSAMIENTO DE LA QUEBRADA PULICHE ABSCISAS 28.72 - 939.65, Q = 15.63 (m^3/s) EJEMPLO 1

#Tramo	Abscisas	Pendient	Ancho	Alt Med	Alt Max	Alt Soca	Forma	Alt disñ
#ITAIIIO	(m)	(m/m)	(m)	(m)	(m)	(m)	del Tra	(m)
3	782.28	0.0555	14.309	0.642	0.963	0.34	Recto	1.945
4	800	0.0577	13.919	0.645	0.968	0.304	Recto	1.917
4	820	0.0577	13.919	0.645	0.968	0.304	Recto	1.917
4	840	0.0577	13.919	0.645	0.968	0.304	Recto	1.917
4	860	0.0577	13.919	0.645	0.968	0.304	Recto	1.917
4	880	0.0577	13.919	0.645	0.968	0.304	Recto	1.917
4	900	0.0577	13.919	0.645	0.968	0.304	Recto	1.917
4	920	0.0577	13.919	0.645	0.968	0.304	Recto	1.917
4	939.38	0.0577	13.919	0.645	0.968	0.304	Recto	1.917

ENCAUSAMIENTO DE LA QUEBRADA PULICHE ABSCISAS 28.72 - 939.65, Q = 15.63 M3/S EJEMPLO 1

Obra	Abscisa (m)	Ancho (m)	Altura (m)	Pendi (m/m)	n	Tirante (m)	Resalto (m)	Revesti miento	Alt Soca (m)
28.72	13.83	0	0.069	0.103	0.103	0	0	0	0
Azud	120	13.83	0.71	0.069	0.103				
Azud	420	14.309	0.901	0.056	0.103	0.751	3.036	0.282	0.765
Traviesas	480	14.309	0.291	0.056	0.103	0.789	2.56	0.284	3.221
							<u> </u>		

Azud 1	Absc 120			
x(m)	y (m)			
-0.200	-0.034			
0.000	0.000			
0.200	-0.034			
0.400	-0.121			
0.600	-0.256			
0.800	-0.436			
1.000	-0.659			
1.041	0.71			

Pozo de Amortiguamiento Longidtud del pozo = 3.326 Altura del dintel = .161

Azud 2	Absc 420		
x(m)	y (m)		
-0.200	-0.034		
0.000	0.000		
0.200	-0.034		
0.400	-0.123		
0.600	-0.261		
0.800	-0.445		
1.000	-0.672		
1.172	0.901		

Pozo de Amortiguamiento Longidtud del pozo = 3.632 Altura del dintel = .211

ENCAUSAMIENTO DE LA QUEBRADA PULICHE ABSCISAS 0 - 130, Q = 20 $\left(m^3/s\right)$ EJEMPLO 2

Abs (m)	CotaF (m)	CotaLA (m)	Ancho del	AreaH
	(,	,	cauce (m)	(m^2)
0	1593.609	1594.469	10.252	6.056
10	1593.261	1594.082	23.343	7.039
20	1592.892	1593.625	14.964	6.188
30	1592.436	1593.219	17.196	6.676
33.74	1592.259	1593.074	15.281	6.426
40	1591.988	1592.843	13.954	6.323
50	1591.519	1592.338	16.245	5.599
60	1590.991	1591.792	21.339	7.03
70	1590.573	1591.306	21.989	6.74
80	1590	1590.915	17.464	7.727
87.2	1590.023	1590.755	22.071	9.122
90	1590.02	1590.677	18.821	7.093
100	1589.677	1590.335	19.365	7.44
110	1589.286	1589.946	16.854	6.33
120	1588.88	1589.513	15.99	6.432
130	1588.371	1589.055	12.695	6.006

ENCAUSAMIENTO DE LA QUEBRADA PULICHE ABSCISAS 0 - 130, Q = 20 $\left(m^3/s\right)$ EJEMPLO 2

Curva 1

R = 101 m Br = 20.2 m Bc = 14.14 m

Abscisa Inicial = 48.472 m Abscisa Final = 71.528 m

	x (m)	-11.498	-7.6	-3.8	0	3.8	7.6	-11.498
I	y (m)	0	0.269	0.461	0.53	0.461	0.269	0

#Tramo	Abscisas	Pendient	Ancho	Alt Med	Alt Max	Alt Soca	Forma	Alt disñ
#11aiii0	(m)	(m/m)	(m)	(m)	(m)	(m)	del Tra	(m)
1	0	0.0155	20.22	0.645	0.968	1.483	Recto	3.096
1	10	0.0155	20.22	0.645	0.968	1.483	Recto	3.096
1	20	0.0155	20.22	0.645	0.968	1.483	Recto	3.096
1	30	0.0155	20.22	0.645	0.968	1.483	Recto	3.096
1	33.74	0.0155	20.22	0.645	0.968	1.483	Recto	3.096
1	40	0.0155	20.22	0.645	0.968	1.483	Recto	3.096
1	50	0.0155	20.22	0.819	1.055	1.483	Curvo	3.357
1	60	0.0155	20.22	0.819	1.055	1.483	Curvo	3.357
2	70	0.0123	20.82	0.819	1.055	1.422	Curvo	3.296
2	80	0.0123	20.82	0.677	1.016	1.422	Recto	3.114
2	87.2	0.0123	20.82	0.677	1.016	1.422	Recto	3.114
2	90	0.0123	20.82	0.677	1.016	1.422	Recto	3.114
2	100	0.0123	20.82	0.677	1.016	1.422	Recto	3.114
2	110	0.0123	20.82	0.677	1.016	1.422	Recto	3.114
2	120	0.0123	20.82	0.677	1.016	1.422	Recto	3.114
2	130	0.0123	20.82	0.677	1.016	1.422	Recto	3.114

Obra	Abscisa	Ancho	Altura	Pendi	Manning	Tirante	Resalto	Revesti	Alt Soca
Obla	(m)	(m)	(m)	(m/m)	iviaiiiiiig	(m)	(m)	miento	(m)
Traviesas	0	20.22	0	0.016	0.035	0.645	0	0	0
Azud	30	20.22	0.708	0.016	0.035				
Azud	60	20.22	0.98	0.016	0.035				
Azud	90	20.82	0.602	0.012	0.035				
Azud	120	20.82	0.771	0.012	0.035				

ENCAUSAMIENTO DE LA QUEBRADA PULICHE ABSCISAS 0 - 130, Q = 20 (m^3/s) EJEMPLO 2

Azud 1	Abscisa 30			
x(m)	y (m)			
-0.200	-0.036			
0.000	0.000			
0.200	-0.036			
0.400	-0.130			
0.600	-0.276			
0.800	-0.470			
0.998	0.708			

Pozo de Amortiguamiento Longidtud del pozo = 3.158 m Altura del dintel = .161 m

Azud 3	Abscisa 90				
x(m)	y (m)				
-0.200	-0.037				
0.000	0.000				
0.200	-0.037				
0.400	-0.133				
0.600	-0.281				
0.800	-0.478				
0.906	0.602				

Pozo de Amortiguamiento Longidtud del pozo = 2.913 m Altura del dintel = .141 m

Azud 2	Abscisa 60
x(m)	y (m)
-0.200	-0.036
0.000	0.000
0.200	-0.036
0.400	-0.130
0.600	-0.276
0.800	-0.470
1.000	-0.711
1.190	0.980

Pozo de Amortiguamiento Longidtud del pozo = 3.617 m Altura del dintel = .221 m

Azud 4	Abscisa 120
x(m)	y (m)
-0.200	-0.037
0.000	0.000
0.200	-0.037
0.400	-0.133
0.600	-0.281
0.800	-0.478
1.000	-0.723
1.036	0.771

Pozo de Amortiguamiento Longidtud del pozo = 3.238 m Altura del dintel = .181 m