

UNIVERSIDAD TÉCNICA PARTICULAR DE LOJA

La Universidad Católica de Loja

ÁREA TÉCNICA

TITULACIÓN DE INGENIERO EN ELECTRÓNICA Y TELECOMUNICACIONES

Implementación de un prototipo analizador de calidad de energía eléctrica para una red trifásica

TRABAJO DE FIN DE TITULACIÓN

AUTORES: Brito Vivanco, Eduardo Israel Campoverde Encalada, Eduardo Luis

DIRECTOR: Calderón Córdova, Carlos Alberto, Ing.

LOJA – ECUADOR

2014

APROBACIÓN DEL DIRECTOR DEL TRABAJO DE FIN DE TITULACIÓN

Ingeniero.

Carlos Alberto Calderón Córdova.

DIRECTOR DEL TRABAJO DE FIN DE TITULACIÓN

De mi consideración:

Que el presente trabajo de fin de titulación: "Implementación de un prototipo analizador de calidad de energía eléctrica para una red trifásica", realizado por los profesionales en formación: Brito Vivanco Eduardo Israel y Campoverde Encalada Eduardo Luis; ha sido orientado y revisado durante su ejecución, por lo cual se aprueba la presentación del mismo.

Loja, septiembre de 2014

f)

DECLARACIÓN DE AUTORÍA Y CESIÓN DE DERECHOS

Nosotros, Brito Vivanco Eduardo Israel y Campoverde Encalada Eduardo Luis, declaramos ser autores del presente trabajo de fin de titulación: Implementación de un prototipo analizador de calidad de energía eléctrica para una red trifásica, de la titulación de Ingeniería en Electrónica y Telecomunicaciones, siendo el Ing. Carlos Alberto Calderón Córdova director del presente trabajo; y eximimos expresamente a la Universidad Técnica Particular de Loja y a sus representantes legales de posibles reclamos o acciones legales.

Adicionalmente declaramos conocer y aceptar la disposición del Art. 67 del Estatuto Orgánico de la Universidad Técnica Particular de Loja que en su parte pertinente textualmente dice: "Forman parte del patrimonio de la Universidad la propiedad intelectual de investigaciones, trabajos científicos o técnicos y tesis de grado que se realicen a través, o con el apoyo financiero, académico o institucional (operativo) de la Universidad"

f.

f.

Autor: Brito Vivanco Eduardo Israel Cedula: 1104415623 Autor: Campoverde Encalada Eduardo Luis Cedula: 1105161739

DEDICATORIA

A mis padres, Eduardo y Gema, por ser personas fundamentales en mi vida, por saber guiarme a lo largo de ella y, más que nada, por apoyarme siempre en las buenas y malas brindándome su amor. A mis hermanas, Gemita y Dayana, quienes me han apoyado siempre y han ayudado a mi formación con su gran ejemplo. A mi pequeño hermanito, Radamel, quien ha llegado a nuestro hogar a saciarnos de amor y a hacer mi vida cada vez más feliz. A mis abuelitos, Graciela, Regina (+), Miguel (+) y Julio, que han tenido la sabiduría de formar adecuadamente a sus familias dejándome la mejor herencia que es el haber nacido en un excelente hogar de cuna. De manera especial, a mi tío, Guidito, a quien le ofrecí este logro desde hace mucho tiempo y ha estado presente con sus travesuras en mi vida, además de haber ayudado a mi formación estudiantil.

Eduardo Israel

A mis padres, Eduardo y Jenny, guías en mi vida y fuente de inspiración para seguir adelante. A mi abuelita Regina, por el cuidado que supo brindarme en los primeros años de vida. A mi hermano Cristian, que de una u otra manera ha estado presente en mi vida. A mi abuelito Pancho (+), que desde arriba me cuida. Y sin duda alguna, a mis amigos del paralelo "A", con quienes compartí inolvidables momentos durante estos años de formación profesional.

AGRADECIMIENTO

A Dios, por permitirnos estar con vida y culminar de manera satisfactoria nuestra etapa de formación profesional.

A nuestros padres, por su apoyo, su amor y sus palabras de aliento en los momentos más difíciles. A sí mismo, a nuestros familiares, por haber estado presentes en cada instante y habernos ayudado de alguna u otra manera, a nuestra formación.

También agradecemos a nuestros compañeros del paralelo "A", quienes se convirtieron en muy buenos amigos, con los que compartimos momentos inolvidables, por toda su ayuda y apoyo brindado durante estos años en la universidad.

Finalmente, a cada uno de los docentes de la titulación, por compartir sus conocimientos y experiencias que colaboraron en nuestra formación profesional, de manera especial al Ing. Carlos Calderón, por su ayuda y guía en la ejecución de este proyecto de titulación, gracias.

Eduardo Israel y Eduardo Luis

ÍNDICE DE CONTENIDOS

APROBACIÓN DEL DIRECTOR DEL TRABAJO DE FIN DE TITULACIÓN	ii
DECLARACIÓN DE AUTORÍA Y CESIÓN DE DERECHOS	iii
DEDICATORIA	iv
AGRADECIMIENTO	V
ÍNDICE DE CONTENIDOS	vi
ÍNDICE DE FIGURAS	X
ÍNDICE DE TABLAS	xii
RESUMEN	1
ABSTRACT	2
INTRODUCCIÓN	3
CAPÍTULO I	5
1. PARÁMETROS DEL PROTOTIPO ANALIZADOR DE CALIDAD DE ENERGÍA	Б
1.1. Parámetros eléctricos	5 6
1.2 Parámetros de calidad de energía eléctrica	0
1.2.1 Nivel de voltaie	7
1211 Mediciones	7
1212 l ímites	8
1.2.2 Desbalance de Tensión – DT	9
1.2.3 Deseguilibrio de corriente.	10
1.2.4 Variación de frecuencia	11
1.2.5 Factor de potencia.	12
1.2.5.1 Factor de potencia sin distorsión armónica	12
1.2.5.2 Factor de potencia con distorsión armónica	13
1.2.6 Armónicos	15
1.2.6.1 Clasificación de los armónicos	16
1.2.6.1.1 Orden de los armónicos.	16
1.2.6.1.2 Secuencia de los armónicos.	17
1.2.6.2 Medición de los armónicos.	17
1.2.6.3 Límites	18
1.3 Resumen de parámetros de calidad de energía eléctrica	20
CAPÍTULO II	22
2. DISEÑO DE LOS CIRCUITOS PARA MEDICIÓN DE VOLTAJE, CORRIENTE Y	
FRECUENCIA	22

	2.1	Téc	cnica de medición de voltaje	23
	2.	1.1	Divisor de voltaje	23
	2.	1.2	Transformador de Voltaje	24
	2.2	Sel	ección de la técnica de medición de voltaje para el analizador de calidad de	
	ene	rgía	eléctrica	25
	2.3	Dis	eño del circuito de acondicionamiento de la señal de voltaje	27
	2.4	Téc	cnicas de medición de corriente	30
	2.	4.1	Resistencia de Shunt	30
	2.	4.2	Transformador de corriente	31
	2.	4.3	Sensor de efecto Hall	32
	2.5 calio	Sel dad o	ección de la técnica de medición de corriente para el prototipo analizador de de energía eléctrica	32
	2.6	Dis	eño del circuito de acondicionamiento de la señal de corriente	33
	2.	6.1	Diseño del circuito de acondicionamiento para la corriente de fase	33
	2.	6.2	Diseño del circuito de acondicionamiento para la corriente del neutro.	35
	2.7	Dis	eño del circuito para medición de frecuencia	37
С	APÍT	ULC	D III	39
3	. DIS	EÑC) DEL FIRMWARE PARA EL PROCESAMIENTO DE LOS PARÁMETROS D	E
C.		CÍA		- 20
E	NER	GÍA		39
E	NER 3.1	GÍA Fluj	jogramas para el cálculo de los parámetros eléctricos	- 39 40
E	NER 3.1 3.	GÍA Fluj 1.1 1 2	jogramas para el cálculo de los parámetros eléctricos Flujograma para el cálculo de voltaje	39 40 40 40
E	NER 3.1 3. 3.	GÍA Fluj 1.1 1.2	jogramas para el cálculo de los parámetros eléctricos Flujograma para el cálculo de voltaje Flujograma para el cálculo de corriente	- 39 40 40 42
E	NER 3.1 3. 3. 3.	GÍA Fluj 1.1 1.2 1.3	jogramas para el cálculo de los parámetros eléctricos Flujograma para el cálculo de voltaje Flujograma para el cálculo de corriente Flujograma para el cálculo de frecuencia	39 40 40 42 43
E	NER 3.1 3. 3. 3. 3. 3.	GÍA Fluj 1.1 1.2 1.3 1.4	jogramas para el cálculo de los parámetros eléctricos Flujograma para el cálculo de voltaje Flujograma para el cálculo de corriente Flujograma para el cálculo de frecuencia Flujograma para el cálculo de potencia activa	39 40 40 42 43 43
E	NER 3.1 3. 3. 3. 3. 3. 3.	GÍA Fluj 1.1 1.2 1.3 1.4 1.5	jogramas para el cálculo de los parámetros eléctricos Flujograma para el cálculo de voltaje Flujograma para el cálculo de corriente Flujograma para el cálculo de frecuencia Flujograma para el cálculo de potencia activa Flujograma para el cálculo de potencia aparente	
E	NER 3.1 3. 3. 3. 3. 3. 3. 3.	GÍA Fluj 1.1 1.2 1.3 1.4 1.5 1.6	jogramas para el cálculo de los parámetros eléctricos. Flujograma para el cálculo de voltaje. Flujograma para el cálculo de corriente. Flujograma para el cálculo de frecuencia. Flujograma para el cálculo de potencia activa. Flujograma para el cálculo de potencia aparente. Flujograma para el cálculo de potencia reactiva. Flujograma para el cálculo de potencia reactiva.	39 40 40 42 43 43 44 45 46
E	NER 3.1 3. 3. 3. 3. 3.2 3.2	GÍA Fluj 1.1 1.2 1.3 1.4 1.5 1.6 Fluj 2 1	jogramas para el cálculo de los parámetros eléctricos Flujograma para el cálculo de voltaje. Flujograma para el cálculo de corriente Flujograma para el cálculo de frecuencia Flujograma para el cálculo de potencia activa Flujograma para el cálculo de potencia aparente Flujograma para el cálculo de potencia reactiva Flujograma para el cálculo de potencia reactiva Flujograma para el cálculo de los parámetros de calidad de energía eléctrica	- 39 40 42 42 43 43 45 45 46 47
E	NER 3.1 3. 3. 3. 3. 3.2 3.2 3.	GÍA Fluj 1.1 1.2 1.3 1.4 1.5 1.6 Fluj 2.1 2.2	jogramas para el cálculo de los parámetros eléctricos Flujograma para el cálculo de voltaje Flujograma para el cálculo de corriente Flujograma para el cálculo de frecuencia Flujograma para el cálculo de potencia activa Flujograma para el cálculo de potencia aparente Flujograma para el cálculo de potencia reactiva Flujograma para el cálculo de los parámetros de calidad de energía eléctrica Flujograma para el cálculo del nivel de voltaje	39 40 40 42 43 43 43 45 45 45 47 47 47
E	NER 3.1 3. 3. 3. 3.2 3.2 3. 3.2 3. 3.2 3.2	GÍA Fluj 1.1 1.2 1.3 1.4 1.5 1.6 Fluj 2.1 2.2 2.3	jogramas para el cálculo de los parámetros eléctricos Flujograma para el cálculo de voltaje. Flujograma para el cálculo de corriente Flujograma para el cálculo de frecuencia. Flujograma para el cálculo de potencia activa Flujograma para el cálculo de potencia aparente Flujograma para el cálculo de potencia reactiva Flujograma para el cálculo de los parámetros de calidad de energía eléctrica Flujograma para el cálculo de los parámetros de calidad de energía eléctrica Flujograma para el cálculo de los parámetros de calidad de energía eléctrica Flujograma para el cálculo del nivel de voltaje. Flujograma para el cálculo del desbalance de tensión.	39 40 40 42 43 43 43 45 45 45 47 47 48
E	NER 3.1 3. 3. 3. 3. 3.2 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	GÍA Fluj 1.1 1.2 1.3 1.4 1.5 1.6 Fluj 2.1 2.2 2.3 2.4	jogramas para el cálculo de los parámetros eléctricos Flujograma para el cálculo de voltaje Flujograma para el cálculo de corriente Flujograma para el cálculo de frecuencia Flujograma para el cálculo de potencia activa Flujograma para el cálculo de potencia aparente Flujograma para el cálculo de potencia reactiva Flujograma para el cálculo de los parámetros de calidad de energía eléctrica Flujograma para el cálculo de los parámetros de calidad de energía eléctrica Flujograma para el cálculo del nivel de voltaje. Flujograma para el cálculo del desbalance de tensión. Flujograma para el cálculo del despalance de tensión.	39 40 40 42 43 43 43 45 45 46 47 47 48 50 51
E	NER 3.1 3. 3. 3. 3. 3.2 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	GÍA Fluj 1.1 1.2 1.3 1.4 1.5 1.6 Fluj 2.1 2.2 2.3 2.4 2.5	jogramas para el cálculo de los parámetros eléctricos Flujograma para el cálculo de voltaje. Flujograma para el cálculo de corriente. Flujograma para el cálculo de frecuencia Flujograma para el cálculo de potencia activa Flujograma para el cálculo de potencia aparente Flujograma para el cálculo de potencia reactiva Flujograma para el cálculo de los parámetros de calidad de energía eléctrica Flujograma para el cálculo del nivel de voltaje. Flujograma para el cálculo del desbalance de tensión. Flujograma para el cálculo del desequilibrio de corriente. Flujograma para el cálculo del desequilibrio de corriente. Flujograma para el cálculo de la variación de frecuencia.	39 40 42 43 43 43 43 45 45 46 47 47 48 50 51
E	NER 3.1 3. 3. 3. 3. 3.2 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	GÍA Fluj 1.1 1.2 1.3 1.4 1.5 1.6 Fluj 2.1 2.2 2.3 2.4 2.5 Fluj	jogramas para el cálculo de los parámetros eléctricos Flujograma para el cálculo de voltaje Flujograma para el cálculo de corriente Flujograma para el cálculo de frecuencia Flujograma para el cálculo de potencia activa Flujograma para el cálculo de potencia aparente Flujograma para el cálculo de potencia reactiva Flujograma para el cálculo de los parámetros de calidad de energía eléctrica Flujograma para el cálculo del nivel de voltaje. Flujograma para el cálculo del desbalance de tensión. Flujograma para el cálculo de los pariación de frecuencia. Flujograma para el cálculo del despalance de tensión. Flujograma para el cálculo del desequilibrio de corriente. Flujograma para el cálculo de la variación de frecuencia. Flujograma para el cálculo de la variación de frecuencia. Flujograma para el cálculo del factor de potencia.	39 40 42 43 43 43 43 45 45 46 47 47 48 50 51 52
E	NER 3.1 3. 3. 3. 3.2 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	GÍA Fluj 1.1 1.2 1.3 1.4 1.5 1.6 Fluj 2.1 2.2 2.3 2.4 2.5 Fluj	jogramas para el cálculo de los parámetros eléctricos Flujograma para el cálculo de voltaje Flujograma para el cálculo de corriente Flujograma para el cálculo de frecuencia Flujograma para el cálculo de potencia activa Flujograma para el cálculo de potencia aparente Flujograma para el cálculo de potencia reactiva Flujograma para el cálculo de los parámetros de calidad de energía eléctrica Flujograma para el cálculo del nivel de voltaje. Flujograma para el cálculo del desbalance de tensión. Flujograma para el cálculo del desequilibrio de corriente. Flujograma para el cálculo del desequilibrio de corriente. Flujograma para el cálculo del desequilibrio de corriente. Flujograma para el cálculo del factor de potencia. Flujograma para el cálculo del factor de potencia. Flujograma para el cálculo del factor de potencia. Flujograma para el cálculo del factor de potencia.	- 39 40 42 43 43 43 43 43 45 45 47 47 47 47 47 50 51 52 54
E	NER 3.1 3. 3. 3. 3.2 3. 3.2 3. 3. 3.3 3.4 3.5	GÍA Fluj 1.1 1.2 1.3 1.4 1.5 1.6 Fluj 2.1 2.2 2.3 2.4 2.5 Fluj Fluj	jogramas para el cálculo de los parámetros eléctricos Flujograma para el cálculo de voltaje. Flujograma para el cálculo de corriente Flujograma para el cálculo de frecuencia. Flujograma para el cálculo de potencia activa Flujograma para el cálculo de potencia aparente Flujograma para el cálculo de potencia reactiva Flujograma para el cálculo de los parámetros de calidad de energía eléctrica Flujograma para el cálculo del nivel de voltaje. Flujograma para el cálculo del desbalance de tensión. Flujograma para el cálculo del desequilibrio de corriente. Flujograma para el cálculo del desequilibrio de corriente. Flujograma para el cálculo del factor de potencia. jograma para el cálculo del factor de potencia. Flujograma para el cálculo del factor de potencia. Flujograma para el cálculo del factor de potencia. jograma para almacenamiento de los datos jograma para almacenamiento de los datos	39 40 42 43 43 43 43 43 43 45 45 47 47 47 47 47 50 51 52 54 55

CAPÍTULC) IV	59
4. FABRIC	ACIÓN DEL PROTOTIPO ANALIZADOR DE CALIDAD DE ENERGÍA	50
		59
4.1 Elai		60
4.1.1		60
4.1.2	Fabricación de la PCB.	62
4.1.3	Resultado final de la PCB.	63
4.2 Cor	nexiones de los elementos del prototipo analizador de calidad de energia	63
4.2.1	Conexiones de la tarjeta principal.	63
4.2.2	Conexiones del módulo de procesamiento de parámetros de energía	65
4.2.3	Conexiones de la GLCD.	66
4.3 Mor	ntaje del prototipo analizador de calidad de energía eléctrica	67
4.3.1	Diseño del case.	67
4.3.2	Ensamblaje del prototipo	68
CAPÍTULC) V	72
5. EVALUA DE ENERC	ACIÓN DE LA PERFORMANCE DEL PROTOTIPO ANALIZADOR DE CALIE BÍA)AD 72
5.1 Eva	luación de los parámetros eléctricos	75
5.1.1	Voltajes rms.	75
5.1.2	Corrientes rms.	76
5.1.3	Corriente del neutro.	79
5.1.4	Frecuencia	79
5.1.5	Potencia activa	80
5.1.6	Potencia aparente	82
5.2 Eva	luación de los parámetros de calidad de energía eléctrica	84
5.2.1	Nivel de voltaje	84
5.2.2	Desbalance de tensión	86
5.2.3	Desequilibrio de corriente.	87
5.9.4	Factor de potencia.	88
5.3 Res	sumen de los resultados de evaluación de los parámetros medidos	91
CONCLUS	IONES	92
RECOMEN	IDACIONES	93
REFEREN	CIAS	94
ANEXOS		97
ANEXO A.		98
ANEXO B.		. 112

ÍNDICE DE FIGURAS

Figura i.1 Proceso de desarrollo del proyecto.	4
Figura 1.1 Desbalance en un alimentador residencial durante una semana	. 10
Figura 1.2 Triángulo de potencias sin distorsión armónica	. 13
Figura 1.3 Triángulo de potencias con distorsión armónica	. 14
Figura 1.4 Descomposición de una onda distorsionada.	. 15
Figura 1.5 Forma de la señal de tensión distorsionada en un sistema industrial	. 16
Figura 2.1 Divisor Resistivo.	. 24
Figura 2.2 Transformador de Voltaje	. 25
Figura 2.3 Divisor de voltaje.	. 27
Figura 2.4 Divisor de voltaje y agregación de componente de DC.	. 28
Figura 2.5 Circuito de Protección de fuente	. 28
Figura 2.6 Circuito de acondicionamiento de voltaje.	. 29
Figura 2.7 Simulación del circuito de acondicionamiento de voltaje para la tensión máxima	
de 140 V rms con escala de 2V/Div en el eje vertical	. 29
Figura 2.8 Transformador de corriente	. 31
Figura 2.9 Circuito de acondicionamiento de corriente de fase	. 34
Figura 2.10 Simulación del circuito de acondicionamiento de corriente para la intensidad	
máxima de 365A rms con escala de 2V/Div en el eje vertical.	. 35
Figura 2.11 Circuito de acondicionamiento de corriente del neutro.	. 36
Figura 2.12 Simulación del circuito de acondicionamiento de corriente de neutro para la	
intensidad máxima de 35A rms con escala de 2V/Div en el eje vertical	. 36
Figura 2.13 Circuito para medición de frecuencia	. 37
Figura 2.14 Simulación del circuito para medición de frecuencia con escala de 5ms/Div en	el
eje horizontal y 2V/Div en el eje vertical	. 38
Figura 3.1 Flujograma para el cálculo de voltaje rms.	. 41
Figura 3.2 Flujograma para el cálculo de corriente rms.	. 42
Figura 3.3 Flujograma para el cálculo de frecuencia.	. 43
Figura 3.4 Flujograma para el cálculo de potencia activa	. 44
Figura 3.5 Flujograma para el cálculo de potencia aparente	. 45
Figura 3.6 Flujograma para el cálculo de potencia reactiva	. 46
Figura 3.7 Flujograma para el cálculo del nivel de voltaje	. 48
Figura 3.8 Flujograma para el cálculo del desbalance de tensión	. 49
Figura 3.9 Flujograma para el cálculo del desequilibrio de corriente	. 50
Figura 3.10 Flujograma para el cálculo de la variación de frecuencia	. 52
Figura 3.11 Flujograma para el cálculo del factor de potencia	. 53
Figura 3.12 Flujograma para interfaz de visualización de los datos	. 54
Figura 3.13 Flujograma para almacenamiento de los datos	. 56
Figura 3.14 Flujograma para envío de los datos vía Ethernet	. 57

Figura 4.1 Esquema de conexiones de la PCB 60
Figura 4.2 Diseño de la PCB en el software ARES 7 Professional61
Figura 4.3 PCB resultante de la técnica de transferencia térmica62
Figura 4.4 PCB luego de ser atacada con ácido 62
Figura 4.5 Tarjeta principal del prototipo analizador de calidad de energía eléctrica 63
Figura 4.6 Conexiones de los elementos del prototipo analizador de calidad de energía 64
Figura 4.7 Diagrama de conexión del módulo de procesamiento de parámetros de energía.65
Figura 4.8 Diagrama de conexión de la GLCD JHD12864E.
Figura 4.9 Diseño del case (base y tapa) 68
Figura 4.10 Ensamblaje de la tarjeta principal en la base del case
Figura 4.11 Ensamblaje de los elementos de la tapa del case70
Figura 4.12 Prototipo analizador de calidad de energía eléctrica

Figura 5.1 Instalación del prototipo y del analizador de calidad de energía en el tablero de	
distribución del Edificio Unidades Productivas – Campus UTPL	74
Figura 5.2 Valores de voltaje rms obtenidos para la fase 1	75
Figura 5.3 Valores de voltaje rms obtenidos para la fase 2	76
Figura 5.4 Valores de voltaje rms obtenidos para la fase 3	76
Figura 5.5 Valores de corriente rms obtenidos para la fase 1	77
Figura 5.6 Valores de corriente rms obtenidos para la fase 2	78
Figura 5.7 Valores de corriente rms obtenidos para la fase 3	78
Figura 5.8 Valores obtenidos de la corriente del neutro	79
Figura 5.9 Valores de frecuencia obtenidos para la fase 1	80
Figura 5.10 Valores de potencia activa obtenidos para la fase 1	81
Figura 5.11 Valores de potencia activa obtenidos para la fase 2	81
Figura 5.12 Valores de potencia activa obtenidos para la fase 3	82
Figura 5.13 Valores de potencia aparente obtenidos para la fase 1	83
Figura 5.14 Valores de potencia aparente obtenidos para la fase 2	83
Figura 5.15 Valores de potencia aparente obtenidos para la fase 3	84
Figura 5.16 Valores de nivel de voltaje obtenidos para la fase 1	85
Figura 5.17 Valores de nivel de voltaje obtenidos para la fase 2	85
Figura 5.18 Valores de nivel de voltaje obtenidos para la fase 3	86
Figura 5.19 Valores obtenidos de desbalance de tensión.	87
Figura 5.20 Valores de desequilibrio de corriente obtenidos.	88
Figura 5.21 Valores del factor de potencia obtenidos para la fase 1	89
Figura 5.22 Valores del factor de potencia obtenidos para la fase 2	89
Figura 5.23 Valores del factor de potencia obtenidos para la fase 3	90
Figura 5.24 Valores del factor de potencia obtenidos para el circuito global	90

ÍNDICE DE TABLAS

Tabla 1.1 Parámetros eléctricos	6
Tabla 1.2 Rangos de voltajes admitidos para la Subetapa 1 y Subetapa 2	8
Tabla 1.3 Niveles de voltaje: Rangos en Ecuador	9
Tabla 1.4 Parámetros de los armónicos más usuales	17
Tabla 1.5 Límites de los valores eficaces (rms) de los voltajes armónicos individuales y los	s
THD	. 18
Tabla 1.6 Límites de distorsión armónica de corriente para sistemas de distribución en	
general (120 V a 69000V)	. 19
Tabla 1.7 Parámetros de calidad de energía eléctrica	. 20
Tabla 2.1 Comparación entre los sensores de voltaje.	. 26
Tabla 2.2 Comparación entre los sensores de corriente.	. 32
Tabla 4.1 Descripción de los pines de la GLCD JHD12864E.	. 67
Table 5.1 Posultados de ovaluación de los parómetros eléctricos	01
	91
Tabla 5.2 Resultados de evaluación de los parametros de calidad de energía eléctrica	. 91

RESUMEN

El presente proyecto muestra el diseño, implementación y evaluación de un prototipo analizador de calidad de energía eléctrica para una red trifásica. Para la ejecución del mismo, se lo estructuró en cinco fases: Primero, definir los parámetros e indicadores a determinar con el prototipo, así como la metodología para la determinación de los mismos desde el punto de vista analítico. La segunda fase, corresponde al diseño de los circuitos para medición de voltaje, corriente y frecuencia. Como tercera fase, se desarrolla el firmware para el procesamiento de datos en el prototipo. Como cuarta fase, se realiza la fabricación del dispositivo. Y, la quinta y última fase, corresponde a la evaluación de los resultados obtenidos por el prototipo implementado.

PALABRAS CLAVES: Calidad de energía eléctrica, parámetros eléctricos, indicadores de calidad de energía, acondicionamiento de señales.

ABSTRACT

This project shows the design, development and evaluation of a prototype analyzer of power quality for a three-phase network. To implement the same, you will be structured into five phases: First, define the parameters and indicators to be included in the prototype, as well as the methodology for their determination from the analytical point of view. The second step corresponds to the circuit design for measuring voltage, current and frequency. As a third step, the firmware is developed for processing data in the prototype. As a fourth step, the manufacturing of the device is performed. Finally, there is the evaluation of the results obtained by the prototype implemented.

KEYWORDS: Electrical power quality, electrical parameters, power quality indicators, signal conditioning.

INTRODUCCIÓN

Se define a la calidad de energía como una característica física del suministro de electricidad, la cual debe llegar al cliente en condiciones normales, sin producir perturbaciones ni interrupciones en los procesos del mismo.

El Gobierno del Ecuador, a través del Ministerio de Electricidad y Energía Renovable (MEER), tiene como uno de sus objetivos principales mejorar el desempeño energético, sobre el cual se está aplicando medidas y políticas necesarias de calidad de energía eléctrica y eficiencia energética.

En base a lo anterior, el MEER ha propuesto implementar diversas acciones encaminadas a mejorar la calidad de energía por lo que requiere de un reglamento, normalización y metodología que ayude a cumplir con estos requerimientos como son las normas: IEC 601000-4-30, EN-50160, IEEE 1159-1995 y la norma ISO 50001 adoptada como norma técnica ecuatoriana NTE INE-ISO 50001.

Las instituciones/empresas/industrias (I/E/I) cuyos consumos energéticos son altos, deben liderar en iniciativas como evitar el desperdicio y optimizar el uso de la energía. Para obtener resultados confiables y permanentes en el tiempo, las I/E/I deben tener una herramienta destinada a la gestión continua de la energía utilizada; sin embargo no sería posible llevarlo a cabo si no se tiene definidos los indicadores de eficiencia de consumo ni las tecnologías de monitoreo continuo para dichos índices, tecnologías que conllevan una inversión inicial para la I/E/I. Esta situación, nos ha motivado a plantearnos el presente proyecto como una solución que brinde las prestaciones necesarias para la medición de la calidad de energía eléctrica, acorde con los parámetros establecidos por el CONELEC.

El objetivo principal del presente trabajo es implementar un prototipo analizador de calidad de energía eléctrica que permita al usuario estimar las tendencias de la calidad de energía de la red trifásica a analizarse; implementación realizada con hardware de bajo costo.

Para la implementación del prototipo, se estructuró el proceso en cinco fases, mismas que se muestran en la figura siguiente.

Figura i.1 Proceso de desarrollo del proyecto. Fuente: Imagen de los autores.

El primer capítulo describe los parámetros eléctricos y de calidad de energía eléctrica que incorpora el prototipo analizador de calidad implementado, en base a normativas que establecen los requisitos que deben cumplir los sistemas de gestión de energía.

El segundo capítulo corresponde al diseño de los circuitos para medición de voltaje, corriente y frecuencia.

El tercer capítulo aborda los flujogramas implementados en el módulo de procesamiento de parámetros de energía (Arduino Mega 2560) para el desarrollo del software de medición del prototipo analizador.

El cuarto capítulo muestra la fabricación del prototipo analizador de calidad de energía, incorporándose la elaboración de la placa de circuito impreso (PCB), las conexiones de los elementos y el montaje de los mismos.

Finalmente, en el quinto capítulo se presenta resultados experimentales del proceso de evaluación de los parámetros eléctricos y de calidad de energía eléctrica del prototipo analizador implementado.

CAPÍTULO I

PARÁMETROS DEL PROTOTIPO ANALIZADOR DE CALIDAD DE ENERGÍA ELÉCTRICA

El Consejo Nacional de Electricidad (CONELEC) define a la calidad de energía como "una característica física del suministro de electricidad, la cual debe llegar al cliente en condiciones normales, sin producir perturbaciones ni interrupciones en los procesos del mismo" [1]. La calidad de energía eléctrica se establece mediante la medición y cálculo de parámetros en una red eléctrica, por lo que el presente trabajo se basa en el desarrollo de un dispositivo que permita la medición y el cálculo de estos parámetros de energía eléctrica para dar una tendencia de la calidad de energía en una red trifásica.

Es necesario realizar el análisis de los parámetros eléctricos y de calidad de energía que han sido tomados en cuenta para la realización del prototipo analizador de calidad de energía eléctrica. Los parámetros eléctricos que se miden en el prototipo implementado en el presente son: Voltaje rms, Corriente rms, Frecuencia, Potencia Activa, Potencia Aparente, y Potencia Reactiva para cada fase del circuito; mientras que los indicadores de calidad de energía eléctrica que se obtienen son: Nivel de Voltaje, Desbalance de Tensión, Desequilibrio de Corriente, Variación de Frecuencia, Factor de Potencia, Armónicos de Voltaje y de Corriente. Se debe mencionar que en el presente trabajo, no se incluyen parámetros como Factor de Cresta y Flicker, mismos que sí son tomados en cuenta en analizadores de calidad de energía eléctrica existentes en el mercado. La razón por la que se ha excluido estos indicadores se debe a las limitaciones a nivel de hardware que tiene el módulo de procesamiento ocupado en el presente (Arduino Mega 2560).

1.1 Parámetros eléctricos

Los parámetros eléctricos hacen alusión a las mediciones que se realizan con el prototipo analizador de calidad de energía. Tomando en cuenta que las mediciones no son continuas en el tiempo, sino muestras discretas, se tienen las siguientes relaciones matemáticas que nos han permitido obtener los valores de los parámetros eléctricos [2]:

PARÁMETRO ELÉCTRICO	DESCRIPCIÓN	CÁLCULO
V rms	Voltaje RMS del sistema calculado a partir de la raíz cuadrada del valor medio de los cuadrados de los valores instantáneos de voltaje, promediado durante un ciclo completo.	$V_{rms} = \sqrt{\frac{\sum_{n=0}^{N-1} v^2(n)}{N}}$ Donde: v(n) es el voltaje instantáneo. N es el número de muestras.
l rms	Corriente RMS del sistema calculada a partir de la raíz	$I_{rms} = \sqrt{\frac{\sum_{n=0}^{N-1} i^2(n)}{N}}$

Tabla 1.1 Parámetros eléctricos.

	cuadrada del valor medio de los cuadrados de los valores instantáneas de corriente, promediado durante un ciclo completo	Donde: <i>i</i> (<i>n</i>) es la corriente instantánea. <i>N</i> es el número de muestras.	
f	Frecuencia fundamental del sistema eléctrico calculado mediante el tiempo de ciclo en que la señal realiza un cruce por cero ya sea de flanco positivo o negativo.	$f = \frac{1}{T}$ Donde: <i>T</i> es el tiempo de ciclo en que la señal realiza un cruce por cero ya sea de flanco positivo o negativo.	
Ρ	Potencia activa del sistema calculada a partir del promedio del producto de voltaje y corriente instantáneos.	$P = \frac{1}{N} \sum_{n=0}^{N-1} v(n) \times i(n)$ Donde: v(n) es el voltaje instantáneo. i(n) es la corriente instantánea. N es el número de muestras	
S	Potencia aparente del sistema calculada mediante el producto del voltaje RMS y de la corriente RMS medidas en el sistema.	$S = I_{RMS} \times V_{RMS}$ Donde: I_{RMS} es la corriente rms. V_{RMS} es el voltaje rms.	
Q	Potencia reactiva del sistema calculada a partir la raíz cuadrada de la resta del cuadrado potencia aparente menos el cuadrado de la potencia activa.	$Q = \sqrt{S^2 - P^2}$ Donde: <i>S</i> es la potencia aparente del sistema. <i>P</i> es la potencia activa del sistema.	

Fuente: Tabla propia de los autores.

1.2 Parámetros de calidad de energía eléctrica

1.2.1 Nivel de voltaje.

El nivel de voltaje es el rango en el que se le permite a la Empresa Distribuidora del servicio eléctrico variar el valor del nivel de tensión para el consumidor final [3]. Matemáticamente se define en base a la siguiente ecuación:

$$\Delta V_k(\%) = \frac{V_k - V_n}{V_n} x 100$$
 Ec. (1.1)

Donde:

- ΔV_k : Variación de voltaje, en el punto de medición.
- V_k : Voltaje eficaz (rms) medido, V.
- V_n : Voltaje nominal del punto de medición, V.

1.2.1.1 Mediciones.

El nivel de voltaje se determina como las variaciones de los valores eficaces (rms) medidos cada 10 minutos, con relación al voltaje nominal en los diferentes niveles.

El Distribuidor del servicio eléctrico a fin de llevar un registro de voltaje en cada uno de los puntos de medición debe [3]:

- Seleccionar los puntos donde se considerarán los niveles de voltaje, el tipo de zona (urbana, rural), y la topología de la red, a fin de que las mediciones sean representativas de todo el sistema.
- Para cada mes, el registro en cada punto de medición se efectuará durante un período no inferior a 7 días continuos, en intervalos de medición de 10 minutos.

1.2.1.2 *Límites.*

Si para un 5% o más del período de medición de 7 días continuos, en cada mes, El Distribuidor no cumple con el nivel de voltaje en el punto de medición respectivo, entonces, el servicio brindado lo suministra incumpliendo los límites de voltaje [3].

A continuación se presentan las variaciones de voltaje admitidas con respecto al valor del voltaje nominal, valores extraídos de la Regulación CONELEC 004/01 [3]:

	Subetapa 1	Subetapa 2
Alto Voltaje	± 7,0 %	± 5,0 %
Medio Voltaje	± 10,0 %	± 8,0 %
Bajo Voltaje. Urbanas	± 10,0 %	± 8,0 %
Bajo Voltaje. Rurales	± 13,0 %	± 10,0 %
	4 [0]	

Tabla 1.2 Rangos de voltajes admitidos para la Subetapa 1 y Subetapa 2.

Fuente: Regulación No. CONELEC – 004/01 [3].

Donde se observa que para la Etapa Final, se definen las siguientes Subetapas [3]:

- Subetapa 1: de 24 meses de duración.
- Subetapa 2: tendrá su inicio finalizada la Subetapa 1, con una duración indefinida.

Mientras que los niveles de voltaje en Ecuador, se especifican dentro del Decreto Ejecutivo No. 796 "REGLAMENTO SUSTITUTIVO DEL REGLAMENTO DE SUMINISTRO DEL SERVICIO DE ELECTRICIDAD" [4], que se muestran a continuación:

Alto Voltaje	Mayor a 40 KV	
Medio Voltaje	0,6 KV – 40 KV	
Bajo Voltaje Inferior a 0,6 KV		
Fuente Deerste Figuritive No. 706 [4]		

Fuente: Decreto Ejecutivo No. 796 [4].

Por lo que basados en la tabla anterior, este proyecto se centró únicamente para mediciones correspondientes a Bajo Voltaje.

1.2.2 Desbalance de Tensión – DT.

El Desbalance de Tensión – DT sucede cuando las tensiones entre las tres líneas no son iguales y se define como la desviación máxima del promedio de las tres fases de tensiones, dividido para el promedio de las tensiones de las tres fases, expresado en porcentaje [5]. De manera matemática se halla expresado como [6]:

$$DT~(\%) = \frac{(T_{max} - \overline{T})}{\overline{T}} \times 100$$
 Ec. (1.2)

Donde:

 $T_{m \acute{a} x}$: Máxima tensión de las tres fases T_a, T_b y T_c. \overline{T} : Promedio de las tensiones de las tres fases.

Entre las fuentes más comunes que producen desequilibrio de tensiones se hallan las cargas monofásicas conectadas en circuitos trifásicos, los transformadores conectados en delta abierto, fallas de aislamiento no detectadas en conductores. Para brindar un servicio de calidad, se recomienda que el desbalance de tensiones sea menor al 2% [5].

Para cada mes, el registro en cada punto de medición se efectuará durante un período no inferior a 7 días continuos, en intervalos de medición de 10 minutos.

La figura 1.1 muestra un ejemplo con tendencia de desbalance en un alimentador residencial durante una semana.

Figura 1.1 Desbalance en un alimentador residencial durante una semana. Fuente: Norma IEEE 1159 de 1995 [5].

1.2.3 Desequilibrio de corriente.

Los desequilibrios de corriente se producen cuando por las tres fases de un sistema eléctrico trifásico no circulan las mismas intensidades de corriente, es decir, existen diferencias entre las intensidades de una fase con respecto a las otras. Los desequilibrios de corriente pueden provocar en el sistema: sobrecalentamiento en los receptores, en los cables de alimentación y en la protecciones; los sobrecalentamientos en las protecciones incluso podrían llegar a traer consigo la circulación de corriente por el conductor neutro lo cual hace menos eficiente al sistema conociendo que en redes trifásicas con el neutro distribuido y con el sistema equilibrado, no hay circulación de corriente eléctrica por el conductor neutro [6].

Para la medición, se debe obtener la intensidad de corriente de cada una de las fases del sistema en intervalos de tiempo de 10 minutos por un tiempo de 7 días continuos según los procedimientos especificados en la norma IEC 60868; una vez que se tenga estas mediciones, se calcula el promedio de las corrientes de las tres fases y se toma el mayor valor de las corrientes de las tres fases y se toma el mayor valor de las corrientes de las tres fases y se toma el mayor valor de las corrientes de las tres fases y en base a estos valores se calcula el desequilibrio de corriente. Para un límite máximo de desequilibrio de tensión del $\pm 2\%$ propuesto en la norma IEC 61000-2-2, se tiene un desequilibrio de corriente máximo correspondiente al $\pm 40\%$ compatible con el desequilibrio admisible en tensión [7].

Para calcular el desequilibrio de corriente, $D_I(\%)$, se debe emplear la siguiente fórmula [6]:

$$D_I(\%) = \frac{l_m - l_p}{l_p} \times 100$$
 Ec. (1.3)

Donde:

 I_m : Máxima corriente de las tres fases I_a, I_b y I_c.

 I_p : Promedio de las corrientes en las tres fases.

1.2.4 Variación de frecuencia.

La frecuencia es el número de ciclos (período completo) de una señal por cada segundo; la unidad de medida de la frecuencia son los Hertzios (Hz).

Una variación de frecuencia se da cuando en un sistema eléctrico de corriente alterna existe una alteración del equilibrio entre carga y generación. La frecuencia en el sistema disminuye cuando la carga es superior a la generación mientras que cuando la carga es inferior a la generación ocurre lo contrario, es decir, la frecuencia aumenta [8]. En cualquiera de los dos casos se da una variación de frecuencia que afecta en la calidad de energía eléctrica del sistema.

Para la medición, según el estándar EN-50160, se debe obtener el promedio de la frecuencia de cada ciclo de la señal eléctrica de cada una de las fases durante 10 segundos y calcular las variaciones de frecuencia en cada fase. Se toma el valor de la variación de frecuencia más alto en las tres fases como la variación de frecuencia del sistema y dicho valor debe estar entre el 4% y el 6% como límite máximo [8.]; con una variación de frecuencia mayor se está fallando en este parámetro de calidad de energía eléctrica. Se debe tomar en cuenta para nuestro caso, que en Ecuador, la frecuencia nominal de la señal eléctrica de corriente alterna es de 60Hz.

Para calcular la variación de frecuencia $\Delta f(\%)$, se debe emplear la siguiente relación [9]:

$$\Delta f(\%) = \frac{f - f_n}{f_n} \times 100$$
 Ec. (1.4)

Donde:

f: Frecuencia medida de cada fase, Hz.

 f_n : Frecuencia nominal, Hz.

Es posible presentar o mostrar los valores de la variación de frecuencia de cada una de las fases pero para efectos de análisis de calidad de energía, se muestra únicamente el peor de los casos de variación de frecuencia, es decir, cuando ésta toma el mayor valor de las tres fases para compararla con los límites establecidos en el estándar EN-50160 mencionados anteriormente.

1.2.5 Factor de potencia.

1.2.5.1 Factor de potencia sin distorsión armónica.

El factor de potencia es la relación entre la potencia activa y la potencia aparente; el factor de potencia describe la relación entre la potencia real convertida en trabajo y la potencia total consumida en el sistema, es decir, describe la relación entre la potencia aprovechada y la potencia total consumida. El factor de potencia expresa, en términos generales, el desfasamiento de la corriente con respecto al voltaje y es utilizado como indicador del correcto aprovechamiento de la energía eléctrica. El factor de potencia puede tomar valores entre 0 y 1, siendo la unidad el máximo factor de potencia que indica el mayor aprovechamiento de energía [10].

Para la medición, se obtiene los valores de la potencia activa y la potencia aparente del sistema trifásico en función de la medición de voltajes y corrientes según corresponda para el cálculo de cada una de las potencias nombradas; estas mediciones se realizan en intervalos de 10 minutos por un tiempo de 7 días continuos según los procedimientos especificados en la norma IEC 60868 [2]. En base a la potencia activa y la potencia aparente obtenidas se calcula el factor de potencia, FP, del sistema empleando la siguiente relación matemática [10]:

$$FP = \frac{P}{S}$$
 Ec. (1.5)

Donde:

P: Potencia activa del sistema, W.

S: Potencia aparente del mismo, VA.

El límite mínimo establecido para el factor de potencia es de 0,92 [2] por lo cual valores del factor de potencia del sistema eléctrico menores a éste dan una falla en la calidad de energía eléctrica.

Figura 1.2 Triángulo de potencias sin distorsión armónica. Fuente: Imagen propia de los autores.

El factor de potencia también tiene otra fórmula que lo relaciona con el ángulo Ø que es el ángulo formado entre la potencia aparente (hipotenusa) y la potencia activa (cateto adyacente) en el triángulo rectángulo de potencias de la figura 1.2, y tratándose del cateto adyacente dividido para la hipotenusa se habla de la función trigonométrica coseno, por lo tanto:

$$FP = Cos \emptyset$$

Donde:

$$\emptyset = Cos^{-1}(FP)$$

Con este ángulo \emptyset y la potencia activa se puede obtener el valor de la potencia reactiva, Q, mediante la función trigonométrica tangente tomando en cuenta que la potencia reactiva es el cateto opuesto al ángulo \emptyset en el triángulo de potencias. Por lo tanto, la potencia reactiva, Q, queda definida por:

$Q = tan \emptyset. P$

1.2.5.2 Factor de potencia con distorsión armónica.

El factor de potencia con distorsión armónica se puede calcular de la misma forma que sin distorsión armónica, es decir, mediante la relación entre la potencia activa y la potencia aparente de la siguiente forma:

$$FP = \frac{P}{S}$$

Donde:

P: Potencia activa del sistema, W.

S: Potencia aparente del mismo, VA.

El triángulo de potencias al tener distorsión armónica cambia con respecto a cuándo no existe dicha distorsión. La potencia reactiva Q sigue siendo igual para ambos casos, es decir, está dada por las componentes fundamentales de corriente y de tensión se tenga o no distorsión armónica. La diferencia radica en la generación de una nueva componente D que se crea por los contenidos armónicos en el sistema; ésta componente D no se encuentra cuando no existe distorsión armónica [11]. En la figura 1.3 se muestra el triángulo de potencias con distorsión armónica, se puede decir que se trata de un triángulo tridimensional y ya no bidimensional como se presentó en el caso anterior. En esta gráfica se puede observar que la potencia aparente S no depende únicamente de la potencia activa y reactiva, sino que también depende de la componente D que se presenta con distorsión armónica.

Figura 1.3 Triángulo de potencias con distorsión armónica. Fuente: ARCILA José, "Armónicos en sistemas eléctricos" [11].

En el caso de tener distorsión armónica, la potencia aparente viene dada por la siguiente fórmula [11]:

$$S_{total}^2 = P^2 + Q^2 + D^2$$
 Ec. (1.6)

Donde:

*S*_{total}: Potencia aparente del mismo, VA.

- P: Potencia activa del sistema, W.
- *Q*: Potencia reactiva del sistema, VAR.
- D: Componente generada por la distorsión armónica.

El límite del factor de potencia sigue siendo el mismo al tener distorsión armónica, es decir, el factor de potencia no puede tener valores menores a 0,92 caso contrario se considerara como un sistema con fallas en la calidad de energía eléctrica.

1.2.6 Armónicos.

Los armónicos son tensiones o corrientes sinusoidales de frecuencia múltiplo entero de la frecuencia fundamental (60Hz en Ecuador) de la tensión de alimentación en el sistema, cuya presencia provoca una deformación de la onda respecto de la onda senoidal pura [9].

Las formas de onda distorsionadas pueden ser descompuestas, por medio de la Transformada de Fourier, en la suma de la componente de frecuencia fundamental más las componentes armónicas [9].

Figura 1.4 Descomposición de una onda distorsionada. Fuente: Generalidades sobre los armónicos [9].

La distorsión armónica se origina en las características no lineales de los equipos y cargas de un sistema de potencia. Estas perturbaciones son causadas fundamentalmente por cargas que tienen un funcionamiento con una característica tensión – corriente no lineal [1]. Estas cargas pueden ser consideradas como fuentes de armónicos de corriente y en ciertos casos como fuentes de armónicos de tensión.

Las fuentes de armónicos de corriente producen caídas de tensión armónicas en la impedancia del sistema, distorsionando la forma de onda de tensión. Pueden provenir tanto de equipamientos de la propia red de suministro (generación, transmisión y distribución) como por cargas industriales y residenciales [1].

La figura 1.5 representa la forma de señal de tensión medida en un sistema industrial, típico de distorsión armónica por cargas no lineales.

Por otra parte, se denominan interarmónicos a las tensiones o corrientes con componentes de frecuencia que no son múltiplos enteros de la frecuencia a la cual trabaja el sistema. Las principales fuentes de interarmónicos son los convertidores estáticos de frecuencia, los ciclo-convertidores, los motores asincrónicos y los dispositivos de arco [5].

1.2.6.1 Clasificación de los armónicos.

Los armónicos se clasifican por su orden y secuencia [9].

1.2.6.1.1 Orden de los armónicos.

El orden determina el número de veces que la frecuencia de ese armónico es mayor que la fundamental [12]. En forma matemática:

$$n = \frac{f_n}{f_{60}}$$

Los armónicos impares son los que se encuentran en las instalaciones eléctricas, industriales y edificios comerciales. Los armónicos pares sólo existen cuando se produce asimetría en la señal debido a la componente continua y en general son de escasa consideración en las instalaciones eléctricas [9].

1.2.6.1.2 Secuencia de los armónicos.

La secuencia puede ser positiva, negativa o nula, provocando aceleración o deceleración de motores en los dos primeros casos, o en el caso de los de secuencia nula, también llamados homopolares no presentan efectos sobre el giro del motor, pero se suman en el cable de neutro [9]; haciendo que por él circule la misma o más intensidad que por las fases con el consiguiente calentamiento del mismo, de ahí la necesidad de igualar la sección del neutro a las fases [12].

A continuación se muestra los parámetros característicos de los armónicos más usuales [12].

Orden	Frecuencia (Hz)	Secuencia
1	60	+
2	120	-
3	180	0
4	240	+
5	300	-
6	360	0
7	420	+
8	480	-
9	540	0

Tabla 1.4 Parámetros de los armónicos más usuales.

Fuente: Los Armónicos y la Calidad de Energía Eléctrica [12].

1.2.6.2 Medición de los armónicos.

La presencia de armónicos es evaluada a través de la distorsión armónica total, THD, el cual relaciona el nivel porcentual de distorsión armónica con respecto de la señal principal [9].

Para voltaje [2]:

$$THD_V (\%) = \left(\frac{\sqrt{\sum_{i=2}^n (V_i)^2}}{V_n}\right) x \ 100$$
 Ec. (1.7)

Donde:

THD_V: Factor de distorsión total por armónicos de voltaje.

 V_i : Valor eficaz (rms) expresado en voltios del voltaje armónico "i" (para i=2 hasta n).

 V_n : Voltaje nominal del punto de medición, V.

Para corriente [12]:

$$THD_{I}(\%) = \left(\frac{\sqrt{\sum_{i=2}^{n} (I_{i})^{2}}}{I_{1}}\right) x \ 100$$
 Ec. (1.8)

Donde:

*THD*_{*I*}: Factor de distorsión total por armónicos de corriente.

I_i: Valor eficaz expresado en amperios de la corriente armónica "i" (para i=2 hasta n).

*I*₁: Valor eficaz de la onda fundamental de corriente del punto de medición, A.

De acuerdo a la Norma IEC- 555 el valor de "n" se limita al armónico número 40 [12]. Además, el THD_I es generado por las cargas de circuitos no lineales en la instalación; mientras que el THD_V es generado por las fuentes, como resultado de una corriente en el circuito muy distorsionada [12].

En cada punto de medición, para cada mes, el registro se efectuará durante un período no inferior a 7 días continuos, en intervalos de medición de 10 minutos [3].

1.2.6.3 *Límites.*

Los valores eficaces (rms) de los voltajes armónicos individuales (Vi') y los THD, expresados como porcentaje del voltaje nominal del punto de medición respectivo, no deben superar los valores límite señalados en la tabla 1.5 [3].

Orden (n) de la	TOLERANCIA V _i ' o THD' (% respecto al voltaje nominal del punto de medición)		
armonica y THD	V > 40 kV (otros puntos)	V ≤ 40 kV (trafos de distribución)	
Impares no múltiplos de 3			
5	2,0	6,0	
7	2,0	5,0	
11	1,5	3,5	
13	1,5	3,0	
17	1,0	2,0	
19	1,0	1,5	
23	0,7	1,5	
25	0,7	1,5	
> 25	0,1 + 0,6*25/n	0,2 + 1,3*25/n	
Impares múltiplos de tres			
3	1,5	5,0	

Tabla 1.5 Límites de los valores eficaces (rms) de los voltajes armónicos individuales y los THD.

9	1,0	1,5
15	0,3	0,3
21	0,2	0,2
Mayores de 21	0,2	0,2
Pares		
2	1,5	2,0
4	1,0	1,0
6	0,5	0,5
8	0,2	0,5
10	0,2	0,5
12	0,2	0,2
Mayores a 12	0,2	0,5
THD	3	8

Fuente: Regulación No. CONELEC - 004/01 [3].

Como resumen, la tasa de distorsión total THD admitida para Alto Voltaje es del 3% y para Medio y Bajo Voltaje del 8% [9]; por lo que para el desarrollo del presente proyecto únicamente se ha tenido en cuenta este último porcentaje.

Para el caso de distorsión armónica de corriente, los límites se encuentran dados en base a la corriente de corto circuito (I_{SC}) y la máxima corriente de carga (I_L) en el punto de acoplamiento común (PCC) del consumidor al sistema de potencia [13]. A continuación se presenta la tabla con los límites correspondientes:

Tabla 1.6 Límites de distorsión armónica de corriente para sistemas de distribución en general (120 V a 69000V).

Máxima distorsión armónica de corriente						
Orden de armónico individual (armónicos impares)						
I_{SC}/I_L	<11	$11 \leq h \\ < 17$	$\begin{array}{l} 17 \leq h \\ < 23 \end{array}$	$\begin{array}{c} 23 \leq h \\ < 35 \end{array}$	$35 \leq h$	THD
<20*	4,0	2,0	1,5	0,6	0,3	5,0
20<50	7,0	3,5	2,5	1,0	0,5	8,0
50<100	10,0	4,5	4,0	1,5	0,7	12,0
100<1000	12,0	5,5	5,0	2,0	1,0	15,0
>1000	15,0	7,0	6,0	2,5	1,4	20,0
Los armónicos pares se limitan al 25% de los límites de los armónicos impares mostrados anteriormente						

* Todo equipo de generación se limita a estos valores independientemente del valor I_{SC}/I_L que presente

Fuente: Estándar IEEE 519 – 1992 [13].

De acuerdo a estudios de distorsión de corriente realizados, para una corriente nominal (L) de 225 Amperios cuya frecuencia fundamental es 60 Hz, se tiene un THD igual al 10.8% [14]. Por lo que este porcentaje se halla dentro del rango de relación de I_{SC}/I_L de 50 a 100, con un máximo de distorsión armónica total del 12%; valor que ha sido seleccionado como umbral

para el presente trabajo, pues en base a mediciones anteriores, se tiene corrientes similares en los edificios del Campus de la UTPL [15], lugar donde se implementará el sistema de medición.

1.3 Resumen de parámetros de calidad de energía eléctrica

A continuación se presenta la tabla resumen con los parámetros de calidad de energía tomados en cuenta para el desarrollo del prototipo.

PARÁMETRO	MEDIDA	UMBRALES	FÓRMULA
Nivel de voltaje	Tensión de cada fase en intervalos de 10 min.	±10%	$\Delta V_k(\%) = \frac{V_k - V_n}{V_n} x100$ Donde: V_k es el voltaje eficaz en el punto de medición y V_n es el voltaje nominal.
Desbalance de tensión	Tensión de cada fase en intervalos de 10 min	2%	$DT = \frac{(T_{max} - \overline{T})}{\overline{T}} \times 100$ Donde: T_{max} es la máxima tensión de las tres fases y \overline{T} es el promedio de las tensiones de las tres fases.
Desequilibrio de corriente	Intensidad de corriente de cada fase en intervalos de 10min	40%	$D_{I}(\%) = \frac{I_{m} - I_{p}}{I_{p}} \times 100$ Donde: I_{m} es la máxima intensidad de corriente de las tres fases e I_{p} es el promedio de las corrientes medidas en las tres fases.
Variación de frecuencia	Promedio de la frecuencia de cada ciclo en intervalos de 10s	±4% a ±6%	$\Delta f(\%) = \frac{f - f_n}{f_n} \times 100$ Donde: <i>f</i> es la frecuencia de cada fase medida y <i>f_n</i> es la frecuencia nominal.
Factor de potencia	Potencia activa y potencia aparente en función de tensiones y corrientes respectivas de	0,92	$FP = \frac{P}{S}$ Donde:

Tabla 1.7 Parámetros de calidad de energía eléctrica.

	cada fase en intervalos de 10min		<i>P</i> es la potencia activa del sistema y <i>S</i> la potencia aparente del mismo.
Armónicos de voltaje	Valor eficaz del voltaje <i>"i"</i> para cada fase en intervalos de 10 min.	Medio y Bajo Voltaje 8%	$THD_{V} = \left(\frac{\sqrt{\sum_{i=2}^{n}(V_{i})^{2}}}{V_{n}}\right) \times 100$ Donde: V_{i} es el valor eficaz (rms) del voltaje armónico "i" (para i=2 hasta n=40) y V_{n} es el voltaje nominal del punto de medición.
Armónicos de corriente	Valor eficaz de la corriente <i>"i"</i> para cada fase en intervalos de 10 min.	12%	$THD_{I} = \left(\frac{\sqrt{\sum_{i=2}^{n}(I_{i})^{2}}}{I_{1}}\right) \times 100$ Donde: I_{i} es el valor eficaz (rms) de la corriente armónica "i" (para i=2 hasta n=40) y I_{1} es la corriente eficaz de la onda fundamental del punto de medición.

Fuente: Tabla propia de los autores.

CAPÍTULO II

DISEÑO DE LOS CIRCUITOS PARA MEDICIÓN DE VOLTAJE, CORRIENTE Y FRECUENCIA

Un sensor es un dispositivo diseñado para recibir información de una magnitud del exterior y transformarla en otra magnitud, normalmente eléctrica, que seamos capaces de cuantificar y manipular.

Existen varias características que poseen los sensores tales como linealidad, ancho de banda, estabilidad, varianza en el tiempo; que hacen que estos dispositivos se diferencien unos de otros y a su vez se establezca ciertos criterios para la selección del sensor a utilizar.

El presente capítulo trata sobre las técnicas de medición de tensión y de corriente. Se hace mención en el caso del voltaje a dos técnicas de medición tales como: Divisor de Voltaje y Transformador de Voltaje; mientras que para el caso de la corriente se toma en cuenta tres técnicas de medición tales como: Resistencia de Shunt, Transformador de Corriente y Sensor de efecto Hall.

En función a las técnicas mencionadas tanto para voltaje como para corriente, se realizó la selección del método idóneo, para implementar el prototipo analizador de calidad de energía eléctrica. Haciendo mención además, de los circuitos para medición de voltaje, corriente y frecuencia.

2.1 Técnica de medición de voltaje

La medición de la forma de onda de voltaje se la puede realizar básicamente por medio de dos métodos: Divisor de Voltaje y Transformador de Voltaje [16].

2.1.1 Divisor de voltaje.

Un divisor de voltaje es un circuito lineal que produce un voltaje de salida (V_{out}) que es una fracción del voltaje de entrada (V_{in}), es decir, una configuración que reparte la tensión de una fuente entre dos o más impedancias conectadas en serie. Cuando las impedancias son resistencias, es llamado divisor resistivo [17].

La figura 2.1 muestra el esquema básico de un divisor resistivo formado por dos resistencias puestas en serie, tomando el nodo del medio como el voltaje de salida.

Figura 2.1 Divisor Resistivo. Fuente: Imagen de los autores.

De acuerdo a la primera ley de Kirchhoff: En un circuito cerrado, la suma algebraica de las tensiones es igual a cero [17]. Entonces:

$$V_{in} = V_1 + V_2$$

Al tratarse de un circuito en serie circula la misma intensidad *I*, y en base a la ley de Ohm [18]:

$$V = I \times R$$
$$V_{in} = I \times (R_1 + R_2) \rightarrow I = \frac{V_{in}}{R_1 + R_2}$$

Por lo que el voltaje de salida es:

$$V_{out} = V_2 = I \times R_2$$
$$V_{out} = \frac{R_2}{R_1 + R_2} \times V_{in}$$

2.1.2 Transformador de Voltaje

Un transformador hace uso de la ley de Faraday y de las propiedades ferromagnéticas de un núcleo de hierro para subir o bajar eficientemente el voltaje de corriente alterna AC [19].

El transformador se compone de un núcleo de hierro sobre el cual se han arrollado varias espiras (vueltas) de alambre conductor. Este conjunto de vueltas se llaman bobinas y se denominan:

- Bobina primaria o "primario" a aquella que recibe el voltaje de entrada.
- Bobina secundaria o "secundario" a aquella que entrega el voltaje transformado.

Figura 2.2 Transformador de Voltaje. Fuente: El Transformador [18].

La relación de transformación del voltaje entre el bobinado "Primario" y el "Secundario" depende del número de vueltas que tenga cada uno. Es decir que:

$$\frac{V_p}{V_s} = \frac{N_p}{N_s} = \frac{I_s}{I_p}$$

Donde:

- V_p : Voltaje del primario.
- V_s : Voltaje del secundario.
- N_p : Número de espiras del primario.
- N_s: Número de espiras del secundario.
- I_p : Corriente del primario.
- *I_s*: Corriente del secundario.

A la relación Ns/Np se la conoce como relación de transformación. Si es menor que la unidad se trata de un transformador reductor; si es mayor que la unidad se trata de uno elevador [18].

2.2 Selección de la técnica de medición de voltaje para el prototipo analizador de calidad de energía eléctrica

Las características que se tomaron en cuenta para la selección del sensor de voltaje fueron [19]:

- Sea capaz de medir tensiones hasta los 140V rms.
- Sea lineal, es decir que siga fielmente las variaciones de las tensiones que está midiendo, sin que pierda o se cambie la información que se está sensando.

- Posea un ancho de banda adecuado, capaz de adquirir hasta el armónico 40.
- En lo posible que presente aislamiento, de manera que no se comprometan la adecuación y digitalización de los datos producto de sobre-tensiones en la red y así se brinde protección a la tarjeta de adquisición de señales.

La siguiente tabla muestra las características de funcionamiento para cada tipo de sensor de voltaje:

Características	Divisor de voltaje	Transformador de voltaje	
Linealidad en el rango de la medición	Muy buena	Buena	
Capacidad de medición en alta potencia	No	Si	
Consumo de potencia	Alto	Bajo	
Saturación de corriente DC	No	Si	
Variación de la salida con respecto a la temperatura	Medio	Bajo	
Problema de saturación e histéresis	No	Si	
Ancho de banda	Pasa banda	Alta frecuencia	
Aislamiento con respecto a la fuente de tensión	No	Si	
Costo	Muy bajo	Medio	
Disponibilidad en el mercado	Alta	Alta	

Tabla 2.1 Comparación entre los sensores de voltaje.

Fuente: Capítulo III, Adquisición de datos y procesamiento de señales [16].

De acuerdo a lo mostrado se tiene que el divisor resistivo presenta un mejor desempeño lineal que el transformador de voltaje, por lo que no se ve afectado por problemas de saturación e histéresis, es decir, que su curva de desempeño no presenta un punto para el cual deja de comportarse de manera lineal [20]; problemas con los que cuenta el transformador de voltaje. Sin embargo, éste último ofrece aislamiento con respecto a la entrada, protegiéndose a la tarjeta de adquisición de señales en caso de sobretensiones, además de contar con un consumo de potencia bajo.

Considerando que en este trabajo se debe adquirir tanto la forma de onda fundamental como sus distintos armónicos, para lo cual el sensor debe ser lineal e inmune a problemas de saturación e histéresis, se optó por el divisor de voltaje; añadiéndose un circuito de protección contra sobretensiones y cortocircuitos, manteniendo a salvo a la tarjeta de adquisición de señales.

2.3 Diseño del circuito de acondicionamiento de voltaje

Para obtener la lectura de voltaje proveniente de las distintas fases del sistema, es necesario reducir el voltaje de 120 V en AC a un rango de voltaje aceptable para la tarjeta de adquisición de señales que es de 5 V DC. Para realizar esto, se optó por el divisor de voltaje añadiendo una componente DC a la forma de onda para que oscile entre valores de voltaje de 0 a 5V.

Para encontrar el valor de las resistencias a emplear en el divisor de voltaje, se parte del hecho de que el voltaje de entrada es 120V rms; sin embargo se toma en cuenta un porcentaje de variación que puede darse en las fases del sistema, por ello se ha considerado que el voltaje máximo de entrada es de 140V rms [20]. Entonces:

$$V_{out \ pico} = 2,5V; \ V_{int \ pico} = 140\sqrt{2}V$$
$$V_{out} = \frac{R_2}{R_1 + R_2} \times V_{in}$$
$$R_1 = \frac{R_2 \times V_{in} - R_2 \times V_{out}}{V_{out}}$$
$$Si: R_2 = 1,5k\Omega \rightarrow R_1 = 117,3k\Omega$$

Sin embargo el valor de la resistencia R1 no se halla en el mercado, por lo que se optó por su valor comercial más próximo, 120 k Ω .

Figura 2.3 Divisor de voltaje. Fuente: Imagen de los autores.

Con el circuito anterior se obtiene como salida una forma de onda senoidal con un voltaje de $\pm 2,5$ V. Por lo que se agrega una componente DC que permita desplazar esta forma de onda hacia el eje positivo, es decir de 0 a 5V, y de esta manera sea recibida por la tarjeta de adquisición de señales.

Figura 2.4 Divisor de voltaje y agregación de componente de DC. Fuente: Imagen de los autores.

Como ya se mencionó anteriormente, el divisor de voltaje no brinda aislamiento con respecto a la fuente de tensión, es por ello que se agregó un circuito de protección para evitar que la tarjeta de adquisición de señales se vea afectada por exceso de tensión. El circuito de protección escogido se encuentra integrado por un diodo Zenner para la detección de sobretensión, que dispara un tiristor de alta corriente que cortocircuita la salida, esto, además de bajar la tensión sobre los bornes, provoca la ruptura de un fusible colocado justo antes del circuito de protección[21]. La corriente del fusible no puede ser mayor que la soportada por el tiristor [22]. Una vez superado el problema, se deberá reponer el fusible.

Figura 2.5 Circuito de Protección de fuente. Fuente: Protección de Fuentes (MCR106) [22].

A continuación se presenta el circuito final para adquirir la forma de onda de voltaje, donde se observa el divisor de voltaje, el circuito para agregación de la componente DC y el circuito de protección.

Fuente: Imagen de los autores.

Donde:

1N4736A es un diodo Zenner con 6,8V de voltaje nominal y 1W de potencia [23].

MCR106-2 es un tiristor de 2,55 A de corriente directa promedio, 0,5 W de potencia de compuerta (gate) [24].

Como resultado se tiene la forma de onda de voltaje acondicionada de 0 a 5V nominal que se observa en la figura 2.7:

Figura 2.7 Simulación del circuito de acondicionamiento de voltaje para la tensión máxima de 140 V rms con escala de 2V/Div en el eje vertical. Fuente: Imagen de los autores.

Ahora en la tarjeta de adquisición de señales se debe incluir la siguiente fórmula que obtiene la tensión medida en función del voltaje ingresado en el conversor analógico-digital de la misma:

$$V_{medido} = (V_{ADC} - 2,5V) \times \frac{120k\Omega + 1,5k\Omega}{1,5k\Omega}$$
 Ec (2.1)

Donde:

V_{medido}: Voltaje medido, V.

V_{ADC}: Voltaje ingresado en el conversor analógico-digital de la tarjeta de adquisición, V.

2.4 Técnicas de medición de corriente

La medición de la forma de onda de corriente se la puede realizar básicamente por medio de tres métodos: Resistencia de Shunt, Transformador de corriente y Sensor de efecto Hall.

2.4.1 Resistencia de Shunt.

Un sensor de corriente muy empleado por su bajo coste es la resistencia de Shunt [25]. Este es un sensor netamente de tipo resistivo que se basa en la ley de Ohm [17] que es la siguiente:

$$V = I \times R$$

Donde:

V: Voltaje o la tensión, V.

I: Corriente eléctrica, A.

R: Valor de la resistencia, Ω .

El sensor de Shunt consiste en abrir el circuito y colocar una resistencia de valor muy bajo debido a que no se quiere afectar la potencia consumida por el sistema al emplear una resistencia de alto valor; al contrario, lo que se requiere es que el sistema refleje en las mediciones valores como si no estuviera presente la resistencia de Shunt, por ello el empleo de valores bajos.

Al abrir el circuito y ubicar la resistencia; por ella pasa la corriente del sistema y al medir el voltaje o la tensión existente en los terminales de la resistencia de Shunt y empleando la ley de Ohm se puede obtener el valor de la corriente que está consumiendo el sistema de la siguiente manera:

$$I = \frac{V}{R}$$

Es necesario tomar en cuenta que la precisión de la resistencia de Shunt debe ser elevada puesto que si varía el valor de la resistencia cambiará el valor de la corriente medida y con ello se puede tener errores en la medición de la misma [25].

2.4.2 Transformador de corriente.

Figura 2.8 Transformador de corriente. Fuente: Imagen de los autores.

El transformador de corriente usa el principio del transformador para convertir una corriente en el devanado primario en una corriente más pequeña en el devanado secundario [25]. En un transformador de corriente, la corriente en el secundario es proporcional a la corriente en el primario pero con cierto desfase. A más de transformar, cumple con la función de aislar las altas corrientes de los circuitos y aparatos de medición que se encuentran conectados en el devanado secundario [26].

Los transformadores de corriente se encuentran definidos por una relación de transformación que nos indica la atenuación de la corriente que se tendrá a la salida del transformador con respecto a la entrada que se tuvo en el mismo. Por ejemplo, una relación de transformación de 60:1 nos indica que si se tiene 60A en el devanado primario se tendrá 1A en el devanado secundario, por lo que para este caso la corriente que se tiene a la entrada del primario se reduce en 60 veces.

Un transformador de corriente es un dispositivo pasivo que no necesita circuitos adicionales de control. Además de ello, permite medir corrientes muy altas y su consumo de potencia es bajo lo cual es una ventaja de este tipo de sensores de corriente. Cuando la corriente primaria es muy alta o cuando hay un componente importante de corriente directa el material ferrítico del núcleo del transformador se puede llegar a saturar teniendo una mala respuesta de transformación de corriente [26].

A la salida del sensor se tiene una corriente proporcional a la corriente medida, por lo que se necesita colocar una resistencia en serie en el devanado secundario para poder realizar la medición de voltaje, para en base a la ley de Ohm y tomando en cuenta la relación de transformación del sensor, poder determinar el valor de la corriente medida.

2.4.3 Sensor de efecto Hall.

Cuando por un conductor circula una corriente eléctrica y ésta se encuentra dentro de un campo magnético perpendicular a la dirección de la misma, aparece en el conductor una fuerza magnética que produce una reagrupación de portadores; esta reagrupación genera un campo eléctrico, el cual origina una fuerza eléctrica en sentido opuesto compensando la fuerza magnética y una diferencia de potencial. Esta diferencia de potencial es la tensión Hall [27].

En base a esta tensión de hall se crea en el bobinado secundario un flujo de igual magnitud pero en sentido contrario al del primario pudiendo obtener, en una resistencia conocida en serie al secundario, un voltaje proporcional a la corriente que se está midiendo.

Con estos transductores es posible realizar mediciones de corriente continua, alterna y de diferentes formas de onda, asegurando aislación galvánica, buena precisión, linealidad y amplio ancho de banda [27].

Un sensor de efecto hall consiste de un semiconductor que generalmente tiene una salida de voltaje proporcional a la corriente que se mide, por lo que con este tipo de sensores no se obtiene la forma de onda a la salida del mismo.

2.5 Selección de la técnica de medición de corriente para el prototipo analizador de calidad de energía eléctrica

A continuación se presentan las características de funcionamiento para tipo de sensor de corriente:

Características	Shunt de corriente	Transformador de corriente	Sensor de efecto Hall
Costo	Muy Bajo	Medio	Alto
Linealidad en rango de medición	Muy Buena	Buena	Pobre
Capacidad de medición alta corriente	Muy Pobre	Buena	Buena
Consumo de potencia	Alto	Bajo	Medio

Tabla 2.2 Comparación entre los sensores de corriente.

Problema de saturación de corriente DC	No	Si	Si
Variación respecto a la Tº	Medio	Bajo	Alto
Problema Offset DC	Si	No	Si
Problema de saturación e histéresis	No	Si	Si

Fuente: SOTO Theo, "Medidor de Potencia" [28].

La técnica para medición de corriente mediante el uso de resistencia de Shunt queda descartada debido a que con esta técnica es necesario abrir el circuito para conecta la resistencia de Shunt en serie y poder realizar la medición, lo cual para el prototipo analizador de calidad de energía eléctrica no es conveniente debido a que éste es un módulo portable.

De la misma manera, descartamos la técnica mediante el uso del sensor de efecto Hall ya que éste tiene a la salida un voltaje proporcional a la corriente promedio medida más no a cada valor instantáneo por lo que con este sensor no se puede reproducir la forma de onda de la señal de corriente medida lo cual se requiere obligatoriamente para el prototipo a implementarse.

Por ello, la técnica seleccionada es el transformador de corriente debido a que no se requiere conectar el sensor en serie, con lo que se evita abrir el circuito; además, este sensor provee a la salida una corriente proporcional a la corriente medida con lo cual se reproduce la forma de onda de la señal medida, cumpliendo este requerimiento para el prototipo analizador de calidad de energía eléctrica a implementarse. También, este sensor, tiene un consumo bajo de potencia, permite medición de altas corrientes y tiene buena linealidad en el rango de medición como características más importantes que se presentan en la tabla 2.2. Por estas razones la técnica mediante el transformador de corriente ha sido seleccionada y a continuación se muestra el diseño de la instrumentación mediante el uso de la técnica

2.6 Diseño del circuito de acondicionamiento de corriente

A continuación se presenta dos acondicionamientos para las señales de corriente: el primero para realizar las mediciones de las corrientes de fase y, el segundo, de la corriente del neutro.

2.6.1 Diseño del circuito de acondicionamiento para la corriente de fase.

El transformador de corriente que se utiliza tiene una relación de transformación comercial de 2500:1. Con el sistema de medición de calidad de energía se pretende medir hasta una corriente de fase máxima de 365A rms [15], equivalente a 516,19A pico; este valor en el

devanado secundario del transformador de corriente corresponde a 0,2065A pico que es el valor máximo a medir. Debe ser transformado a un voltaje pico de 2,5V para posteriormente desplazar o subir la señal de \pm 2,5V ha valores de señal de 0V a 5V y con ello pueda ser leída por el conversor analógico-digital (ADC) de la tarjeta de adquisición de señales a ser empleada.

La conversión de 0,2065A a 2,5V se realiza mediante una resistencia puesta a la salida del transformador de corriente y el valor de dicha resistencia se calcula mediante la ley de Ohm de la siguiente manera:

$$V = I \times R$$
$$R_{s} = \frac{V}{I}$$
$$R_{s} = \frac{2,5V}{0,2065A}$$
$$R_{s} = 12, 1\Omega$$

Al tener ya la forma de onda senoidal de $\pm 2,5V$, se procede a sumarle una componente de DC de 2,5V para así tener acondicionada la señal de 0V a 5V.

A continuación se muestra el circuito utilizado para la medición de corriente de fase mediante la técnica de transformador de corriente:

Figura 2.9 Circuito de acondicionamiento de corriente de fase. Fuente: Imagen de los autores.

En la figura 2.10 se puede observar la señal obtenida a la salida del circuito de acondicionamiento de corriente para la máxima intensidad a medir:

Figura 2.10 Simulación del circuito de acondicionamiento de corriente para la intensidad máxima de 365A rms con escala de 2V/Div en el eje vertical. Fuente: Imagen de los autores.

Ahora en la tarjeta de adquisición se debe incluir la siguiente fórmula que obtiene la corriente de fase medida en función del voltaje ingresado en el conversor analógico-digital de la misma:

$$I_{medida} = \left[\frac{(V_{ADC} - 2, 5V)}{12, 1\Omega}\right] \times (2500)$$
 Ec (2.2)

Donde:

Imedida: Corriente medida, A.

V_{ADC}: Voltaje ingresado en el conversor analógico-digital de la tarjeta de adquisición, V.

2.6.2 Diseño del circuito de acondicionamiento para la corriente del neutro.

El transformador de corriente que se utiliza tiene una relación de transformación comercial de 250:1. Con el sistema de medición de calidad de energía se pretende medir hasta una corriente de neutro máxima de 35A rms equivalente a 49,5A pico; este valor en el devanado secundario del transformador de corriente corresponde a 0,198A pico que es el valor máximo a medir. Debe ser transformado a un voltaje pico de 2,5V para posteriormente desplazar o subir la señal de \pm 2,5V a valores de señal de 0V a 5V y con ello pueda ser leída por el conversor analógico-digital (ADC) de la tarjeta de adquisición de señales a ser empleada.

La conversión de 0,198A a 2,5V se realiza mediante una resistencia puesta a la salida del transformador de corriente y el valor de dicha resistencia se calcula mediante la ley de Ohm de la siguiente manera:

$$V = I \times R$$
$$R_s = \frac{V}{I}$$

$$R_{s} = \frac{2,5V}{0,198A}$$
$$R_{s} = 12, 6\Omega$$

Al tener ya la forma de onda de voltaje de $\pm 2,5V$, se procede a sumarle una componente de DC de 2,5V para así tener la señal de 0V a 5V.

A continuación se muestra el circuito utilizado para la medición de corriente del neutro:

Figura 2.11 Circuito de acondicionamiento de corriente del neutro. Fuente: Imagen de los autores.

En la figura 2.12 se puede observar la señal obtenida a la salida del circuito de acondicionamiento de corriente para el neutro:

Figura 2.12 Simulación del circuito de acondicionamiento de corriente de neutro para la intensidad máxima de 35A rms con escala de 2V/Div en el eje vertical. Fuente: Imagen de los autores.

Ahora en la tarjeta de adquisición se debe incluir la siguiente fórmula que obtiene la corriente del neutro medida en función del voltaje ingresado en el conversor analógico-digital de la misma:

$$I_{medida} = \left[\frac{(V_{ADC} - 2, 5V)}{12, 6\Omega}\right] \times (250)$$
 Ec (2.3)

Donde:

I_{medida}: Corriente medida, A.

V_{ADC}: Voltaje ingresado en el conversor analógico-digital de la tarjeta de medición, V.

2.7 Diseño del circuito para medición de frecuencia

Para determinar la frecuencia que posee una señal, se utiliza el comparador de nivel, un circuito que analiza la señal de ingreso y la compara con otra, emitiendo un resultado digital.

La figura 2.13 representa el circuito comparador de nivel. En ella se observa que el nivel de la señal acondicionada se compara con un voltaje de 2,5V, teniéndose a la salida una señal cuadrada con la misma frecuencia de la señal de entrada al circuito. El funcionamiento del circuito se basa en que para valores de la señal de entrada mayores a 2,5V se tiene un voltaje de 5V a la salida del mismo, mientras que para valores menores a 2,5V, se presenta a la salida una tensión de 0V [29].

Figura 2.13 Circuito para medición de frecuencia. Fuente: Imagen de los autores.

En la figura 2.14 se puede observar la señal obtenida a la salida del circuito comparador de nivel. Esta señal es ingresada en el módulo de procesamiento de parámetros de energía y es detectada mediante una interrupción con flanco de bajada en base a la cual se obtiene la

frecuencia de la señal cuadrada que corresponde a la misma frecuencia de la señal acondicionada de voltaje.

Figura 2.14 Simulación del circuito para medición de frecuencia con escala de 5ms/Div en el eje horizontal y 2V/Div en el eje vertical. Fuente: Imagen de los autores.

CAPÍTULO III

DISEÑO DEL FIRMWARE PARA EL PROCESAMIENTO DE LOS PARÁMETROS DE ENERGÍA

El presente capítulo aborda los flujogramas implementados en el módulo de procesamiento de parámetros de energía (Arduino MEGA 2560) para el desarrollo del software de medición del prototipo analizador de calidad de energía eléctrica propuesto. A continuación se presentan los flujogramas necesarios para el cálculo de los parámetros eléctricos como: Voltaje, Corriente, Frecuencia, Potencia Real, Potencia Aparente, y Potencia Reactiva; así como los necesarios para la obtención de los parámetros de calidad de energía como: Nivel de Voltaje, Desbalance de Tensión, Desequilibrio de Corriente, Factor de Potencia y Variación de Frecuencia. Para el caso de los parámetros Armónicos de Voltaje y Armónicos de Corriente, no se desarrolló el código para el cálculo de éstos, sino que se integró los algoritmos sintetizados en el proyecto predecesor "*Síntesis y validación de metodologías y algoritmos para la determinación de parámetros de calidad de energía eléctrica*" de Byron Oswaldo Ganazhapa [30]; recalcando que, en el citado trabajo existieron errores en su evaluación.

Cabe señalar, que además de los flujogramas mencionados, en este capítulo también se añadió los necesarios para la presentación de los resultados en la GLCD así como para el almacenamiento de los mismos en la Micro SD y el envío constante de éstos mediante comunicación Ethernet.

3.1 Flujogramas para el cálculo de los parámetros eléctricos

El cálculo de los parámetros eléctricos se los realizó mediante la implementación en el módulo de los siguientes flujogramas:

3.1.1 Flujograma para el cálculo de voltaje.

En la figura 3.1 se muestra el flujograma aplicado para el cálculo de los voltajes rms de cada una de las fases del circuito. En éste se puede observar que se parte de la lectura de las entradas analógicas realizando la conversión de estos valores adquiridos a los valores reales medidos instantáneamente. De manera general, se realiza una suma de los voltajes cuadráticos instantáneos, los mismos que son promediados cada dos segundos y se presentan los valores obtenidos para los voltajes rms de cada fase. Este proceso se encuentra dentro de un ciclo While Infinito realizándose continuamente la repetición de este proceso.

Figura 3.1 Flujograma para el cálculo de voltaje rms. Fuente: Imagen de los autores.

3.1.2 Flujograma para el cálculo de corriente.

Figura 3.2 Flujograma para el cálculo de corriente rms. Fuente: Imagen de los autores.

En la figura 3.2 se presenta el flujograma aplicado para el cálculo de las corrientes rms de cada una de las fases, así como del neutro. En éste se puede observar que se parte de la lectura de las entradas analógicas realizando la conversión de estos valores adquiridos a los valores reales medidos instantáneamente. De manera general, se realiza una suma de las corrientes cuadráticas instantáneas, las mismas que son promediadas cada dos segundos y se presentan los valores obtenidos para las corrientes rms de cada fase y del neutro. Este proceso se halla dentro de un ciclo While Infinito ejecutándose continuamente dicho proceso.

3.1.3 Flujograma para el cálculo de frecuencia.

Figura 3.3 Flujograma para el cálculo de frecuencia. Fuente: Imagen de los autores.

En la figura 3.3 se presenta el flujograma aplicado para el cálculo de la frecuencia de cada una de las fases. En éste se puede observar que únicamente cuando el contador tiene el valor de cero, se almacena en ciertas variables el valor anterior del contador de frecuencia de cada fase y el tiempo en ese instante. Las interrupciones se encuentran activándose mediante un flanco de bajada incrementando con cada activación en una unidad el contador de frecuencia para cada fase; es así, que cada dos segundos se calcula la frecuencia dividiendo el número de interrupciones que se han tenido en un determinado tiempo (contador de frecuencia final menos contador de frecuencia anterior) para el tiempo en el que se han dado las interrupciones (tiempo actual menos tiempo anterior), obteniéndose el valor de la frecuencia de cada una de las fases. Este proceso se halla dentro de un While Infinito repitiéndose continuamente este proceso.

3.1.4 Flujograma para el cálculo de potencia activa

Figura 3.4 Flujograma para el cálculo de potencia activa. Fuente: Imagen de los autores.

En la figura 3.4 se muestra el flujograma aplicado para el cálculo de las potencias activas de cada una de las fases. En éste se observa que se parte de la obtención de los voltajes y corrientes aplicando los flujogramas mostrados anteriormente. De manera general, se realiza una suma de las potencias instantáneas obtenidas mediante el producto del voltaje pico y de la corriente pico en cada instante de tiempo para posteriormente realizar un promedio cada dos segundos de estas potencias instantáneas, obteniendo así la potencia activa de cada fase. Este proceso se encuentra dentro de un While Infinito repitiéndose continuamente este proceso.

3.1.5 Flujograma para el cálculo de potencia aparente

Figura 3.5 Flujograma para el cálculo de potencia aparente. Fuente: Imagen de los autores.

En la figura 3.5 se muestra el flujograma aplicado para el cálculo de las potencias aparentes de cada una de las fases. En éste se observa que se parte de la obtención de los voltajes y corrientes aplicando los flujogramas mostrados anteriormente. De manera general, el cálculo de la potencia aparente se realiza cada dos segundos mediante el producto de la corriente promedio y del voltaje promedio calculados para cada fase, obteniendo de esta manera la potencia aparente para cada una de ellas. Este proceso se encuentra dentro de un ciclo While Infinito ejecutándose continuamente dicho proceso.

3.1.6 Flujograma para el cálculo de potencia reactiva.

Figura 3.6 Flujograma para el cálculo de potencia reactiva. Fuente: Imagen de los autores.

En la figura 3.6 se presenta el flujograma aplicado para el cálculo de las potencias reactivas de cada una de las fases. En éste se observa que se parte de la obtención de las potencias activas y aparentes aplicando los flujogramas mostrados anteriormente. De manera general, el cálculo de la potencia reactiva se realiza cada dos segundos mediante la raíz cuadrada de la resta del cuadrado de la potencia aparente menos el cuadrado de la potencia activa, obteniéndose la potencia reactiva para cada una de las fases. Este proceso se encuentra dentro de un While Infinito repitiéndose continuamente dicho proceso.

3.2 Flujogramas para el cálculo de los parámetros de calidad de energía eléctrica

El cálculo de los parámetros de calidad de energía eléctrica se los realizó mediante la implementación en el módulo de procesamiento de parámetros de energía de los siguientes flujogramas. Mencionar que, el tiempo de medición ha sido tomado acorde con lo establecido por el CONELEC [3].

3.2.1 Flujograma para el cálculo del nivel de voltaje.

El tiempo de medición para calcular el nivel de voltaje de cada fase del circuito es de 10 minutos como se lo puede observar en el flujograma mostrado en la figura 3.7. Hasta que se cumpla este periodo se lee el voltaje rms promedio calculado en cada fase, se lo almacena en una variable por fase y se incrementa el contador en uno. El cálculo del voltaje rms promedio se lo realiza en 2 segundos, tal como se mencionó en la sección 3.1.1, por lo que para que se cumplan los 10 minutos se tiene que repetir este proceso 300 veces. Transcurrido el tiempo de medición, se obtiene el voltaje rms promedio de cada fase y a partir de éste se calcula el nivel de voltaje, en base a la ecuación Ec (1.1); teniéndose 120 V como voltaje nominal para cada fase del circuito. Calculado este parámetro, se reinicia el contador y las variables de almacenamiento de los voltajes rms promedio. Este proceso se encuentra dentro de un While Infinito por lo que se repite continuamente.

Figura 3.7 Flujograma para el cálculo del nivel de voltaje. Fuente: Imagen de los autores.

3.2.2 Flujograma para el cálculo del desbalance de tensión.

El cálculo del desbalance de tensión existente entre las fases se lo realiza en periodos de 10 minutos como se lo puede ver en el flujograma presentado en la figura 3.8. Hasta que transcurra este tiempo, se lee los voltajes rms promedio calculados de cada fase, se almacenan en variables individuales y se incrementa el contador en uno; este proceso se repite por 300 veces. Transcurrido el tiempo de medición, se calcula el voltaje rms promedio de cada fase, luego se comparan entre sí para determinar cuál es el valor máximo de las tres

fases, se obtiene el valor promedio de las fases y en base a la ecuación Ec. (1.2) se halla el desbalance de tensión existente. Calculado este parámetro, se reinicia el contador y las variables de almacenamiento de los voltajes rms promedio. Este proceso se halla dentro de un While Infinito por lo que se repite continuamente.

Figura 3.8 Flujograma para el cálculo del desbalance de tensión. Fuente: Imagen de los autores.

Figura 3.9 Flujograma para el cálculo del desequilibrio de corriente. Fuente: Imagen de los autores. El cálculo del desequilibrio de corriente existente entre las fases se lo realiza cada 10 minutos como se lo puede observar en el flujograma expuesto en la figura 3.9. Hasta que transcurra este periodo, se lee las corrientes rms promedio calculadas de cada fase, se almacenan en variables individuales y se incrementa el contador en uno; este proceso se repite por 300 veces. Transcurrido el tiempo de medición, se calcula la corriente rms promedio de cada fase, luego se comparan entre sí para determinar cuál es el valor máximo de las tres fases, se obtiene el valor promedio de las fases y en base a la ecuación Ec. (1.3) se encuentra el desequilibrio de corriente. Calculado este parámetro, se reinicia el contador y las variables de almacenamiento de las corrientes rms promedio. Este proceso se encuentra dentro de un While Infinito por lo que se repite continuamente.

3.2.4 Flujograma para el cálculo de la variación de frecuencia.

El cálculo de la variación de frecuencia de cada fase se lo realiza cada 10 segundos como se puede observar en el flujograma mostrado en la figura 3.10. Hasta que se cumpla este periodo, se lee la frecuencia calculada en cada fase, se almacena en una variable por fase y se incrementa el contador en uno. El cálculo de la frecuencia se lo realiza en 2 segundos, por lo que para que se cumpla el tiempo de medición tiene que repetirse este proceso 5 veces. Transcurridos los 10 segundos, se obtiene la frecuencia promedio de cada fase y a partir de éste se calcula la variación de frecuencia, en base a la ecuación Ec. (1.4); teniéndose 60 Hz como frecuencia nominal para cada fase del circuito. Calculado este parámetro, se reinicia el contador y las variables de almacenamiento de frecuencias. Este proceso se repite continuamente pues se halla dentro de un While Infinito.

Figura 3.10 Flujograma para el cálculo de la variación de frecuencia. Fuente: Imagen de los autores.

3.2.5 Flujograma para el cálculo del factor de potencia.

El tiempo de medición para calcular el factor de potencia de cada fase como del circuito global es de 10 minutos como se puede ver en el flujograma presentado en la figura 3.11. Hasta que transcurra este periodo, se lee las potencias activas y aparentes calculadas de

cada fase, se almacenan en variables individuales y se incrementa el contador en uno; este proceso se repite por 300 veces. Transcurrido el tiempo de medición, se calcula la potencia activa y aparente promedio de cada fase así como de todo el circuito. Luego, en base a la ecuación Ec. (1.5) se obtiene el factor de potencia para cada fase como del circuito global. Calculado este parámetro, se reinicia el contador y las variables de almacenamiento de las potencias activas y aparentes. Este proceso se repite continuamente pues se encuentra dentro de un While Infinito.

Figura 3.11 Flujograma para el cálculo del factor de potencia. Fuente: Imagen de los autores.

3.3 Flujograma para interfaz de visualización de los datos

Figura 3.12 Flujograma para interfaz de visualización de los datos. Fuente: Imagen de los autores.

La figura 3.12 representa el flujograma para la visualización en la GLCD de los datos obtenidos. En esta gráfica se observa que existen tres pantallas, mismas que se muestran de acuerdo al valor en el que se encuentre el contador de pantalla accionado por la interrupción generada por un pulsador, incrementándose en una unidad cada vez que ocurra un flanco de bajada. Es así que inicialmente, el contador se encuentra en 0 por lo que en la GLCD se visualizan los parámetros eléctricos que se obtienen de las mediciones. Al existir una interrupción, el contador pasa a 1 por lo que en la GLCD se presenta los parámetros de calidad

de energía eléctrica. Al ocurrir otra interrupción, el contador pasa a 2 por lo que en la GLCD ahora se muestra la distorsión armónica total de voltaje como de corriente de cada fase del circuito. Finalmente, si se produce otra interrupción, el contador se reinicia y en la GLCD nuevamente se visualiza los parámetros eléctricos. Este proceso se repite continuamente pues se encuentra dentro de un While Infinito.

3.4 Flujograma para almacenamiento de los datos

La figura 3.13 representa el flujograma para almacenamiento de los parámetros que se obtienen de las mediciones del sistema implementado. En esta gráfica se muestra que los datos son almacenados en una Micro SD cada 10 minutos de medición tal como lo estable el CONELEC [3], guardándose tanto los parámetros eléctricos como los de calidad de energía eléctrica descritos anteriormente, a más del tiempo en el que los datos son almacenados para que al momento de graficar estos valores ya sea en Microsoft Excel, LabVIEW, etc., se trace la curva del parámetro vs el tiempo de ocurrencia. Para el caso de la variación de frecuencia, el tiempo de medición se realiza cada 10 segundos [3], sin embargo el almacenamiento se lo hace cada 10 minutos, por lo que se promedia todas las variaciones de frecuencia que ocurren durante este periodo. Una vez almacenados los datos en la Micro SD, se reinicia el tiempo de medición y se espera que transcurran 10 minutos para nuevamente almacenar los datos en la SD. Este proceso de almacenamiento de los datos se repite hasta que se completen los 7 días de medición [3], pasado este período, se deja de guardar en la SD y el usuario debe extraer los archivos generados.

Figura 3.13 Flujograma para almacenamiento de los datos. Fuente: Imagen de los autores.

3.5 Flujograma para envío de los datos vía Ethernet

En la figura 3.14 se muestra el flujograma aplicado para el envío a través de comunicación Ethernet de los parámetros eléctricos y de calidad de energía eléctrica. En éste se observa que se habilita el puerto para la comunicación y se asigna una dirección IP junto con su respectivo Gateway. El envío de los parámetros se lo realiza cada dos segundos separando cada uno de ellos mediante el carácter de punto y coma (";"). Este proceso se encuentra dentro de un ciclo While Infinito realizándose continuamente la repetición de este proceso. Se realiza este envío continuamente para que en caso de que el sistema implementado se encuentre conectado a un punto de red, los datos puedan ser monitoreados remotamente por los usuarios de la red.

CAPÍTULO IV

FABRICACIÓN DEL PROTOTIPO ANALIZADOR DE CALIDAD DE ENERGÍA ELÉCTRICA

El presente capítulo aborda las partes esenciales para la fabricación del prototipo analizador de calidad de energía eléctrica tomando en cuenta la elaboración de la placa de circuito impreso (PCB: Printed Circuit Board), las conexiones de los elementos del sistema con la finalidad de que cualquier persona que reciba la tarjeta principal (mainboard) y los conectores del prototipo, pueda realizar el ensamblaje y conexiones requeridas para el funcionamiento del sistema completo; además de ello, se presenta el diseño de la carcasa del prototipo analizador, indicando la ubicación de cada elemento dentro del mismo.

4.1 Elaboración de la PCB

La elaboración de la PCB se la ha realizado en tres etapas: la primera corresponde al diseño de la misma, la segunda hace referencia a la fabricación de la PCB y la tercera corresponde al soldado de los materiales teniendo con ello la placa final resultante. A continuación se puede observar los procesos realizados.

4.1.1 Diseño de la PCB.

El diseño de la PCB se realizó en base al esquema de conexiones, mostrado en la figura 4.1.

Figura 4.1 Esquema de conexiones de la PCB. Fuente: Imagen de los autores.
En la figura 4.2 se observa la PCB realizada en el software ARES 7 Professional. En ésta se pueden ver replicados los circuitos necesarios para el funcionamiento del sistema completo; de forma general, se menciona que se han diseñado los circuitos de acondicionamiento tanto para la medición de voltaje como de corriente para cada una de las fases y corriente del neutro, además de ello, el circuito de medición de armónicos con la respectiva recepción en el microcontrolador de las señales senoidales y cuadradas que permitan el cálculo tanto de los armónicos de voltaje como de los armónicos de corriente. Las salidas de estos circuitos han sido conectadas al el módulo de procesamiento de parámetros de energía, en el que se realiza el cálculo tanto de los parámetros eléctricos como de los parámetros de calidad de energía.

Figura 4.2 Diseño de la PCB en el software ARES 7 Professional. Fuente: Imagen de los autores.

4.1.2 Fabricación de la PCB.

Mediante la técnica de transferencia térmica se realizó la fabricación de la PCB. En la figura 4.3 se observa la placa de cobre con el circuito impreso a través de la técnica antes mencionada.

Figura 4.3 PCB resultante de la técnica de transferencia térmica. Fuente: Imagen de los autores.

Posteriormente, se procede a sumergir la placa en el ácido de Percloruro de Hierro. Luego de realizar esto y la limpieza de la placa, se tiene como resultado el mostrado en la figura 4.4, en la que se puede observar la PCB únicamente con cobre en los lugares donde es requerido según el diseño realizado anteriormente. Una vez que se tenga esto, se procede a perforar la placa para posteriormente realizar la ubicación y el soldado de los elementos en la misma.

Figura 4.4 PCB luego de ser atacada con ácido. Fuente: Imagen de los autores.

4.1.3 Resultado final de la PCB.

Una vez que se han ubicado y soldado los elementos de la PCB se obtiene el resultado final que se muestra en la figura 4.5, ésta es la tarjeta principal del dispositivo. Posteriormente, en base a esta tarjeta, se muestran las conexiones para el montaje del prototipo.

Figura 4.5 Tarjeta principal del prototipo analizador de calidad de energía eléctrica. Fuente: Imagen de los autores.

4.2 Conexiones de los elementos del prototipo analizador de calidad de energía

A continuación se presentan las conexiones que se realizan en la tarjeta principal, en el módulo de procesamiento de parámetros de energía y en la GLCD.

4.2.1 Conexiones de la tarjeta principal.

Las conexiones realizadas en la tarjeta principal se presentan en la figura 4.6, en ella se muestra que cada fase del circuito se representó por un color que la diferencia de las otras fases, así se tiene que para la fase 1 tanto los conectores de voltaje, los de corriente y los cables de conexión son de color rojo. La fase 2 se halla representada por el color azul y la fase 3 por el verde. Mientras que el neutro se representa por el color negro. Como conectores de voltaje se utilizó los tipo banana, mientras que para corriente se empleó los conectores TRS o Jack de audio. Además, existen tres buses de datos (Bus D1, bus D2 y bus D3), el primero conecta la GLCD al módulo de procesamiento de parámetros de energía (Arduino Mega 2560), el bus D2 traslada las ondas acondicionadas de voltaje y corriente de las fases, y el bus D3 transporta las ondas cuadradas para el cálculo de frecuencias, estos buses llegan al módulo de procesamiento de distorsión armónica (ATMEGA 328P), donde se calculan los THD de voltaje y corriente. También se presenta la conexión del pulsador encargado de cambiar de pantalla para visualización de los datos del dispositivo.

Figura 4.6 Conexiones de los elementos del prototipo analizador de calidad de energía. Fuente: Imagen de los autores.

4.2.2 Conexiones del módulo de procesamiento de parámetros de energía.

En la figura 4.7 se muestra la plataforma utilizada en el presente trabajo como módulo de procesamiento de parámetros de energía, misma que corresponde a la tarjeta Arduino Mega 2560, que puede ser alimentada por medio de la conexión USB o a través de un adaptador de voltaje; siendo éste último ocupada por la portabilidad con la que debe contar el sistema de medición desarrollado. Además, se incorpora el Shield Ethernet, en el que se encuentra el conector RJ45 para comunicación Ethernet y la ranura de Micro SD para almacenamiento de los datos. Por otra parte, se utilizan 7 entradas analógicas del módulo de procesamiento de parámetros de energía, para adquirir las señales acondicionas de voltajes y corrientes de las 3 fases, así como corriente del neutro. Además, existen 4 interrupciones que se utilizan para el desarrollo de este trabajo, 3 empleadas para detectar los flancos de bajada de las ondas cuadradas y así obtener la frecuencia de cada fase, y la cuarta utilizada para el cambio de pantalla de visualización de los datos. El envío de las distorsiones armónicas se realiza a través del pin TX0 del módulo de procesamiento secundario (ATMEGA 328P), datos que son receptados en el pin RX0 del módulo de procesamiento principal (Arduino Mega 2560), mediante comunicación Serial. Finalmente, también se muestran los pines del módulo utilizados para el funcionamiento de la GLCD.

Figura 4.7 Diagrama de conexión del módulo de procesamiento de parámetros de energía.

Fuente: Imagen de los autores.

4.2.3 Conexiones de la GLCD.

La figura 4.8 representa las conexiones que se realizó para el funcionamiento de la GLCD. En ésta se muestran los pines que se utilizan del módulo de procesamiento de parámetros de energía, los pines de la GLCD y el orden de conexión entre los mismos, tanto del módulo hacia el sócalo del bus, como del bus hacia la GLCD; recalcando que la GLCD utilizada como interfaz para visualización de los datos es el modelo JHD12864E [31], teniéndose presente este modelo para las conexiones mostradas a continuación.

Figura 4.8 Diagrama de conexión de la GLCD JHD12864E. Fuente: Imagen de los autores.

N° Pin	Símbolo	Descripción	Función		
1	VSS	Tierra	0V (GND)		
2	VDD	Fuente de alimentación para circuitos lógicos	+5V		
3	V0	Ajuste de contraste de GLCD			
4	RS	Selección de registro instrucción/dato	RS=0 Registro de instrucción RS=1 Registro de dato		
5	R/W	Selección lectura/escritura	R/W=0 Escribir registro		
6	F	Señal habilitada			
7					
8	DB1				
9	DB2		8 Bits: DB0-DB7		
10	DB3	Líneas de entrada/salida			
11	DB4	de datos			
12	DB5				
13	DB6				
14	DB7				
15	CS1	Selección Chip	CS=1 Señal elegida de Chip para IC1		
16	CS2	Selección Chip	CS=2Señal elegida de Chip para IC2		
17	RST	Señal de reinicio	RSTB=0, pantalla en línea 0		
18	VEE	Voltaje negativo para manejo de LCD	-10V		
19	LED+	Voltaje de alimentación para LED+	+5V		
20	LED-	Voltaje de alimentación para LED-	0V		

Tabla 4.1 Descripción de los pines de la GLCD JHD12864E.

Fuente: JHD12864E Datasheet [27].

4.3 Montaje del prototipo analizador de calidad de energía eléctrica

Para obtener el equipo final armado del sistema en cuestión, es necesario primeramente tener un diseño del case (estuche) para posteriormente realizar el montaje de la tarjeta principal, la GLCD, los conectores y el pulsador, necesarios en el analizador de calidad de energía eléctrico. A continuación se presenta el diseño del case y el ensamblaje de los elementos del dispositov.

4.3.1 Diseño del case.

El estuche del prototipo ha sido diseñado en el software SolidWorks 2014, tal como se muestra en la figura 4.9. En ella se puede observar que el case está dividido en dos secciones, la base y la tapa, de tal manera que se pueda incluir en el mismo la tarjeta principal, los conectores, la GLCD y el pulsador, tomando en cuenta también que los orificios necesarios para el Jack USB, la alimentación, el conector RJ45 y el slot para la tarjeta Micro SD del controlador Arduino queden correctamente ubicados en el case para que coincidan con las ubicaciones que éstos tienen dentro de la tarjeta principal. En base a ello, se explica en el siguiente ítem la ubicación de los elementos del sistema dentro del estuche diseñado.

Figura 4.9 Diseño del case (base y tapa). Fuente: Imagen de los autores.

4.3.2 Ensamblaje del prototipo.

El primer paso para ensamblar los elementos del prototipo analizador es ubicar la tarjeta principal en la base del case conforme a la posición que se muestra en la figura 4.10. Es necesario asegurar la tarjeta principal a la base con tornillos en las cuatro esquinas para que ésta se mantenga fija dentro del estuche.

Figura 4.10 Ensamblaje de la tarjeta principal en la base del case. Fuente: Imagen de los autores.

El siguiente paso consiste en ubicar en la tapa del case los conectores, el pulsador y la GLCD conforme a las posiciones que muestra la figura 4.11. Los conectores y el pulsador son insertados en el case y asegurados mediante una tuerca cada uno, mientras que la GLCD debe ser asegurada al estuche mediante tornillos en las cuatro equinas de la misma, de esta forma los elementos se mantienen fijos en el case.

Figura 4.11 Ensamblaje de los elementos de la tapa del case. Fuente: Imagen de los autores. Finalmente, los conectores, el pulsador y la GLCD son conectados a la tarjeta principal mediante el cableado que corresponde a cada uno. Posteriormente, se procede a cerrar el case mediante tornillos en las cuatro esquinas de la base sujetándola a la tapa, llegando a tener con ello montado el sistema completo tal como se puede observar en la figura 4.12. En ella se muestra el prototipo analizador de calidad de energía eléctrica desarrollado.

Figura 4.12 Prototipo analizador de calidad de energía eléctrica. Fuente: Imagen de los autores.

CAPÍTULO V

EVALUACIÓN DE LA PERFORMANCE DEL PROTOTIPO ANALIZADOR DE CALIDAD DE ENERGÍA

El presente capítulo aborda la evaluación de los parámetros eléctricos y de calidad de energía eléctrica del sistema implementado. Para ello, se graficó los valores obtenidos del prototipo analizador de calidad de energía eléctrica, frente a los resultados adquiridos por el instrumento tomado como referencia, Fluke 434; recalcándose que este instrumento no es un dispositivo normalizado; sin embargo, es el equipo de medición con el que se cuenta en la Universidad.

Los resultados de las mediciones realizadas corresponden a los 6 parámetros eléctricos presentados en la tabla I y a cuatro parámetros de calidad de energía: nivel de voltaje, desbalance de tensión, desequilibrio de corriente y factor de potencia. Se excluyó variación de frecuencia, debido a que el instrumento tomado como referencia no calcula este parámetro.

Las mediciones se realizaron en el tablero de distribución de energía del Edificio de Unidades Productivas, ubicado dentro del Campus de la UTPL, edificación seleccionada por ser la de mayor consumo energético, de acuerdo a estudios anteriores [15]

En la figura 5.1 se presenta la instalación tanto del prototipo analizador de calidad de energía eléctrica implementado como del instrumento tomado como referencia en el tablero de distribución del edificio antes citado, proceso realizado para la evaluación de las mediciones realizadas.

Figura 5.1 Instalación del prototipo y del analizador de calidad de energía en el tablero de distribución del Edificio Unidades Productivas – Campus UTPL. Fuente: Imagen de los autores.

5.1 Evaluación de los parámetros eléctricos

A continuación se presenta la evaluación de los valores obtenidos para cada uno de los parámetros eléctricos medidos:

- Voltajes rms
- Corrientes rms
- Corriente del neutro
- Frecuencia
- Potencia activa
- Potencia aparente

5.1.1 Voltajes rms.

En la figura 5.2, figura 5.3 y figura 5.4, se muestran los resultados de voltaje rms obtenidos para la fase 1, fase 2 y fase 3 del circuito, respectivamente. Las gráficas de color rojo representan los valores proporcionados por el analizador de calidad de energía eléctrica realizado en el presente trabajo, mientras que de color negro los obtenidos por el Fluke 434. Como se observa en las figuras, las gráficas tienden a aproximarse entre sí para cada fase, existiendo como error máximo el 0,22%, 0,37% y 0,30% para la fase 1, fase 2 y fase 3 respectivamente, entre los valores del sistema implementado respecto a los adquiridos por Fluke; recalcando que éste último posee como incertidumbre de fábrica un valor del $\pm 0,5\%$ [32] para voltajes rms medidos.

Figura 5.2 Valores de voltaje rms obtenidos para la fase 1. Fuente: Imagen de los autores.

Figura 5.3 Valores de voltaje rms obtenidos para la fase 2. Fuente: Imagen de los autores.

Figura 5.4 Valores de voltaje rms obtenidos para la fase 3. Fuente: Imagen de los autores.

5.1.2 Corrientes rms.

En la figura 5.5, figura 5.6 y figura 5.7, se muestran los valores obtenidos de corriente rms para la fase 1, fase 2 y fase 3 respectivamente, tanto por el analizador de calidad de energía eléctrica implementado (color rojo) como por el dispositivo Fluke 434 (color negro). Se puede

observar claramente que ambas curvas de cada fase siguen la misma tendencia en las mediciones de corriente rms teniendo un error máximo de 3,22%, 2,89% y 3,38% para la fase 1, fase 2 y fase 3 respectivamente, entre los valores obtenidos por el sistema implementado frente a los adquiridos por el Fluke; tomando en cuenta que éste último tiene como incertidumbre de fábrica un valor de ±0,5% [32] para valores de corriente rms medidos.

Figura 5.5 Valores de corriente rms obtenidos para la fase 1. Fuente: Imagen de los autores.

Figura 5.6 Valores de corriente rms obtenidos para la fase 2. Fuente: Imagen de los autores.

Figura 5.7 Valores de corriente rms obtenidos para la fase 3. Fuente: Imagen de los autores.

5.1.3 Corriente del neutro.

La figura 5.8 muestra los resultados obtenidos para la corriente del neutro del circuito. La gráfica de color rojo representa los valores proporcionados por el analizador de calidad de energía realizado, mientras que de color negro los obtenidos por el Fluke 434. Como se puede observar en la figura, las gráficas tienden a aproximarse entre sí, sin embargo se tiene como error máximo el 5,7% entre los valores del sistema implementado en relación a los adquiridos por el Fluke; último que tiene como incertidumbre de fábrica un valor del ±0,5% para corrientes rms medidas [32]. El porcentaje de error obtenido para estas mediciones supera el 5% del mencionado al inicio de este capítulo, por lo que se debe indicar que para el 94,15% de los valores contrastados, su error se encuentra por debajo del 5%; mientras que para el 5,85% restante, éste supera dicho valor.

Figura 5.8 Valores obtenidos de la corriente del neutro. Fuente: Imagen de los autores.

5.1.4 Frecuencia.

En la figura 5.9 se muestran los valores de frecuencia obtenidos para la fase 1, tanto por el analizador de calidad de energía eléctrica implementado (color rojo) como por el dispositivo Fluke 434 (color negro). De manera general se puede ver que ambas gráficas siguen la misma tendencia en cuanto a los valores obtenidos, tendiendo un error máximo de 1,7% entre los valores proporcionados por el sistema implementado frente a los adquiridos por el Fluke. Es de importancia señalar que el dispositivo Fluke 434 tiene una exactitud de fábrica de $\pm 0,01$ Hz [32] para valores de frecuencia medidos.

Figura 5.9 Valores de frecuencia obtenidos para la fase 1. Fuente: Imagen de los autores.

5.1.5 Potencia activa.

En la figura 5.10, figura 5.11 y figura 5.12, se presentan los valores de potencia activa obtenidos para la fase 1, fase 2 y fase 3 respectivamente, tanto por el analizador de calidad de energía eléctrica realizado (color rojo) como por el dispositivo Fluke 434 (color negro). Se puede observar claramente que ambas curvas de cada fase siguen la misma tendencia en las mediciones de potencia activa teniendo un error máximo de 4,6%, 4,7% y 4,8% para la fase 1, fase 2 y fase 3 respectivamente, entre los valores obtenidos por el sistema implementado frente a los adquiridos por el Fluke; teniendo en cuenta que este último tiene como incertidumbre de fábrica un valor de $\pm 1\%$ [32] para valores de potencia activa medidos.

Figura 5.10 Valores de potencia activa obtenidos para la fase 1. Fuente: Imagen de los autores.

Figura 5.11 Valores de potencia activa obtenidos para la fase 2. Fuente: Imagen de los autores.

Figura 5.12 Valores de potencia activa obtenidos para la fase 3. Fuente: Imagen de los autores.

5.1.6 Potencia aparente.

En la figura 5.13, figura 5.14 y figura 5.15, se muestran los valores de potencia aparente obtenidos para la fase 1, fase 2 y fase 3 respectivamente, tanto por el analizador de calidad de energía eléctrica implementado (color rojo) como por el dispositivo Fluke 434 (color negro). De manera general se puede observar que ambas gráficas siguen la misma tendencia en cuanto a los valores obtenidos, tendiendo un error máximo de 4,7%, 2,3% y 3,5% para la fase 1, fase 2 y fase 3 respectivamente, entre los valores obtenidos por el sistema implementado frente a los adquiridos por el Fluke. Es relevante mencionar que el dispositivo Fluke 434 tiene una incertidumbre de fábrica de $\pm 1\%$ [32] para valores de potencia aparente medidos.

Figura 5.13 Valores de potencia aparente obtenidos para la fase 1. Fuente: Imagen de los autores.

Figura 5.14 Valores de potencia aparente obtenidos para la fase 2. Fuente: Imagen de los autores.

Figura 5.15 Valores de potencia aparente obtenidos para la fase 3. Fuente: Imagen de los autores.

5.2 Evaluación de los parámetros de calidad de energía eléctrica

A continuación se presenta la evaluación de los valores obtenidos para cada uno de los parámetros de calidad de energía eléctrica incorporados en el presente trabajo, con excepción de la variación de frecuencia, debido a que el instrumento de referencia no calcula este parámetro. A continuación se presenta la validación de los valores obtenidos para cada uno de los parámetros de calidad de energía medidos:

- Nivel de voltaje
- Desbalance de tensión
- Desequilibrio de corriente
- Factor de potencia

5.2.1 Nivel de voltaje.

En la figura 5.16, figura 5.17 y figura 5.18, se muestran los resultados de nivel de voltaje obtenidos para la fase 1, fase 2 y fase 3 del circuito, respectivamente. Las gráficas de color rojo representan los valores proporcionados por el analizador de calidad de energía eléctrica realizado en el presente trabajo, mientras que de color negro los obtenidos por el Fluke 434. Como se observa en las figuras, las gráficas tienden a aproximarse entre sí para cada fase,

existiendo como error máximo el 3,83%, 4,35% y 4,34% para la fase 1, fase 2 y fase 3 respectivamente, entre los valores del sistema de medición respecto a los adquiridos por el Fluke; recalcando que éste último posee como incertidumbre de fábrica el $\pm 0,2\%$ para valores de nivel de voltaje [32].

Figura 5.16 Valores de nivel de voltaje obtenidos para la fase 1. Fuente: Imagen de los autores.

Figura 5.17 Valores de nivel de voltaje obtenidos para la fase 2. Fuente: Imagen de los autores.

Figura 5.18 Valores de nivel de voltaje obtenidos para la fase 3. Fuente: Imagen de los autores.

5.2.2 Desbalance de tensión.

La figura 5.19 muestra los resultados obtenidos del desbalance de tensión existente entre las fases del circuito. La gráfica de color rojo representa los valores proporcionados por el analizador de calidad de energía realizado, mientras que de color negro los obtenidos por el Fluke 434. Como se puede observar en la figura, las gráficas tienden a aproximarse entre sí, sin embargo existe un 7% de error máximo entre los valores del sistema implementado en relación a los adquiridos por el Fluke; último que tiene como incertidumbre de fábrica el \pm 0,5% para valores de desbalance de tensión [32]. El porcentaje de error obtenido para estas mediciones supera el 5% del mencionado al inicio de este capítulo, por lo que se debe indicar que para el 90,23% de los valores contrastados, su error se encuentra por debajo del 5%; mientras que para el 9,77% restante, éste supera dicho valor.

Figura 5.19 Valores obtenidos de desbalance de tensión. Fuente: Imagen de los autores.

5.2.3 Desequilibrio de corriente.

En la figura 5.20 se muestran los valores obtenidos de desequilibrio de corriente para el sistema trifásico, tanto por el analizador de calidad de energía eléctrica implementado (color rojo) como por el dispositivo Fluke 434 (color negro). Se puede observar claramente que ambas curvas siguen la misma tendencia en las mediciones de desequilibrio de corriente teniendo un error máximo de 5,9% entre los valores obtenidos por el sistema implementado frente a los adquiridos por el Fluke; tomando en cuenta que este último tiene como incertidumbre de fábrica un valor de $\pm 1\%$ [32] para valores de desequilibrio de corriente. Al ser este error máximo mayor al 5% mencionado al inicio del presente capítulo, es necesario indicar que el 97,88% de los errores en las mediciones del desequilibrio de corriente son menores a este valor del 5%, siendo únicamente el 2,22% de dichas incertidumbres mayores a éste.

Figura 5.20 Valores de desequilibrio de corriente obtenidos. Fuente: Imagen de los autores.

5.9.4 Factor de potencia.

En la figura 5.21, figura 5.22, figura 5.23 y figura 5.24, se muestran los resultados de factor de potencia obtenidos para la fase 1, fase 2, fase 3 y el circuito global, respectivamente. Las gráficas de color rojo representan los valores proporcionados por el analizador de calidad de energía eléctrica realizado, mientras que de color negro los obtenidos por el Fluke 434. Como se observa en las figuras, las gráficas tienden a aproximarse entre sí, existiendo como error máximo el 3,55%, 4,57%, 4,04% y 4,04% para la fase 1, fase 2, fase 3 y el circuito global respectivamente, entre los valores del sistema de medición respecto a los adquiridos por el Fluke; recalcando que éste último posee como incertidumbre de fábrica el ±0,03% para valores de factor de potencia [32].

Figura 5.21 Valores del factor de potencia obtenidos para la fase 1. Fuente: Imagen de los autores.

Figura 5.22 Valores del factor de potencia obtenidos para la fase 2. Fuente: Imagen de los autores.

Figura 5.23 Valores del factor de potencia obtenidos para la fase 3. Fuente: Imagen de los autores.

Figura 5.24 Valores del factor de potencia obtenidos para el circuito global. Fuente: Imagen de los autores.

5.3 Resumen de los resultados de evaluación de los parámetros medidos

A continuación se presenta la tabla resumen de los resultados del proceso de evaluación realizado:

Parámetro	% Error Máximo				
electrico	Fase 1	Fase 2	Fase 3		
Voltaje rms	0,22	0,37	0,30		
Corriente rms	3,22	2,89	3,38		
Corriente del	5,7				
neutro	(94,15% de errores < 5%, 5,85% de error				
	> 5%)				
Frecuencia	1,7	-	-		
Potencia Real	4,6	4,7	4,8		
Potencia Aparente	4,7	2,3	3,5		

Tabla 5.1 Resultados de evaluación de los parámetros eléctricos.

Fuente: Tabla propia de los autores

Tabla 5.2 Resultados de evaluación de los parámetros de calidad de energía eléctrica.

Parámetro de	% Error Máximo				
calidad de energía eléctrica	Fase 1	Fase 2	Fase 3	Circuito	
Nivel de voltaje	3,83	4,35	4,34	-	
Desbalance de tensión	-	-	-	7 (90,23% de errores < 5%, 9,77% de errores > 5%)	
Desequilibrio de corriente	-	-	-	5,9 (97,88% de errores < 5%, 2,22% de errores > 5%)	
Factor de potencia	3,55	4,57	4,04	4,04	

Fuente: Tabla propia de los autores

CONCLUSIONES

- En base a la normativa se seleccionó los parámetros eléctricos y de calidad de energía a medir y calcular en el prototipo desarrollado en este proyecto.
- Para medición de tensión se seleccionó la técnica del divisor de voltaje, considerando que en este trabajo se debe adquirir tanto la forma de onda fundamental como sus distintos armónicos. Esta técnica no brinda aislamiento con respecto a la fuente de tensión, por ello se agregó un circuito de protección para evitar que el módulo de procesamiento de parámetros se vea afectado por sobretensiones.
- Para medición de corriente se seleccionó la técnica basada en el transformador de corriente, debido a que no se requiere conectar el sensor en serie, con lo que se evita abrir el circuito; además, este sensor provee a la salida una corriente proporcional a la corriente medida, con lo que se reproduce la forma de onda de la señal medida.
- En el prototipo analizador de calidad de energía desarrollado, se implementaron correctamente los algoritmos para calcular los seis parámetros eléctricos y seis de los ocho parámetros de calidad de energía; excluyéndose Factor de Cresta y Flicker por limitaciones a nivel de hardware de la plataforma Arduino Mega 2560, tarjeta utilizada como módulo de procesamiento de datos.
- En base a las gráficas resultantes de las mediciones realizadas, se observa que los valores adquiridos por el prototipo desarrollado, siguen la misma tendencia respecto a los obtenidos por el instrumento tomado como referencia, Fluke 434, dispositivo empleado a falta de un equipo de medición normalizado; tendencia que se presenta tanto para los parámetros eléctricos como para los de calidad de energía eléctrica. Por consiguiente, este prototipo permite al usuario estimar la tendencia de la calidad de energía para una red trifásica.

RECOMENDACIONES

- Para trabajos posteriores, se sugiere añadir al sistema implementado un banco de baterías que permita que el analizador de calidad de energía eléctrica siga con su funcionamiento normal, en caso de que exista ausencia momentánea de energía eléctrica en la red pública.
- Al momento de conectar los sensores de corriente al sistema implementado, guiarse por los colores de los conectores TRS hembra (rojo = fase 1, azul = fase 2, verde = fase 3, neutro = negro) y hacer coincidir el correspondiente a cada fase, debido a que el acondicionamiento de los mismos se realizó de manera singular para cada circuito de cada fase, pudiendo tener variaciones con mayores errores en las mediciones en caso de no hacerlo de la manera indicada.
- Para trabajos posteriores, mejorar la interfaz de visualización de los datos, añadiendo gráficas de las señales de onda adquiridas o, presentando las mediciones realizadas a través del tiempo en la visualización continua a través de una pantalla gráfica a colores.
- Como mejoras a futuro, se sugiere realizar el diseño de la PCB del sistema a doble cara, para así reducir el tamaño físico del dispositivo, mejorando su portabilidad.
- Previamente al uso del analizador de calidad de energía eléctrica, leer el manual de usuario presentado en el Anexo A, en éste se describe lo necesario para realizar las mediciones adecuadas, la descarga de los archivos y la gráfica de los valores adquiridos luego de los 7 días de medición.
- Para trabajos futuros, en cuanto al módulo de procesamiento de parámetros de energía, se recomienda utilizar sistemas DSPs, debido a que la plataforma Arduino no está pensada para aplicaciones de procesamiento de señales; con ello se puede desarrollar un dispositivo que cuente con los restantes parámetros que en este proyecto no fueron considerados.

REFERENCIAS

[1] NORMA IEEE 1159 - 1995, "*Fundamentos de la Calidad de la Energía*" [en línea], disponible en: http://dspace.ups.edu.ec/bitstream/123456789/75/7/Capitulo1.pdf, [consulta: 26 de noviembre 2013].

[2] OPEN ENERGY MONITOR, "*AC Power Theory - Advanced maths*" [en línea], disponible en: http://openenergymonitor.org/emon/buildingblocks/ac-power-advanced-maths, [consulta: 11 de diciembre 2013].

[3] CONELEC, "*Regulación No. CONELEC – 004/01*" [en línea], disponible en: http://www.conelec.gob.ec/normativa_detalle.php?cd_norm=23, [consulta: 26 de noviembre 2013].

[4] "*Decreto Ejecutivo No.* 796" (2005), [en línea], disponible en: https://www.google.com.ec/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&ved=0C DYQFjAC&url=http%3A%2F%2Fwww.transelectric.com.ec%2Ftranselectric_portal%2Ffiles% 2Frs_rsse%2520(reforma%252022-nov-05).doc&ei=qY-

VUqCDK6etsASgqIGYAw&usg=AFQjCNHr7kJxpKkGZt7LUwLJTiVrxdMpnQ&bvm=bv.57155 469,d.cWc, [consulta: 26 de noviembre 2013].

[5]. "*Calidad de la Energía Eléctrica*", Universidad del Atlántico, Universidad Autónoma de Occidente, [en línea], disponible en: http://www.si3ea.gov.co/Portals/0/Gie/Docs/calidad.pdf, [consulta: 26 de noviembre 2013].

[6] "*Desequilibrios de tensión e intensidad*" [en línea], disponible en: http://electricidadviatger.blogspot.com/2009/05/desequilibrios-de-tension-e-intensidad.html, [consulta: 26 de noviembre 2013].

[7] Casaravilla G. y Echinope V., "*Desbalances – Estudio de alternativas para su estimación*" [en línea], disponible en: http://epim2005.fing.edu.uy/trabajos/p12.pdf, [consulta: 26 de noviembre 2013].

[8] "*Medición de la calidad de energía*" [en línea], disponible en: http://www3.fi.mdp.edu.ar/electrica/archivos/medicion_calidad_energia.pdf, [consulta: 26 de noviembre 2013].

[9] Voltimum, "Análisis de calidad de energía eléctrica en sistemas trifásicos de distribución" [en línea], disponible en: http://www.voltimum.es/news/607/cm/analisis-de-la-calidad-de-laenergia-electrica-en-sistemas-trifasicos-de-distribucion.html, [consulta: 26 de noviembre 2013].

[10] Guerrero D. (2011), *"FACTOR DE POTENCIA EN UN CIRCUITO MONOFÁSICO Y UNO TRIFÁSICO"*, Universidad "Fermín Toro", Lara, Venezuela, [en línea], disponible en: http://www.slideshare.net/warrionet/factor-de-potencia-en-un-circuito-monofsico-y-uno-trifsico, [consulta: 26 de noviembre 2013].

[11] Arcila J., "ARMÓNICOS EN SISTEMAS ELÉCTRICOS" [en línea], disponible en: http://www.sistemamid.com/panel/uploads/biblioteca/1/349/352/354/1891.pdf, [consulta: 11 de diciembre 2013].

[12] RTR – Energía (2012), "Los Armónicos y la Calidad de Energía Eléctrica" [en línea], disponible en: http://www.rtrenergia.es/rtr/ficheros/armonicos_2012.pdf, [consulta: 26 de noviembre 2013].

[13] IEEE Std. 519 – 1992 (1993), "*IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems*" [en línea], disponible en: http://www.coe.ufrj.br/~richard/Acionamentos/IEEE519.pdf, [consulta: 8 de diciembre 2013].

[14] Blooming T. y Carnovale D. (2005), "APPLICATION OF IEEE STD 519-1992 HARMONICLIMITS"[enlínea],disponiblefile:///C:/Users/Cliente2013/Downloads/ApplicationofIEEEStd5191992HarmonicLimits%20(1).pdf, [consulta: 8 de diciembre 2013].

[15] Casierra K. e Íñiguez A. (2013), "*Monitoreo y análisis de variables eléctricas que permiten validar el estado actual para futuras correcciones en el suministro de energía eléctrica de cada uno de los edificios del campus UTPL*", Tesis de ingeniería, Universidad Técnica Particular de Loja, Loja, Ecuador, [en línea], disponible en: http://dspace.utpl.edu.ec//handle/123456789/6531, [consulta: 12 de diciembre 2013].

[16] "*Capítulo III, Adquisición de datos y procesamiento de señales*" [en línea], disponible en: http://dspace.ups.edu.ec/bitstream/123456789/73/11/Capitulo3.pdf, [consulta: 13 de diciembre 2013].

[17] Velasco A., Soler J., Botina O., "*Divisores de tensión y corriente*", Universidad Nacional de Colombia, Bogotá, Colombia, [en línea], disponible en: http://www.fisica.ru/dfmg/teacher/archivos/Divisor_de_Tension_y_Corriente.pdf, [consulta: 13 de diciembre 2013].

[18] "*Método indirecto para la calibración de Shunt de Corriente Continua*" [en línea], disponible en: http://www.metas.com.mx/guiametas/La-Guia-MetAs-09-08-Metodo-Indirecto-Shunt.pdf, [consulta: 12 de diciembre 2013].

[19] *"El transformador"* [en línea], disponible en: http://roble.pntic.mec.es/jlop0164/archivos/transformador.pdf, [consulta: 14 de diciembre 2013].

[20] Hernández E. y Rodríguez W. (2009), "Adquisición de formas de onda de tensión y de corriente para un prototipo de contador digital trifásico", Universidad Industrial de Santander, Bucaramanga, Colombia, [en línea], disponible en: http://repositorio.uis.edu.co/jspui/bitstream/123456789/3356/2/129605.pdf, [consulta: 14 de diciembre 2013].

[21] Prieto D., "*Protección contra Sobretensiones en Fuentes de Alimentación*" [en línea], disponible en:

http://www.qsl.net/lu9dpd/Homebrew/Proteccion_sobretension/proteccion_sobretension.htm, [consulta: 18 de diciembre 2013].

[22] Foros de Electrónica, "*Protección de Fuentes (MCR106)*" [en línea], disponible en: http://www.forosdeelectronica.com/proyectos/proteccion-fuentes.htm, [consulta: 18 de diciembre 2013].

[23] Vishay Semiconductors, "*1N4728A to 1N4764A – Zennr Diodes*" [en línea], disponible en: http://www.jameco.com/Jameco/Products/ProdDS/1427452.pdf, [consulta: 18 de diciembre 2013].

[24] Motorola, "*MCR106 Series*" [en línea], disponible en: http://pdf.datasheetcatalog.com/datasheet/motorola/MCR106.pdf, [consulta: 18 de diciembre 2013].

[25] "*Nuevos desarrollos en sensores de corriente en medidores de estado sólido*" [en línea], disponible en: http://www.analog.com/static/importedfiles/tech_articles/16792408482720MI_Issue3_2001_pg52-53_analog_Spanish.pdf, [consulta: 12 de diciembre 2013].

[26] "*MODULO II – 5 Transformadores de Instrumentos.doc*" [en línea], disponible en: http://www.frlp.utn.edu.ar/materias/tydee/moduloii.pdf, [consulta: 12 de diciembre 2013].

[27] "*Transductor y acondicionador de corriente por Efecto Hall*" [en línea], disponible en: http://www.fio.unam.edu.ar/moodle2/pluginfile.php/13516/mod_folder/content/0/Sensor_Corri ente_final_.pdf?forcedownload=1, [consulta: 12 de diciembre 2013].

[28] Soto T. (2007), "*Medidor de Potencia*" [en línea], disponible en: http://profesores.elo.utfsm.cl/~agv/elo326/1s07/projects/TheoSoto/presentacion1.ppt, [consulta: 12 de diciembre 2013].

[29] Roldán A., "*Tema 1E – Amplificadores Operacionales - COMPARADORES*", Universidad de Granada, Granada, España, [en línea], disponible en: http://electronica.ugr.es/~amroldan/asignaturas/curso08-09/ftc/temas/Tema 01E AO Comparador.pdf, [consulta: 12 de diciembre 2013].

[30] Ganazhapa B. (2014), "Síntesis y validación de metodologías y algoritmos para la determinación de parámetros de calidad de energía eléctrica", Tesis de ingeniería no publicada, Universidad Técnica Particular de Loja, Loja, Ecuador.

[31] "*JHD12864E Datasheet*" [en línea], disponible en: http://ablab.in/wp-content/uploads/2013/08/JHD12864E.pdf, [consulta: 24 de febrero 2014].

[32] "*Fluke 434 / PWR Power Analyzer*" [en línea], disponible en: http://docseurope.electrocomponents.com/webdocs/0e0d/0900766b80e0df02.pdf, [consulta: 29 de agosto 2014].
ANEXOS

ANEXO A

MANUAL DE USUARIO DEL PROTOTIPO ANALIZADOR DE CALIDAD DE ENERGÍA ELÉCTRICA

El prototipo analizador de calidad de energía eléctrica es de fácil uso y sus datos se pueden descargar desde la tarjeta Micro SD y ser visualizados con un software de acceso común como lo es "Microsoft Office Excel", sin necesidad de un programa propietario del fabricante. A continuación se presenta los pasos para realizar las mediciones y la visualización de éstas en el computador:

- Conectar los sensores de corriente y las pinzas de medición de voltaje al dispositivo haciendo coincidir el color correspondiente a cada conector, es decir, para la fase 1: color rojo, fase 2: color azul y fase 3: color verde.
- 2. Ubicar los sensores de corriente y las pinzas de medición de voltaje en cada una de las fases del tablero del circuito trifásico a medir.
- 3. Insertar la tarjeta Micro SD en el slot del case destinado para ésta.
- 4. Conectar la fuente de alimentación del prototipo, anotando la hora exacta en el que éste fue conectado. Para el presente ejemplo, la hora de inicio de las mediciones es 17:59:00.
- Dejar el dispositivo conectado los 7 días, para la obtención de los parámetros eléctricos y de calidad de energía eléctrica.
- 6. Desconectar el dispositivo pasados los 7 días de medición.
- 7. Extraer la tarjeta Micro SD del prototipo.
- Almacenar los archivos .txt de la Micro SD en el computador. Los archivos obtenidos son: para Voltaje rms: "VOLTRMS.txt", Corriente rms: "CORRIRMS.txt", Frecuencia: "FRECPROM.txt", Potencia Activa: "POTACT.txt", Potencia Aparente: "POTAPAR.txt", Potencia Reactiva: "POTREAC.txt", Nivel de Voltaje: "NIVOLT.txt", Desbalance de Tensión: "DESBTEN.txt", Desequilibrio de Corriente: "DESECOR.txt", Variación de Frecuencia: "VARFREC.txt", Factor de Potencia: "FACTPOT.txt", Distorsión Armónica Total de Voltaje : "THDV.txt" y Distorsión Armónica Total de Corriente: "THDI.txt".
- Abrir el programa "Microsoft Office Excel". Para el presente ejemplo se emplea el software "Microsoft Office Excel 2010".
- 10. Abrir el archivo .txt del cual se quiera visualizar los datos. Para el presente ejemplo se utiliza el archivo "VOLTRMS.txt".
- Aparece una pantalla como la de la figura A.1 en la cual se señala la opción "Delimitados" y se da clic en "Siguiente".

Asistente para importar texto - paso 1 de 3	x
El asistente estima que sus datos son Delimitados. Si esto es correcto, elija Siguiente, o bien elija el tipo de datos que mejor los describa.	
Tipo de los datos originales Elija el tipo de archivo que describa los datos con mayor precisión:	
 Delimitados Caracteres como comas o tabulaciones separan campos. De ancho fijo Los campos están alineados en columnas con espacios entre uno y otro. 	
Comenzar a importar en la fila: 1 origen del archivo: MS-DOS (PC-8)	•
Vista previa del archivo C: \Users\Eduardo Brito \Documents\TESIS \resutlados para manual\resutlados para manual\VOLTRMS.TXT	
1 123.57;121.25;122.30;601349; 2 123.24;121.09;122.03;1202316; 3 125.03;123.00;124.08;1803378; 4 124.10;122.02;123.21;2404366; 5 123.63;121.66;122.97;3005344;	•
Cancelar < Atrás Siguiente > Einaliza	r

Figura A.1 Paso 1 para importar texto en Microsoft Office Excel. Fuente: Imagen de los autores.

12. Seleccionar la opción "Punto y coma" tal como se muestra en la figura A.2 y dar clic en "Siguiente".

Esta pantalla le permite establecer los separadores contenidos en los datos. Se puede ver cómo cambia el texto en la vista previa. Separadores Tabulación Coma Considerar separadores consecutivos como uno solo Coma Calificador de texto: L23.57 121.25 122.30 601349 L23.24 121.09 122.03 1202316 L25.03 123.00 124.08 1803378 L24.10 122.02 123.21 2404366 L23.63 121.66 122.97 3005344	Asistente para impor	tar texto - paso 2 de	3				? <mark>×</mark>
123.57 121.25 122.30 601349 123.24 121.09 122.03 1202316 125.03 123.00 124.08 1803378 124.10 122.02 123.21 2404366 123.63 121.66 122.97 3005344	Esta pantalla le permit Separadores Tabulación Punto y coma Coma Espacio Qtro:	te establecer los separa	dores contenidos en la idores consecutivos co	ns datos. Se puede mo uno solo	ver cómo cambia	a el texto en la vis	ta previa.
	123.57 121.25 123.24 121.09 125.03 123.00 124.10 122.02 123.63 121.66 ◀	122.30 601349 122.03 1202316 124.08 1803378 123.21 2404366 122.97 3005344					

Figura A.2 Paso 2 para importar texto en Microsoft Office Excel. Fuente: Imagen de los autores.

13. Se mostrará una pantalla como la de la figura A.3 en la cual se dará clic en "Finalizar".

Esta pantalla permite seleccionar cada columna y establecer el formato de los datos. Formato de los datos en columnas © General Texto Pegcha: DMA No importar columna (saltar) Vista previa de los datos Vista previa de los datos <u>Eeneral Feneral Feneral Feneral Feneral</u> 123.57 121.25 122.30 601349 123.24 121.09 122.03 1202316 125.03 123.00 124.108 1203378 121.66 122.97 3005344 Cancelar 	Asistente para importar texto - pas	o 3 de 3
Vista previa de los datos <u>Seneral Ceneral Ceneral Ceneral Ceneral</u> 123.57 121.25 123.24 121.09 123.00 124.08 124.10 122.02 123.63 121.66 123.63 121.66 123.63 121.66 123.63 121.66 123.63 121.66 123.63 121.66 123.63 121.66 123.63 121.66 123.63 121.66 123.63 121.66 123.63 121.66 123.64 •	Esta pantalla permite seleccionar cada Formato de los datos en columnas	columna y establecer el formato de los datos. 'General' convierte los valores numéricos en números, los valores de fechas en fechas y todos los demás valores en texto. <u>A</u> vanzadas
	Vista previa de los datos Peneral General General General 123.57 121.25 122.30 6013 123.24 121.09 122.03 1202 125.03 123.00 124.08 1803 124.10 122.02 123.21 2404 123.63 121.66 122.97 3005 ∢	Eneral 349 3378 3366 3344 Cancelar < Atrás Siguiente > Enalizar

Figura A.3 Paso 3 para importar texto en Microsoft Office Excel. Fuente: Imagen de los autores.

14. Insertar una fila extra al inicio de los datos tal como se presenta en la figura A.4.

X		1				-	-	VOLTRMS - Mid	rosoft Exc		all the st					- X
Arch	ivo Inicio	Insertar	Diseño de pág	ina Fórmulas	Datos	Revisar	Vista	Programador	Complem	entos ABBYY	FineReader 11				۵ 🕜	
ſ	Cal	ibri	* 11 * A*	م = = =	<i>≫</i> ,	📑 Ajustar te	xto	General	٣	55		÷	*	Σ Autosuma	Ż	A
Peg	ar 🍶 🛛 N	<u>K</u> <u>s</u> .	🖽 - 🛛 🗞 - 🗛		律律	Combinar	y centrar *	\$ ~ % 000	€0 00 00 00	Formato D	ar formato Estilos d	e Insertar E	Eliminar Formato	Relienar	Ordenar	Buscar y
Porta	pap	Fue	inte	5	Alinea	nción	E.	Número	Di	condicional * co	eida * ceida *		Celdas	2 bonu	y filtrar * s Modificar	eleccionar *
_	F1	- (n	fr						-							~
	Δ.	B	6	D	F	F	6	н			ĸ	1	м	N	0	
1	-	0	C				0			,	ĸ				0	^
2	123,57	121,2	5 122,3	601349		•										_
3	123,24	121,0	9 122,03	1202316												
4	125,03	12	3 124,08	1803378												
5	124,1	122,0	2 123,21	2404366												
6	123,63	121,6	6 122,97	3005344												
7	123,85	121,9	5 123,42	3606351												
8	124,16	122,2	5 123,73	4207525												
9	124,2	122,5	5 123,68	4808635												
10	124,52	122,	8 123,96	5409851												
11	124,4	122,6	9 123,95	6011157												
12	124,85	123,1	8 124,31	6612632												
13	125,1	123,1	8 124,43	7212699												
14	125,55	123,8	3 124,95	7812967												
15	125,8	124,0	9 125,13	8413318												
16	125,98	124,	3 125,37	9013714												
17	126,09	124,2	2 125,34	9614257												
18	126,33	124,3	9 125,53	10214855												
19	126,36	124,5	5 125,49	10815636												
20	126,7	124,8	4 125,73	11416617												
21	126,81	124,9	1 126	12017737												
22	127,34	125,5	4 126,55	12619057												
23	127,91	126,1	2 127,13	13220505												
24	127,57	125,7	9 126,83	13821855												
25	127,87	12	6 127	14423323												
26	127,91	126,0	8 127	15023347												
27	128,31	126,6	5 127,26	15623434												-
14 4	VOLTI	RMS / 🔁 /								[◀						
Listo														[번] 100% (-	+

Figura A.4 Inserción de una fila extra al inicio de los datos. Fuente: Imagen de los autores.

15. En la celda E1, ingresar la hora inicial anotada en el paso 4 y cambiar el formato de número de la celda a "Hora". En la figura A.5 se presenta el resultado de este paso.

🗶 i 🛃	47 • (°4 •	- I -				-	-	VOLTRMS - Mid	rosoft Exc	el man	all the state				- (3 X
Archivo	Inicio	Insertar	Diseño de pág	ina Fórmula:	Datos	Revisar	Vista	Programador	Complem	entos ABBYY I	FineReader 11				(2) ه	- # 8
Ê	🔏 Cali	ibri	* 11 * A	∧ [*] = = =	\$%	📑 Ajustar te	xto	Hora	v		J		P 🚺	Σ Autosuma	Ż	æ
Pegar	🥉 พ	<u>K</u> <u>S</u> -	🖽 • 🧆 • 🗛	· = = =	律律	Combination	y centrar *	\$ ~ % 000	*00 . 00	Formato Da	r formato Estilos de	Insertar El	iminar Formato	Borrar *	Ordenar v filtrar z s	Buscar y
Portapa		Fuer	nte	6	Aline	ación	G	Número	6	E	stilos		Celdas		Modificar	reccional
	E1	+ (5	<i>f</i> _x 17:	59:00												
1	A	В	С	D	E	F	G	Н		J	к	L	м	N	0	-
1					17:59:00											
2	123,57	121,25	5 122,3	601349												
3	123,24	121,09	122,03	1202316												
4	125,03	123	124,08	1803378												
5	124,1	122,02	123,21	2404366												
6	123,63	121,66	5 122,97	3005344												
7	123,85	121,95	123,42	3606351												
8	124,16	122,25	123,73	4207525												
9	124,2	122,55	123,68	4808635												
10	124,52	122,8	123,96	5409851												
11	124,4	122,69	123,95	6011157												
12	124,85	123,18	3 124,31	6612632												
13	125,1	123,18	124,43	7212699												
14	125,55	123,83	124,95	7812967												
15	125,8	124,09	125,13	8413318												
16	125,98	124,3	125,37	9013714												
17	126,09	124,22	125,34	9614257												
18	126,33	124,39	125,53	10214855												
19	126,36	124,55	5 125,49	10815636												
20	126,7	124,84	125,73	11416617												
21	126,81	124,91	126	12017737												
22	127,34	125,54	126,55	12619057												
23	127,91	126,12	127,13	13220505												
24	127,57	125,79	126,83	13821855												
25	127,87	126	5 127	14423323												
26	127,91	126,08	3 127	15023347												
27	128,31	126,65	5 127,26	15623434												
14 A F	N VOLTE	RMS 😰														▶ [
Listo	20													100%	$\Theta \longrightarrow 0$	

Figura A.5 Ingreso de la hora de inicio de las mediciones. Fuente: Imagen de los autores.

16. En la celda E2, ingresar la fórmula: "=\$E\$1+(D2/(1000*60*60*24))" tal como se indica en la figura A.6. Con "(D2/(1000*60*60*24))" se transforma el tiempo en milisegundos de la celda D2 a segundos dividiendo para 1000 y al dividir para 60x60x24 se convierte esos segundos en el formato de hora (HH:MM:SS). Este valor se le suma a la hora inicial (celda E1) obteniendo la hora en la que se grabaron esas mediciones.

XI	- 17 - (11 -	₹						VOLTRMS - Mi	crosoft Exc	el		_	-	_		_	o x	
Arch	vo Inicio	Insertar	Diseño de pá	gina Fórmu	las Datos	Revisar	Vista	Programador	Complem	ientos	ABBYY Finel	Reader 11				۵ (3 🖷 🗕 🌔	3
Pega	а Мати Мати	K S -	• 11 • A [*] ⊞ • <u>&</u> • A	= = A - = =	= ≫. = ∉ ∉	Ajustar to	exto r y centrar ~	General \$ ~ % 000	*	Format condicion	o Darfon hal - como t	mato Estilos de abla - celda -	Insertar	Eliminar Formato	Σ Autosuma Rellenar * Borrar *	Ordenar y filtrar v	Buscar y seleccionar *	
ronu	SUMA	- (n	$X \checkmark f_{S} = $	E\$1+(D2/(100	0*60*60*24)	y y		Wullero			Estilo	,		ceruus		mounter		~
	A	В	C	D	Е	/ F	G	Н			J	K	L	M	N	0		ŝ
1					17:59:00													h
2	123,57	121,2	5 122,3	601349	=\$E\$1+(D2/(1000*60*60	24))											
3	123,24	121,0	9 122,03	1202316														
4	125,03	12	3 124,08	1803378														
5	124,1	122,03	2 123,21	2404366														
6	123,63	121,6	6 122,97	3005344														
7	123,85	121,9	5 123,42	3606351														
8	124,16	122,2	5 123,73	4207525														
9	124,2	122,5	5 123,68	4808635														
10	124,52	122,	8 123,96	5409851														
11	124,4	122,65	9 123,95	6011157														
12	124,85	123,1	8 124,31	6612632														
13	125,1	123,1	8 124,43	7212699														
14	125,55	123,8	3 124,95	7812967														
15	125,8	124,0	9 125,13	8413318														
16	125,98	124,	3 125,37	9013714														
17	126,09	124,2	2 125,34	9614257														
18	126,33	124,3	9 125,53	10214855														
19	126,36	124,5	5 125,49	10815636														
20	126,7	124,84	4 125,73	11416617														
21	126,81	124,9	1 126	12017737														
22	127,34	125,5	4 126,55	12619057														
23	127,91	126.1	2 127.13	13220505														
24	127,57	125,7	9 126,83	13821855														
25	127,87	12	6 127	14423323														
26	127,91	126,0	8 127	15023347														
27	128,31	126,6	5 127,26	15623434													-	,
14.4	NOLTE	RMS 😰									4						•	
Tanka a															[[73] [[1]] 1000×			

Figura A.6 Ingreso de fórmula para cálculo de la hora de cada medición. Fuente: Imagen de los autores.

17. Copiar la fórmula de la celda E2 a toda la columna E obteniendo como resultado el presentado en la figura A.7.

X [(Ŧ				-	-	VOLTRMS - Mid	rosoft Exc	el		(1 × 1				- 6	3 <mark>- x</mark>	3
Archi	vo Inicio	Insertar	Diseño de pág	jina Fórmulas	Datos	Revisar	Vista	Programador	Complem	ientos	ABBYY Fine	Reader 11				۵ 🕜	- #	83
Ê	Calibr	ri	* 11 * A*	۸ [*] = = =	₩~-	📑 Ajustar te	xto	General	¥			1		*	Σ Autosuma Rellenar τ	· 27	A	
Pega	' 🦪 🛛 🗸	<u>K</u> <u>S</u> -	🖽 • 🧆 • 🗚	- = = =	律律	Combinat	y centrar *	\$ - % 000	*00 ÷00	Forma condicio	nal v como	tabla * celda *	Insertar Eli	minar Formato	2 Borrar *	Ordenar v filtrar * se	Buscar y elecciona	/ ar •
Portag	ap G	Fuer	nte	G.	Alinea	ción		Número	5		Estilo	DS	c	eldas		Modificar		
	F2	- (n	f_{X}															~
	A	В	С	D	E	F	G	н	1	1	J	К	L	М	N	0		E
1					17:59:00													ī
2	123,57	121,25	122,3	601349	18:09:01		1											-
3	123,24	121,09	122,03	1202316	18:19:02													
4	125,03	123	124,08	1803378	18:29:03													
5	124,1	122,02	123,21	2404366	18:39:04													
6	123,63	121,66	122,97	3005344	18:49:05													
7	123,85	121,95	123,42	3606351	18:59:06													
8	124,16	122,25	123,73	4207525	19:09:08													
9	124,2	122,55	123,68	4808635	19:19:09													
10	124,52	122,8	123,96	5409851	19:29:10													
11	124,4	122,69	123,95	6011157	19:39:11													
12	124,85	123,18	124,31	6612632	19:49:13													
13	125,1	123,18	124,43	7212699	19:59:13													
14	125,55	123,83	124,95	7812967	20:09:13													
15	125,8	124,09	125,13	8413318	20:19:13													
16	125,98	124,3	125,37	9013714	20:29:14													
17	126,09	124,22	125,34	9614257	20:39:14													
18	126,33	124,39	125,53	10214855	20:49:15													
19	126,36	124,55	125,49	10815636	20:59:16													
20	126,7	124,84	125,73	11416617	21:09:17													
21	126,81	124,91	. 126	12017737	21:19:18													
22	127,34	125,54	126,55	12619057	21:29:19													
23	127,91	126,12	127,13	13220505	21:39:21													
24	127,57	125,79	126,83	13821855	21:49:22													
25	127,87	126	127	14423323	21:59:23													
26	127,91	126,08	127	15023347	22:09:23													
27	128,31	126,65	127,26	15623434	22:19:23													¥
14 4	VOLTRN	1S / 🕄 /									[◀ [•	1
Listo	1														□ □ 100%	Θ ()	÷

Figura A.7 Hoja de cálculo lista para graficar las mediciones. Fuente: Imagen de los autores.

18. Presentar los resultados mediante una gráfica de dispersión. Se grafica los valores de voltaje (columna A: fase 1, columna B: fase 2 y columna C: fase 3) vs tiempo (columna E) para el presente ejemplo. El resultado se presenta en la figura A.8.

Figura A.8 Voltaje rms medido. Fuente: Imagen de los autores.

19. Repetir los pasos del 9 al 18 para cada archivo .txt obteniendo los siguientes resultados finales:

Figura A.10 Frecuencia medida. Fuente: Imagen de los autores.

Figura A.9 Corriente rms medida. Fuente: Imagen de los autores.

Figura A.11 Potencia activa medida. Fuente: Imagen de los autores.

Figura A.12 Potencia aparente medida. Fuente: Imagen de los autores.

Figura A.13 Potencia reactiva medida. Fuente: Imagen de los autores.

Figura A.14 Nivel de voltaje medido. Fuente: Imagen de los autores.

Figura A.15 Desbalance de tensión medido. Fuente: Imagen de los autores.

Figura A.16 Desequilibrio de corriente medido. Fuente: Imagen de los autores.

Figura A.17 Variación de frecuencia medida. Fuente: Imagen de los autores.

Figura A.18 Factor de potencia medido. Fuente: Imagen de los autores.

Figura A.19 Distorsión armónica total de voltaje de la fase 1. Fuente: Imagen de los autores.

Figura A.20 Distorsión armónica total de voltaje de la fase 2. Fuente: Imagen de los autores.

Figura A.21 Distorsión armónica total de voltaje de la fase 3. Fuente: Imagen de los autores.

Figura A.22 Distorsión armónica total de corriente de la fase 1. Fuente: Imagen de los autores.

Figura A.23 Distorsión armónica total de corriente de la fase 2. Fuente: Imagen de los autores.

Figura A.24 Distorsión armónica total de corriente de la fase 3. Fuente: Imagen de los autores.

ANEXO B

ESQUEMA DE CONEXIONES DE LA PCB

UNIVERSIDAD TÉCNICA PARTICULAR DE LOJA "ESQUEMA DE CONEXIONES DE LA PCB" ESQUEMA DE CONEXIONES DE LA PCB" EDUARDO BRITO EDUARDO BRITO EDUARDO CAMPOVERDE DIRECTOR DEL PROYECTO: ING. CARLOS CALDERÓN 1/1 ANEXO C

DISEÑO DE LA PLACA DE CIRCUITO IMPRESO

115

CONTIENE:

DISEÑO DE LA PCB EN ARES

UNIVERSIDAD TÉCNICA PARTICULAR DE LOJA FECHA: SEPTIEMBRE/ 2014 "DISEÑO DE LA PCB DELPROTOTIPO ANALIZADOR DE CALIDAD DE ENERGÍA ESCALA: ELÉCTRICA" DISEÑO: DIRECTOR DEL PROYECTO: 1/2 ING. CARLOS CALDERÓN EDUARDO BRITO EDUARDO CAMPOVERDE

UNIVERSIDAD TÉCNICA PARTICULAR DE LOJA

"IMPRESIÓN DE LA PCB DEL PROTOTIPO ANALIZADOR DE CALIDAD DE ENERGÍA ELÉCTRICA"

DISEÑO:

EDUARDO BRITO EDUARDO CAMPOVERDE DIRECTOR DEL PROYECTO:

ING. CARLOS CALDERÓN

2014 ESCALA: 2/2

FECHA: SEPTIEMBRE/

ANEXO D

CONEXIONES DE LOS ELEMENTOS DEL PROTOTIPO ANALIZADOR DE CALIDAD DE ENERGÍA ELÉCTRICA

UNIVERSIDAD TÉCNICA PARTICULAR DE LOJA PROYECTO: "CONEXIONES DE LOS ELEMENTOS DEL PROTOTIPO ANALIZADOR DE CALIDAD DE ENERGÍA ELÉCTRICA" ING. CARLOS CALDERÓN I/1

ANEXO E

ENSAMBLAJE DEL PROTOTIPO ANALIZADOR DE CALIDAD DE ENERGÍA ELÉCTRICA

ANEXO F

MEMORIA FOTOGRÁFICA DEL PROCESO DE EVALUACIÓN DE LOS PARÁMETROS ELÉCTRICOS Y DE CALIDAD DE ENERGÍA ELÉCTRICA

E.1. Elementos del prototipo analizador de calidad de energía implementado

E.2. Instalación de las pinzas de voltaje y sensores de corriente en el tablero de distribución de energía trifásica del Edificio Unidades Productivas – Campus UTPL

E.3. Instalación del instrumento tomado como referencia, Fluke 434 y del prototipo analizador de calidad de energía eléctrica implementado

E.4. Sistema completo instalado para la evaluación de los parámetros medidos

E.5. Pantalla del dispositivo Fluke 434

PLUKE 43	1 POWER OU /Amperia	iality analy	ZER		
IN INTERES	L1	© 0:11:	37	C III	
V rms V pk CF Hz	124.1 176.5 1.42 60.03	123.3 175.9 1.43	122.3 178.0 1.42	0.0 0.0 OL	
Arms Apk CF 10709/14 VOLTAGE	L1 243 403 1.67 16:56:20	317 509 1.68 1200 60Hz	L3 288 478 1.68 38 WYE TREND	0.4 0.7 1.71 EN50160 HOLD RUM	
a				-	
SCOP				SETUP	

E.6. Pantalla del prototipo analizador de calidad de energía eléctrica implementado

E.7. Prototipo analizador de calidad de energía eléctrica implementado en funcionamiento

ANEXO G

SOFTWARE DEL PROTOTIPO ANALIZADOR DE CALIDAD DE ENERGÍA ELÉCTRICA

//DECLARACIÓN DE LAS LIBRERÍAS EMPLEADAS//

#include <Ethernet.h>
#include <SPI.h>
#include <delay.h>
#include <SD.h>
#include <glcd.h>

//DECLARACIÓN DE LOS TIPO DE LETRAS EMPLEADAS PARA LA GLCD//

#include <fonts/allFonts.h>
#include "fonts/Wendy3x5.h"

//DECLARACIÓN PARA LA COMUNICACIÓN ETHERNET//

byte mac[] = {
 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED};
IPAddress ip(192,168,1,2);
IPAddress gateway(192,168,1,1);
IPAddress subnet(255, 255, 255, 0);
EthernetServer server(23);

//DECLARACIÓN REQUERIDA PARA EL ALMACENAMIENTO EN LA MICRO SD//

File myFile;

//DECLARACIÓN DE LAS VARIABLES GLOBALES DEL PROGRAMA//

float a = 0.0, b = 0.0, c = 0.0, d = 0.0, e = 0.0, f = 0.0, g = 0.0, voltaje1 = 0.0, corriente1 = 0.0, voltajepico1 = 0.0, corrientepico1 = 0.0, voltaje2 = 0.0, corriente2 = 0.0, voltajepico2 = 0.0, corrientepico2 = 0.0, voltaje3 = 0.0, corriente3 = 0.0, voltajepico3 = 0.0, corrientepico3 = 0.0, corrientene = 0.0, corrientepicone = 0.0;

float voltajecuadrado1 = 0.0, voltajecuadradosuma1 = 0.0, voltajecuadradopromedio1 =
0.0, voltajerms1 = 0.0, corrientecuadrado1 = 0.0, corrientecuadradosuma1 = 0.0,
corrientecuadradopromedio1 = 0.0, corrienterms1 = 0.0, potenciainstantanea1 = 0.0,
potenciainstantaneasuma1 = 0.0, potenciareal1 = 0.0, potenciaaparente1 = 0.0,
potenciareactiva1 = 0.0;

float voltajecuadrado2 = 0.0, voltajecuadradosuma2 = 0.0, voltajecuadradopromedio2 =
0.0, voltajerms2 = 0.0, corrientecuadrado2 = 0.0, corrientecuadradosuma2 = 0.0,
corrientecuadradopromedio2 = 0.0, corrienterms2 = 0.0, potenciainstantanea2 = 0.0,
potenciainstantaneasuma2 = 0.0, potenciareal2 = 0.0, potenciaaparente2 = 0.0,
potenciareactiva2 = 0.0;

float voltajecuadrado3 = 0.0, voltajecuadradosuma3 = 0.0, voltajecuadradopromedio3 =
0.0, voltajerms3 = 0.0, corrientecuadrado3 = 0.0, corrientecuadradosuma3 = 0.0,
corrientecuadradopromedio3 = 0.0, corrienterms3 = 0.0, potenciainstantanea3 = 0.0,
potenciainstantaneasuma3 = 0.0, potenciareal3 = 0.0, potenciaaparente3 = 0.0,
potenciareactiva3 = 0.0;

float corrientecuadradone = 0.0, corrientecuadradosumane = 0.0, corrientecuadradopromedione = 0.0, corriente_neutro = 0.0;

float voltajerms1_tiempo = 0.0, corrienterms1_tiempo = 0.0, potenciareal1_tiempo =
0.0, potenciaaparente1_tiempo = 0.0, potenciareactiva1_tiempo = 0.0, factorpotencia1
= 0.0;

float voltajerms2_tiempo = 0.0, corrienterms2_tiempo = 0.0, potenciareal2_tiempo =
0.0, potenciaaparente2_tiempo = 0.0, potenciareactiva2_tiempo = 0.0, factorpotencia2
= 0.0;
float voltajerms3_tiempo = 0.0, corrienterms3_tiempo = 0.0, potenciareal3_tiempo =
0.0, potenciaaparente3_tiempo = 0.0, potenciareactiva3_tiempo = 0.0, factorpotencia3
= 0.0;

float corriente neutro tiempo = 0.0, potenciarealtotal = 0.0, potenciaaparentetotal = 0.0, factorpotenciatotal = 0.0; float nivel voltaje1 = 0.0, nivel voltaje2 = 0.0, nivel voltaje3 = 0.0; float promedio voltajefases = 0.0, maxima tension = 0.0, desbalance tension = 0.0; float promedio_corrientefases = 0.0, maxima_corriente = 0.0, desequilibrio_corriente = 0.0; = 0.0, suma_corrientermspromedio1 float suma_voltajermspromedio1 0.0, suma_potenciareal1 = 0.0, suma_potenciaaparente1 = 0.0; = 0.0, suma_corrientermspromedio2 float suma voltajermspromedio2 0.0. suma potenciareal2 = 0.0, suma potenciaaparente2 = 0.0; float suma voltajermspromedio3 = 0.0, suma corrientermspromedio3 = 0.0, suma potenciareal3 = 0.0, suma potenciaaparente3 = 0.0; float sumacorriente neutro promedio = 0.0; float suma frecuencia1 = 0.0, var frecuencia1 = 0.0, frecuencia promedio1 = 0.0; float suma frecuencia2 = 0.0, var frecuencia2 = 0.0, frecuencia promedio2 = 0.0; float suma frecuencia3 = 0.0, var frecuencia3 = 0.0, frecuencia promedio3 = 0.0; float suma frecuencia promedio1 = 0.0, suma frecuencia promedio2 = 0.0, suma frecuencia promedio3 = 0.0; float frecuencia promedio1 tiempo = 0.0, frecuencia promedio2 tiempo = 0.0. frecuencia promedio3 tiempo = 0.0; var frecuencial tiempo = 0.0, var frecuencia2 tiempo float 0.0, var frecuencia3 tiempo = 0.0; int seg = 0, cont = 0, cont_med = 0, cont_freq = 0, cont freq tiempo = 0; int muestras = 1015; const int entradavoltaje1 = A9; const int entradacorriente1 = A8; const int entradavoltaje2 = A11; const int entradacorriente2 = A10; const int entradavoltaje3 = A13; const int entradacorriente3 = A12; const int entradacorrientene = A14; const int frecuencia1 = 2; int cont_freq1 = 0; int cont ant1 = 0; float freq1 = 0.0; const int frecuencia2 = 3; int cont freq2 = 0; int cont_ant2 = 0; float freq2 = 0.0;const int frecuencia3 = 21; int cont freq3 = 0; int cont ant3 = 0; float freq3 = 0.0;char lectura[9]; char valor[5]; char selector[1]; int selec = 0; float thdv1 = 0.0, thdv2 = 0.0, thdv3 = 0.0; float thdi1 = 0.0, thdi2 = 0.0, thdi3 = 0.0; float suma_thdv1 = 0.0, suma_thdv2 = 0.0, suma_thdv3 = 0.0; float suma_thdi1 = 0.0, suma_thdi2 = 0.0, suma_thdi3 = 0.0; int cont thdv1 = 0.0, cont thdv2 = 0.0, cont thdv3 = 0; int cont thdi1 = 0.0, cont thdi2 = 0.0, cont thdi3 = 0; float thdv1_tiempo = 0.0, thdv2_tiempo = 0.0, thdv3_tiempo = 0.0; float thdi1_tiempo = 0.0, thdi2_tiempo = 0.0, thdi3_tiempo = 0.0;

```
unsigned long tiempo med = 0;
unsigned long tiempo_final = 0;
unsigned long tiempo_freq = 0;
unsigned long t_ant = 0;
unsigned long t_ant1 = 0;
unsigned long tiempo real = 0;
unsigned long tiempo suma = 0;
const int pantalla = 20;
int cont_pantalla = 0;
int selec_pantalla = 0;
char ARD[9];
//INTERRUPCIÓN PARA MEDICIÓN DE FRECUENCIA EN LA FASE 1//
void inter1()
{
  cont_freq1 ++;
}
//INTERRUPCIÓN PARA MEDICIÓN DE FRECUENCIA EN LA FASE 2//
void inter2()
{
  cont_freq2 ++;
}
//INTERRUPCIÓN PARA MEDICIÓN DE FRECUENCIA EN LA FASE 3//
void inter3()
{
  cont freq3 ++;
}
//INTERRUPCIÓN PARA CAMBIO DE PANTALLA PRESIONANDO EL PULSADOR//
void inter4()
{
  if (selec_pantalla == 0)
   {
   cont pantalla ++;
   selec_pantalla = 1;
   }
  if(cont_pantalla==3)
   {
   cont_pantalla=0;
   }
}
//DECLARACIONES GENERALES PARA EL TRABAJO CON LA GLCD, LAS
INTERRUPCIONES, COMUNICACIÓN ETHERNET, COMUNICACIÓN SERIAL
                                                                             Y
ALMACENAMIENTO EN LA MICRO SD//
void setup()
{
 GLCD.Init();
 GLCD.ClearScreen();
```

```
SPI.begin();
pinMode(frecuencia1, INPUT);
attachInterrupt(0, inter1, FALLING);
pinMode(frecuencia2, INPUT);
attachInterrupt(1, inter2, FALLING);
pinMode(frecuencia3, INPUT);
attachInterrupt(2, inter3, FALLING);
pinMode(pantalla, INPUT);
attachInterrupt(3, inter4, FALLING);
Ethernet.begin(mac, ip, gateway, subnet);
server.begin();
```

```
Serial3.begin(57600);
while (!Serial) {
    ;
}
pinMode(4, OUTPUT);
if (!SD.begin(4)) {
    return;
}
}
```

//FUNCIÓN PRINCIPAL DEL PROGRAMA//

void loop() {

//CICLO WHILE INFINITO//

while (1) {

//DECLARACIÓN PARA COMUNICACIÓN ETHERNET//

EthernetClient client = server.available();

//LECTURA DE LAS ENTRADAS ANALÓGICAS//

```
a = analogRead(entradavoltaje1);
```

- b = analogRead(entradacorrientel);
- c = analogRead(entradavoltaje2);
- d = analogRead(entradacorriente2);
- e = analogRead(entradavoltaje3);
 f = analogRead(entradacorriente3);
- g = analogRead (entradacorrientene);

//CONVERSIÓN DE LAS LECTURAS A VALORES REALES MEDIDOS PARA VOLTAJE Y CORRIENTE//

```
voltaje1 = a * (4.92 / 1023.0);
corriente1 = b * (4.92 / 1023.0);
voltajepico1= (voltaje1 - 2.45)*(82.5);
corrientepico1= ((corriente1 - 2.45)/12.1)*2460;
voltaje2 = c * (4.92 / 1023.0);
corriente2 = d * (4.92 / 1023.0);
voltajepico2= (voltaje2 - 2.45)*(81);
corrientepico2= ((corriente2 - 2.45)/12.1)*2515;
voltaje3 = e * (4.92 / 1023.0);
corriente3 = f * (4.92 / 1023.0);
voltajepico3= (voltaje3 - 2.45)*(82);
corrientepico3= ((corriente3 - 2.45)/12.1)*2550;
corrientene = g * (4.92 / 1023.0);
corrientepicone= ((corrientene - 2.45)/12.1)*150;
```

//RECEPCIÓN DE LOS VALORES DE THD MEDIANTE EL PUERTO SERIAL 3//

```
if (Serial3.available())
{
  for(int i=0; i<=8; i++)
  {
    char entrada = Serial3.read();
    delay (20);
    lectura[i] = entrada;
  }
  valor[0] = lectura[4];
  valor[1] = lectura[5];
  valor[2] = lectura[6];
  valor[3] = lectura[7];</pre>
```

```
valor[4] = lectura[8];
selector[0] = lectura[2];
selec = atoi(selector);
if(selec == 0)
 {
 thdv1 = atof(valor);
 cont thdv1++;
 suma_thdv1 += thdv1;
  }
else
{
if(selec == 1)
 {
 thdi1 = atof(valor);
 cont_thdi1++;
  suma_thdi1 += thdi1;
 }
else
{
if(selec == 2)
 {
 thdv2 = atof(valor);
 cont_thdv2++;
  suma_thdv2 += thdv2;
  }
else
{
if(selec == 3)
 {
 thdi2 = atof(valor);
 cont thdi2++;
 suma thdi2 += thdi2;
  }
else
{
if(selec == 4)
 {
 thdv3 = atof(valor);
 cont thdv3++;
 suma_thdv3 += thdv3;
  }
else
{
if(selec == 5)
 {
 thdi3 = atof(valor);
 cont_thdi3++;
suma_thdi3 += thdi3;
  }
}
}
}
}
}
```

//ALMACENAMIENTO DE CONTADORES ANTERIORES Y EL TIEMPO ANTERIOR PARA EL CÁLCULO DE LA FRECUENCIA//

if(cont==0)
{
 cont_ant1 = cont_freq1;
 cont_ant2 = cont_freq2;
 cont_ant3 = cont_freq3;
 t_ant = millis();
 }

}

//CÁLCULO DE LOS PARÁMETROS ELÉCTRICOS Y DE CALIDAD DE ENERGÍA CADA 2 SEGUNDOS//

```
if(cont == muestras)
```

```
{
 voltajecuadradopromedio1 = voltajecuadradosuma1 / muestras;
 voltajerms1 = sqrt(voltajecuadradopromedio1);
 corrientecuadradopromedio1 = corrientecuadradosuma1 / muestras;
 corrienterms1 = sqrt(corrientecuadradopromedio1);
 potenciareal1 = abs(potenciainstantaneasuma1 / muestras);
 potenciaaparente1 = voltajerms1 * corrienterms1;
 potenciareactival = sqrt(pow(potenciaaparente1,2) - pow(potenciareal1,2));
 voltajecuadradopromedio2 = voltajecuadradosuma2 / muestras;
 voltajerms2 = sqrt(voltajecuadradopromedio2);
 corrientecuadradopromedio2 = corrientecuadradosuma2 / muestras;
 corrienterms2 = sqrt(corrientecuadradopromedio2);
 potenciareal2 = abs (potenciainstantaneasuma2 / muestras);
 potenciaaparente2 = voltajerms2 * corrienterms2;
 potenciareactiva2 = sqrt(pow(potenciaaparente2,2) - pow(potenciareal2,2));
 voltajecuadradopromedio3 = voltajecuadradosuma3 / muestras;
 voltajerms3 = sqrt(voltajecuadradopromedio3);
 corrientecuadradopromedio3 = corrientecuadradosuma3 / muestras;
 corrienterms3 = sqrt(corrientecuadradopromedio3);
 potenciareal3 = abs(potenciainstantaneasuma3 / muestras);
 potenciaaparente3 = voltajerms3 * corrienterms3;
 potenciareactiva3 = sqrt(pow(potenciaaparente3,2) - pow(potenciareal3,2));
 corrientecuadradopromedione = corrientecuadradosumane / muestras;
 corriente neutro = sqrt(corrientecuadradopromedione);
 freq1=1000.0*((cont_freq1-cont_ant1) / (1.0*(millis()-t_ant)));
 freq2=1000.0*((cont_freq2-cont_ant2) / (1.0*(millis()-t_ant)));
 freq3=1000.0*((cont freq3-cont ant3) / (1.0*(millis()-t ant)));
 tiempo_real = millis() - t_ant1;
 tiempo med += tiempo real;
 tiempo final += tiempo real;
 tiempo freq += tiempo real;
 t ant1 = millis();
   //PRESENTADO DE LOS PARÁMETROS ELÉCTRICOS Y DE CALIDAD DE
  ENERGÍA EN LA GLCD//
 if(cont_pantalla==0)
 {
   GLCD.ClearScreen();
   GLCD.SelectFont(Wendy3x5);
   GLCD.CursorTo(6, 0);
   GLCD.print("F1");
   GLCD.CursorTo(13, 0);
   GLCD.print("F2");
   GLCD.CursorTo(21, 0);
   GLCD.print("F3");
   GLCD.CursorTo(27, 0);
   GLCD.print("Uni");
   GLCD.SelectFont(System5x7);
   GLCD.DrawLine(0,6,127,6);
   GLCD.DrawLine(14,0,14,63);
   GLCD.DrawLine(44,0,44,63);
   GLCD.DrawLine(74,0,74,63);
   GLCD.DrawLine(104,0,104,63);
   GLCD.CursorTo(0, 1);
   GLCD.print("T");
   GLCD.CursorTo(3, 1);
```
```
GLCD.print(voltajerms1, 0);
GLCD.CursorTo(8, 1);
GLCD.print(voltajerms2, 0);
GLCD.CursorTo(13, 1);
GLCD.print(voltajerms3, 0);
GLCD.CursorTo(18, 1);
GLCD.print("V");
GLCD.CursorTo(0, 2);
GLCD.print("I");
GLCD.CursorTo(3, 2);
GLCD.print(corrienterms1, 0);
GLCD.CursorTo(8, 2);
GLCD.print(corrienterms2, 0);
GLCD.CursorTo(13, 2);
GLCD.print(corrienterms3, 0);
GLCD.CursorTo(18, 2);
GLCD.print("A");
GLCD.CursorTo(0, 3);
GLCD.print("F");
GLCD.CursorTo(3, 3);
GLCD.print(freq1, 1);
GLCD.CursorTo(8, 3);
GLCD.print(freq2, 1);
GLCD.CursorTo(13, 3);
GLCD.print(freq3, 1);
GLCD.CursorTo(18, 3);
GLCD.print("Hz");
GLCD.CursorTo(0, 4);
GLCD.print("P");
GLCD.CursorTo(3, 4);
GLCD.print((potenciareal1 / 1000.0), 0);
GLCD.CursorTo(8, 4);
GLCD.print((potenciareal2 / 1000.0), 0);
GLCD.CursorTo(13, 4);
GLCD.print((potenciareal3 / 1000.0), 0);
GLCD.CursorTo(18, 4);
GLCD.print("KW");
GLCD.CursorTo(0, 5);
GLCD.print("S");
GLCD.CursorTo(3, 5);
GLCD.print((potenciaaparente1 / 1000.0), 0);
GLCD.CursorTo(8, 5);
GLCD.print((potenciaaparente2 / 1000.0), 0);
GLCD.CursorTo(13, 5);
GLCD.print((potenciaaparente3 / 1000.0), 0);
GLCD.CursorTo(18, 5);
GLCD.print("KVA");
GLCD.CursorTo(0, 6);
GLCD.print("Q");
GLCD.CursorTo(3, 6);
GLCD.print((potenciareactival / 1000.0), 0);
GLCD.CursorTo(8, 6);
GLCD.print((potenciareactiva2 / 1000.0), 0);
GLCD.CursorTo(13, 6);
GLCD.print((potenciareactiva3/ 1000.0), 0);
GLCD.SelectFont(Wendy3x5);
GLCD.CursorTo(27, 8);
GLCD.print("KVAR");
GLCD.SelectFont(System5x7);
GLCD.CursorTo(0, 7);
GLCD.print("In");
GLCD.CursorTo(3, 7);
```

```
GLCD.print (corriente neutro);
  GLCD.CursorTo(18, 7);
  GLCD.print("A");
  selec pantalla = 0;
}
if(cont pantalla==1)
{
 GLCD.ClearScreen();
 GLCD.SelectFont(Wendy3x5);
 GLCD.CursorTo(2, 0);
  GLCD.print ("PARAMETROS DE CALIDAD ENERGIA");
  GLCD.CursorTo(6, 1);
  GLCD.print("F1");
  GLCD.CursorTo(14, 1);
  GLCD.print("F2");
  GLCD.CursorTo(21, 1);
  GLCD.print("F3");
  GLCD.CursorTo(28, 1);
  GLCD.print("Uni");
  GLCD.SelectFont(System5x7);
  GLCD.DrawLine(0,5,127,5);
  GLCD.DrawLine(0,12,127,12);
  GLCD.DrawLine(0,43,127,43);
  GLCD.DrawLine(14,6,14,63);
  GLCD.DrawLine(44,6,44,43);
  GLCD.DrawLine(74,6,74,43);
  GLCD.DrawLine(104,6,104,63);
  GLCD.CursorTo(0, 2);
  GLCD.print("NV");
  GLCD.CursorTo(3, 2);
  GLCD.print(abs(nivel voltaje1));
  GLCD.CursorTo(8, 2);
  GLCD.print(abs(nivel_voltaje2));
 GLCD.CursorTo(13, 2);
  GLCD.print(abs(nivel voltaje3));
  GLCD.CursorTo(19, 2);
  GLCD.print("%");
  GLCD.CursorTo(0, 3);
  GLCD.print("VF");
  GLCD.CursorTo(3, 3);
  GLCD.print(abs(var_frecuencial));
  GLCD.CursorTo(8, 3);
 GLCD.print(abs(var_frecuencia2));
GLCD.CursorTo(13, 3);
  GLCD.print(abs(var frecuencia3));
  GLCD.CursorTo(19, \overline{3});
  GLCD.print("%");
  GLCD.CursorTo(0, 4);
  GLCD.print("FP");
  GLCD.CursorTo(3, 4);
  GLCD.print (factorpotencia1);
  GLCD.CursorTo(8, 4);
  GLCD.print (factorpotencia2);
  GLCD.CursorTo(13, 4);
  GLCD.print (factorpotencia3);
  GLCD.CursorTo(19, 4);
  GLCD.print("-");
  GLCD.CursorTo(0, 6);
  GLCD.print("DT");
  GLCD.CursorTo(3, 6);
  GLCD.print(desbalance_tension);
  GLCD.CursorTo(19, 6);
```

```
GLCD.print("%");
  GLCD.CursorTo(0, 7);
  GLCD.print("DI");
 GLCD.CursorTo(3, 7);
  GLCD.print(desequilibrio corriente);
  GLCD.CursorTo(19, 7);
 GLCD.print("%");
  selec_pantalla = 0;
}
if(cont pantalla==2)
{
 GLCD.ClearScreen();
  GLCD.SelectFont(Wendy3x5);
  GLCD.CursorTo(2, 0);
  GLCD.print ("PARAMETROS DE CALIDAD ENERGIA");
  GLCD.CursorTo(6, 1);
  GLCD.print("F1");
  GLCD.CursorTo(14, 1);
 GLCD.print("F2");
  GLCD.CursorTo(21, 1);
  GLCD.print("F3");
  GLCD.CursorTo(28, 1);
  GLCD.print("Uni");
 GLCD.CursorTo(11, 2);
  GLCD.print("VOLTAJE");
  GLCD.CursorTo(10, 6);
  GLCD.print("CORRIENTE");
  GLCD.DrawLine(0,5,127,5);
  GLCD.DrawLine(0,11,127,11);
  GLCD.DrawLine(0,20,127,20);
  GLCD.DrawLine(0,33,127,33);
  GLCD.DrawLine(0,44,127,44);
  GLCD.DrawLine(0,57,127,57);
  GLCD.DrawLine(14,6,14,56);
  GLCD.DrawLine(44,6,44,11);
  GLCD.DrawLine(74,6,74,11);
  GLCD.DrawLine(44,20,44,32);
  GLCD.DrawLine(74,20,74,32);
  GLCD.DrawLine(44,45,44,56);
  GLCD.DrawLine(74,45,74,56);
  GLCD.DrawLine(104,6,104,56);
 GLCD.CursorTo(0, 4);
  GLCD.print("THD");
  GLCD.CursorTo(0, 8);
  GLCD.print("THD");
  GLCD.SelectFont(System5x7);
  GLCD.CursorTo(3, 3);
  GLCD.print(thdv1_tiempo,2);
 GLCD.CursorTo(8, 3);
GLCD.print(thdv2_tiempo,2);
GLCD.CursorTo(13, 3);
  GLCD.print(thdv3 tiempo,2);
  GLCD.CursorTo(19, 3);
  GLCD.print("%");
  GLCD.CursorTo(3, 6);
  if(thdi1 tiempo < 10)</pre>
  {
  GLCD.print(thdi1 tiempo,2);
```

```
}
 else
  {
 GLCD.print(thdi1 tiempo,1);
 GLCD.CursorTo(8, 6);
 if(thdi2 tiempo < 10)</pre>
  {
 GLCD.print(thdi2 tiempo,2);
 }
 else
  {
 GLCD.print(thdi2_tiempo,1);
 }
 GLCD.CursorTo(13, 6);
 if(thdi3 tiempo < 10)</pre>
 {
 GLCD.print(thdi3 tiempo,2);
 }
 else
  {
 GLCD.print(thdi3 tiempo,1);
 }
 GLCD.CursorTo(19, 6);
 GLCD.print("%");
 selec pantalla = 0;
}
 //PROMEDIADO DE FRECUENCIA Y CÁLCULO DE LA VARIACIÓN DE
FRECUENCIA CADA 10 SEGUNDOS//
if (tiempo_freq >= 10000)
 {
    frecuencia promedio1 = suma frecuencia1 / (cont freq) ;
   frecuencia_promedio2 = suma_frecuencia2 / (cont_freq) ;
   frecuencia_promedio3 = suma_frecuencia3 / (cont_freq) ;
   var_frecuencia1 = ((frecuencia_promedio1 - 60.0) / 60.0) * 100.0;
   var_frecuencia2 = ((frecuencia_promedio2 - 60.0) / 60.0) * 100.0;
   var frecuencia3 = ((frecuencia promedio3 - 60.0) / 60.0) * 100.0;
   suma frecuencia promedio1 += frecuencia promedio1;
   suma frecuencia promedio2 += frecuencia promedio2;
   suma frecuencia promedio3 += frecuencia promedio3;
   tiempo_freq = 0;
   cont_freq = 0;
   suma frecuencia1 = 0.0;
   suma frecuencia2 = 0.0;
   suma_frecuencia3 = 0.0;
   cont_freq_tiempo ++;
   }
 //ALMACENAMIENTO EN VARIABLES PARA POSTERIOR PROMEDIADO DE
FRECUENCIA CADA 10 SEGUNDOS//
else
 {
   suma frecuencial += freq1;
   suma frecuencia2 += freq2;
   suma frecuencia3 += freq3;
   cont freq ++;
  }
```

```
//ENVÍO DE LOS DATOS VIA ETHERNET//
```

```
client.print(voltajerms1);
client.print(";");
client.print(corrienterms1);
client.print(";");
client.print(potenciareal1);
client.print(";");
client.print(potenciaaparentel);
client.print(";");
client.print(potenciareactival);
client.print(";");
client.print(voltajerms2);
client.print(";");
client.print(corrienterms2);
client.print(";");
client.print(potenciareal2);
client.print(";");
client.print(potenciaaparente2);
client.print(";");
client.print(potenciareactiva2);
client.print(";");
client.print(voltajerms3);
client.print(``;");
client.print(corrienterms3);
client.print(";");
client.print(potenciareal3);
client.print(";");
client.print(potenciaaparente3);
client.print(";");
client.print(potenciareactiva3);
client.print(``;");
client.print(corriente neutro);
client.print(";");
client.print(freq1);
client.print(";");
client.print(freq2);
client.print(";");
client.print(freq3);
client.print(";");
client.print(nivel voltaje1);
client.print(";");
client.print(nivel voltaje2);
client.print(";");
client.print(nivel voltaje3);
client.print(";");
client.print(desbalance_tension);
client.print(``;");
client.print(desequilibrio corriente);
client.print(";");
client.print(var frecuencial);
client.print(";");
client.print(var frecuencia2);
client.print(";");
client.print(var frecuencia3);
client.print(factorpotencial);
client.print(";");
client.print(factorpotencia2);
client.print(";");
client.print(factorpotencia3);
client.print(``;");
```

```
client.print(factorpotenciatotal);
client.print(thdv1_tiempo);
client.print(";");
client.print(thdv2_tiempo);
client.print(thdv3_tiempo);
client.print(thdv3_tiempo);
client.print(thdi1_tiempo);
client.print(thdi2_tiempo);
client.print(thdi2_tiempo);
client.print(thdi3_tiempo);
client.print(thdi3_tiempo);
client.print(";");
```

```
//CÁLCULO DE PARÁMETROS ELÉCTRICOS Y DE CALIDAD DE ENERGÍA
ELÉCTRICA CADA 10 MINUTOS//
```

```
if(tiempo med >= 600000)
    {
      voltajerms1_tiempo = suma_voltajermspromedio1/ (cont_med);
      corrienterms1 tiempo = suma corrientermspromedio1/ (cont med);
      potenciareal1_tiempo = suma_potenciareal1/ (cont_med);
      potenciaaparente1 tiempo = suma potenciaaparente1/ (cont med);
      potenciareactival_tiempo
                                  =
                                        sqrt(pow(potenciaaparentel tiempo, 2)
     pow(potenciareal1_tiempo,2));
      factorpotencial = (potenciareal1 tiempo/potenciaaparente1 tiempo);
      voltajerms2 tiempo = suma voltajermspromedio2/ (cont med);
      corrienterms2 tiempo = suma corrientermspromedio2/ (cont med);
      potenciareal2_tiempo = suma_potenciareal2/ (cont_med);
      potenciaaparente2 tiempo = suma potenciaaparente2/ (cont med);
      potenciareactiva2 tiempo =
                                        sqrt(pow(potenciaaparente2 tiempo,2)
     pow(potenciareal2_tiempo,2));
      factorpotencia2 = (potenciareal2 tiempo/potenciaaparente2 tiempo);
      voltajerms3_tiempo = suma_voltajermspromedio3/ (cont_med);
      corrienterms3 tiempo = suma corrientermspromedio3/ (cont med);
      potenciareal3 tiempo = suma potenciareal3/ (cont med);
      potenciaaparente3_tiempo = suma_potenciaaparente3/ (cont_med);
      potenciareactiva3 tiempo
                                  =
                                        sqrt(pow(potenciaaparente3 tiempo,2)
     pow(potenciareal3_tiempo,2));
      factorpotencia3 = (potenciareal3 tiempo/potenciaaparente3 tiempo);
      corriente neutro tiempo = sumacorriente neutro promedio/ (cont med);
                         =
                              potenciareal1 tiempo + potenciareal2 tiempo
      potenciarealtotal
     potenciareal3 tiempo;
      potenciaaparentetotal = potenciaaparente1 tiempo + potenciaaparente2 tiempo
      + potenciaaparente3 tiempo;
      factorpotenciatotal = (potenciarealtotal/potenciaaparentetotal);
      nivel_voltaje1 = ((voltajerms1_tiempo - 120)/120)* 100.0;
      nivel_voltaje2 = ((voltajerms2_tiempo - 120)/120)* 100.0;
nivel_voltaje3 = ((voltajerms3_tiempo - 120)/120)* 100.0;
      if((voltajerms1 tiempo > voltajerms2 tiempo) && (voltajerms1 tiempo >
      voltajerms3 tiempo))
        {
          maxima tension = voltajerms1 tiempo;
        }
      else
        {
          if((voltajerms2_tiempo > voltajerms1_tiempo) && (voltajerms2_tiempo >
      voltajerms3 tiempo))
          {
            maxima tension = voltajerms2 tiempo;
          }
```

```
else
           {
             maxima_tension = voltajerms3 tiempo;
           }
         }
       promedio voltajefases =
                                  (voltajerms1 tiempo + voltajerms2 tiempo +
       voltajerms3_tiempo) / 3.0;
       desbalance tension
                                  ((maxima tension - promedio voltajefases)/
                           =
       promedio_voltajefases) * 100.0;
       if ((corrienterms1 tiempo > corrienterms2 tiempo) && (corrienterms1 tiempo >
       corrienterms3 tiempo))
         {
           maxima corriente = corrienterms1 tiempo;
         }
       else
         {
                                         >
           if((corrienterms2 tiempo
                                                 corrienterms1 tiempo)
                                                                               & &
       (corrienterms2 tiempo > corrienterms3 tiempo))
           {
             maxima corriente = corrienterms2 tiempo;
           }
           else
           {
             maxima corriente = corrienterms3 tiempo;
           }
         }
       promedio corrientefases = (corrienterms1 tiempo + corrienterms2 tiempo +
       corrienterms3 tiempo) / 3.0;
       desequilibrio corriente = ((maxima corriente - promedio corrientefases)/
       promedio_corrientefases) * 100.0;
                                                                                /
       frecuencia promediol tiempo
                                         =
                                                suma frecuencia promediol
       (cont_freq_tiempo);
       frecuencia_promedio2_tiempo
                                         =
                                                suma frecuencia promedio2
                                                                                /
       (cont_freq_tiempo);
       frecuencia promedio3 tiempo
                                         =
                                                suma frecuencia promedio3
       (cont_freq_tiempo);
       var frecuencial tiempo = ((frecuencia promediol tiempo - 60.0) / 60.0) *
       100.0;
       var frecuencia2 tiempo = ((frecuencia promedio2 tiempo - 60.0) / 60.0) *
       100.0;
       var frecuencia3 tiempo = ((frecuencia promedio3 tiempo - 60.0) / 60.0) *
       100.0;
       thdv1 tiempo= suma thdv1/ cont thdv1;
       thdv2 tiempo= suma thdv2/ cont thdv1;
       thdv3 tiempo= suma thdv3/ cont thdv1;
       thdi1_tiempo= suma_thdi1/ cont_thdv1;
       thdi2_tiempo= suma_thdi2/ cont_thdv1;
       thdi3 tiempo= suma thdi3/ cont thdv1;
//ALMACENAMIENTO CADA 10 MINUTOS DE PARÁMETROS ELÉCTRICOS Y DE
CALIDAD DE ENERGÍA MIENTRAS EL TIEMPO FINAL SEA MENOR A 7 DÍAS//
       if(tiempo final < 604800000)</pre>
```

```
if (trempo_final < tofocoood)
{
  myFile = SD.open("voltrms.txt", FILE_WRITE);
  if (myFile) {
    myFile.print(voltajerms1_tiempo);
    myFile.print(voltajerms2_tiempo);
    myFile.print(";");
    myFile.print(voltajerms3_tiempo);
</pre>
```

```
myFile.print(``;");
  myFile.print(tiempo final);
 myFile.println(";");
  myFile.close();
}
myFile = SD.open("corrirms.txt", FILE WRITE);
if (myFile) {
 myFile.print(corrienterms1_tiempo);
 myFile.print(``;");
  myFile.print(corrienterms2 tiempo);
 myFile.print(";");
 myFile.print(corrienterms3 tiempo);
  myFile.print(``;");
 myFile.print(corriente neutro tiempo);
 myFile.print(``;");
 myFile.print(tiempo final);
 myFile.println(``;");
  myFile.close();
}
myFile = SD.open("potreal.txt", FILE WRITE);
  if (myFile) {
  myFile.print(potenciareal1 tiempo);
 myFile.print(``;");
 myFile.print(potenciareal2 tiempo);
 myFile.print(";");
 myFile.print(potenciareal3_tiempo);
  myFile.print(``;");
 myFile.print(tiempo final);
 myFile.println(";");
 myFile.close();
}
myFile = SD.open("potapar.txt", FILE_WRITE);
  if (myFile) {
  myFile.print(potenciaaparente1 tiempo);
 myFile.print(``;");
  myFile.print(potenciaaparente2 tiempo);
 myFile.print(";");
 myFile.print(potenciaaparente3_tiempo);
  myFile.print(``;");
 myFile.print(tiempo final);
 myFile.println(``;");
  myFile.close();
}
myFile = SD.open("potreac.txt", FILE WRITE);
  if (myFile) {
 myFile.print(potenciareactival_tiempo);
 myFile.print(";");
  myFile.print(potenciareactiva2 tiempo);
 myFile.print(";");
 myFile.print(potenciareactiva3 tiempo);
 myFile.print(";");
 myFile.print(tiempo final);
 myFile.println(``;");
 myFile.close();
}
myFile = SD.open("factpot.txt", FILE WRITE);
if (myFile) {
 myFile.print(factorpotencial);
 myFile.print(``;");
```

```
140
```

```
myFile.print(factorpotencia2);
    myFile.print(";");
    myFile.print(factorpotencia3);
    myFile.print(";");
    myFile.print(factorpotenciatotal);
    myFile.print(``;");
    myFile.print(tiempo final);
    myFile.println(";");
    myFile.close();
  }
  myFile = SD.open("nivolt.txt", FILE WRITE);
  if (myFile) {
    myFile.print(nivel voltaje1);
    myFile.print(";");
    myFile.print(nivel voltaje2);
    myFile.print(``;");
    myFile.print(nivel_voltaje3);
    myFile.print(";");
    myFile.print(tiempo_final);
    myFile.println(``;");
    myFile.close();
  }
  myFile = SD.open("desbten.txt", FILE WRITE);
  if (myFile) {
    myFile.print(desbalance tension);
    myFile.print(``;");
    myFile.print(tiempo final);
    myFile.println(";");
    myFile.close();
  }
  myFile = SD.open("desecor.txt", FILE_WRITE);
  if (myFile) {
   myFile.print(desequilibrio corriente);
    myFile.print(";");
    myFile.print(tiempo_final);
    myFile.println(";");
    myFile.close();
  }
  myFile = SD.open("frecprom.txt", FILE WRITE);
  if (myFile) {
   myFile.print(frecuencia promedio1 tiempo);
    myFile.print(";");
    myFile.print(frecuencia promedio2 tiempo);
    myFile.print(``;");
    myFile.print(frecuencia promedio3 tiempo);
    myFile.print(``;");
    myFile.print(tiempo final);
    myFile.println(";");
    myFile.close();
  }
myFile = SD.open("varfrec.txt", FILE WRITE);
  if (myFile) {
    myFile.print(var_frecuencial_tiempo);
    myFile.print(";");
    myFile.print(var frecuencia2 tiempo);
    myFile.print(``;");
    myFile.print(var frecuencia3 tiempo);
    myFile.print(``;");
    myFile.print(tiempo final);
```

```
myFile.println(``;");
    myFile.close();
  }
myFile = SD.open("thdv.txt", FILE WRITE);
  if (myFile) {
    myFile.print(thdv1_tiempo);
    myFile.print(``;");
    myFile.print(thdv2_tiempo);
    myFile.print(``;");
    myFile.print(thdv3 tiempo);
    myFile.print(``;");
    myFile.print(tiempo_final);
    myFile.println(``;");
    myFile.close();
  }
myFile = SD.open("thdi.txt", FILE WRITE);
  if (myFile) {
   myFile.print(thdi1 tiempo);
    myFile.print(";");
    myFile.print(thdi2_tiempo);
    myFile.print(``;");
    myFile.print(thdi3 tiempo);
    myFile.print(``;");
   myFile.print(tiempo final);
    myFile.println(";");
    myFile.close();
  }
 }
 tiempo med = 0;
 cont_med = 0;
 cont_freq_tiempo = 0;
 cont_thdv1 = cont_thdv2 = cont_thdv3 = 0;
 cont thdi1 = cont thdi2 = cont thdi3 = 0;
 suma_voltajermspromedio1 = 0;
 suma corrientermspromedio1 = 0;
 suma potenciareal1 = 0;
 suma potenciaaparente1 = 0;
 suma voltajermspromedio2 = 0;
 suma corrientermspromedio2 = 0;
 suma potenciareal2 = 0;
 suma potenciaaparente2 = 0;
 suma voltajermspromedio3 = 0;
 suma_corrientermspromedio3 = 0;
 suma potenciareal3 = 0;
 suma_potenciaaparente3 = 0;
 sumacorriente neutro promedio = 0;
 suma_frecuencia_promedio1 = 0;
 suma frecuencia promedio2 = 0;
 suma_frecuencia_promedio3 = 0;
 suma thdv1 = suma thdv2 = suma thdv3 = 0;
 suma_thdi1 = suma_thdi2 = suma_thdi3 = 0;
}
```

//ALMACENAMIENTO EN VARIABLES DE PARÁMETROS ELÉCTRICOS PARA POSTERIOR PROMEDIADO CADA 10 MINUTOS//

```
else
     {
      suma voltajermspromedio1 += voltajerms1;
      suma corrientermspromedio1 += corrienterms1;
      suma potenciareal1 += potenciareal1;
      suma potenciaaparente1 += potenciaaparente1;
      suma voltajermspromedio2 += voltajerms2;
      suma corrientermspromedio2 += corrienterms2;
       suma potenciareal2 += potenciareal2;
      suma potenciaaparente2 += potenciaaparente2;
       suma voltajermspromedio3 += voltajerms3;
      suma corrientermspromedio3 += corrienterms3;
      suma potenciareal3 += potenciareal3;
      suma potenciaaparente3 += potenciaaparente3;
      sumacorriente_neutro_promedio += corriente_neutro;
      cont med ++;
     }
 cont=0;
 seg=seg + 2;
 cont freq1 = 0;
 cont freq2 = 0;
 cont freq3 = 0;
 voltajecuadradosuma1 = 0.0;
 corrientecuadradosuma1 = 0.0;
 potenciainstantaneasuma1 = 0.0;
 voltajecuadradosuma2 = 0.0;
 corrientecuadradosuma2 = 0.0;
 potenciainstantaneasuma2 = 0.0;
 voltajecuadradosuma3 = 0.0;
 corrientecuadradosuma3 = 0.0;
 potenciainstantaneasuma3 = 0.0;
 corrientecuadradosumane = 0.0;
//ALMACENAMIENTO EN VARIABLES DE PARÁMETROS ELÉCTRICOS PARA
POSTERIOR PROMEDIADO CADA 2 SEGUNDOS//
 voltajecuadrado1 = pow(voltajepico1,2);
 voltajecuadradosuma1 = voltajecuadradosuma1 + voltajecuadrado1;
```

```
corrientecuadrado1 = pow(corrientepico1,2);
corrientecuadradosuma1 = corrientecuadradosuma1 + corrientecuadrado1;
potenciainstantanea1 = voltajepico1 * corrientepico1;
potenciainstantaneasuma1 = potenciainstantaneasuma1 + potenciainstantaneal;
voltajecuadrado2 = pow(voltajepico2,2);
voltajecuadradosuma2 = voltajecuadradosuma2 + voltajecuadrado2;
corrientecuadrado2 = pow(corrientepico2,2);
corrientecuadradosuma2 = corrientecuadradosuma2 + corrientecuadrado2;
potenciainstantanea2 = voltajepico2 * corrientepico2;
potenciainstantaneasuma2 = potenciainstantaneasuma2 + potenciainstantanea2;
voltajecuadrado3 = pow(voltajepico3,2);
voltajecuadradosuma3 = voltajecuadradosuma3 + voltajecuadrado3;
corrientecuadrado3 = pow(corrientepico3,2);
corrientecuadradosuma3 = corrientecuadradosuma3 + corrientecuadrado3;
potenciainstantanea3 = voltajepico3 * corrientepico3;
potenciainstantaneasuma3 = potenciainstantaneasuma3 + potenciainstantanea3;
```

}

else {

```
corrientecuadradone = pow(corrientepicone,2);
corrientecuadradosumane = corrientecuadradosumane + corrientecuadradone;
cont = cont + 1;
}
}
```

ANEXO H

PAPER DEL PROYECTO DE FIN DE TITULACIÓN

Implementación de un prototipo analizador de calidad de energía eléctrica para una red trifásica

Eduardo Brito¹, Eduardo Campoverde¹, Carlos Calderon²

¹Profesional en formación IET, Universidad Técnica Particular de Loja ² Docente Titulación IET, Universidad Técnica Particular de Loja

Loja, Ecuador 2014

¹eibrito1@utpl.edu.ec, ¹elcampoverde@utpl.edu.ec, ²cacalderon@utpl.edu.ec

Resumen - El presente proyecto muestra el diseño, implementación y evaluación de un prototipo analizador de calidad de energía eléctrica para una red trifásica. Para la ejecución del mismo, se lo estructuró en cinco fases: Primero, definir los parámetros e indicadores a determinar con el prototipo, así como la metodología para la determinación de los mismos desde el punto de vista analítico. La segunda fase, corresponde al diseño de los circuitos para medición de voltaje, corriente y frecuencia. Como tercera fase, se desarrolla el firmware para el procesamiento de datos en el prototipo. Como cuarta fase, se realiza la fabricación del dispositivo. Y, la quinta y última fase, corresponde a la evaluación de los resultados obtenidos por el prototipo implementado.

Palabras clave - Calidad de energía eléctrica, parámetros eléctricos, indicadores de calidad de energía, acondicionamiento de señales.

I. INTRODUCCIÓN

Se define a la calidad de energía como una característica física del suministro de electricidad, la cual debe llegar al cliente en condiciones normales, sin producir perturbaciones ni interrupciones en los procesos del mismo.

El Gobierno del Ecuador, a través del Ministerio de Electricidad y Energía Renovable (MEER), tiene como uno de sus objetivos principales mejorar el desempeño energético, sobre el cual se está aplicando medidas y políticas necesarias de calidad de energía eléctrica y eficiencia energética.

En base a lo anterior, el MEER ha propuesto implementar diversas acciones encaminadas a mejorar la calidad de energía por lo que requiere de un reglamento, normalización y metodología que ayude a cumplir con estos requerimientos como son las normas: IEC 601000-4-30, EN-50160, IEEE 1159-1995 y la norma ISO 50001 adoptada como norma técnica ecuatoriana NTE INE-ISO 50001.

Las instituciones/empresas/industrias (I/E/I) cuyos consumos energéticos son altos, deben liderar en iniciativas como evitar el desperdicio y optimizar el uso de la energía. Para obtener resultados confiables y permanentes en el tiempo, las I/E/I deben tener una herramienta destinada a la gestión continua de la energía utilizada; sin embargo no sería posible llevarlo a cabo si no se tiene definidos los indicadores de eficiencia de consumo ni las tecnologías de monitoreo continuo para dichos índices, tecnologías que conllevan una inversión inicial para la I/E/I. Esta situación, ha motivado a plantearnos el presente proyecto como una solución que brinde las prestaciones necesarias para la medición de la calidad de energía eléctrica, acorde con los parámetros establecidos por el CONELEC en la Regulación 004/01.

El objetivo principal del presente trabajo es implementar un prototipo analizador de calidad de energía eléctrica que permita al usuario estimar las tendencias de la calidad de energía de la red trifásica a analizarse; implementación realizada con hardware de bajo costo.

Para la implementación del prototipo, se estructuró el proceso en cinco fases, mismas que se muestran en la figura 1. En la etapa A, se definió los parámetros e indicadores a determinar con el prototipo analizador, así como la metodología para la determinación de los mismos desde el punto de vista analítico. La etapa B, corresponde al diseño de los circuitos para medición de voltaje, corriente y frecuencia. En la etapa C, se desarrolló el firmware para el procesamiento de datos en el prototipo. En la etapa D, se efectuó la fabricación del dispositivo. Finalmente, en la etapa E, se realizó la evaluación de los resultados obtenidos por el prototipo implementado.

Fig. 1. Proceso de desarrollo del proyecto. Elaborado por los autores.

En base a las cinco fases antes citadas, a continuación se realiza la descripción de cada una de ellas.

II. PARÁMETROS DEL PROTOTIPO ANALIZADOR DE CALIDAD DE ENERGÍA ELÉCTRICA

El Consejo Nacional de Electricidad (CONELEC) define a la calidad de energía como "una característica física del suministro de electricidad, la cual debe llegar al cliente en condiciones normales, sin producir perturbaciones ni interrupciones en los procesos del mismo" [1].

Es necesario realizar el análisis de los parámetros eléctricos y de calidad de energía que han sido tomados en cuenta para la realización del prototipo analizador de calidad de energía eléctrica, tomados en base a las normas: IEC 601000-4-30, EN-50160, IEEE 1159-1995. Los parámetros eléctricos que se miden en el prototipo implementado en el presente son: voltaje rms, corriente rms, frecuencia, potencia activa, potencia aparente, y potencia reactiva para cada fase del circuito; mientras que los indicadores de calidad de energía eléctrica que se obtienen son: nivel de voltaje, desbalance de tensión, desequilibrio de corriente, variación de frecuencia, factor de potencia, armónicos de voltaje y armónicos de corriente. Se debe mencionar que en el presente trabajo, no se incluyen parámetros como flicker y factor de cresta, mismos que sí son tomados en cuenta en analizadores de calidad de energía eléctrica existentes en el mercado. La razón por la que se ha excluido estos indicadores se debe a las limitaciones a nivel de hardware que tiene el módulo de procesamiento utilizado (Arduino Mega 2560).

A. Parámetros eléctricos

Los parámetros eléctricos hacen alusión a las mediciones que se realizan con el prototipo analizador de calidad de energía. Tomando en cuenta que las mediciones no son continuas en el tiempo, sino muestras discretas, se tienen las siguientes relaciones matemáticas que nos permitieron obtener los valores de los parámetros eléctricos [2]:

PARÁMETROS ELÉCTRICOS. ELABORADO POR LOS AUTORES.		
PARÁMETRO	CÁLCULO	
V rms	$V_{rms} = \sqrt{\frac{\sum_{n=0}^{N-1} v^2(n)}{N}}$	
(Voltaje rms)	Donde: v(n) es el voltaje instantáneo. <i>N</i> es el número de muestras.	
I rms	$I_{rms} = \sqrt{\frac{\sum_{n=0}^{N-1} i^2(n)}{N}}$	
(Corriente rms)	Donde: <i>i</i> (<i>n</i>) es la corriente instantánea. <i>N</i> es el número de muestras	
f (Frecuencia)	$f = \frac{1}{T}$ Donde: <i>T</i> es el tiempo de ciclo en que la señal realiza un cruce por cero ya sea de flanco positivo o negativo.	
P (Potencia Activa)	$P = \frac{1}{N} \sum_{n=0}^{N-1} v(n) \times i(n)$ Donde: v(n) es el voltaje instantáneo. i(n) es la corriente instantánea. N es el número de muestras.	
S	$S = I_{RMS} \times V_{RMS}$	
(Potencia Aparente)	Donde: I_{RMS} es la corriente RMS. V_{RMS} es el voltaje RMS.	
Q (Potencia Reactiva)	$Q = \sqrt{S^2 - P^2}$ Donde:	
(1 otencia Reactiva)	P es la potencia activa del sistema.	

TADIAI

B. Parámetros de calidad de energía eléctrica

En la tabla II se presentan los parámetros de calidad de energía eléctrica tomados en cuenta en el prototipo.

TABLA II. Parámetros De Calidad De Energía Eléctrica. Elaborado por Los autores

PARÁMETRO	UMBRALES	FÓRMULA
		$\Delta V_k(\%) = \frac{V_k - V_n}{V_n} x 100$
Nivel de voltaje	±5%	Donde: V_k es el voltaje eficaz en el punto de medición y V_n es el voltaje nominal.
		$DT = \frac{(T_{max} - \bar{T})}{\bar{T}} \times 100$
Desbalance de tensión	2%	Donde: T_{max} es la máxima tensión de las tres fases y \overline{T} es el promedio de las tensiones de las tres fases.
		$D_I(\%) = \frac{I_m - I_p}{I_p} \times 100$
Desequilibrio de corriente	40%	Donde: I_m es la máxima intensidad de corriente de las tres fases e I_p es el promedio de las corrientes medidas en las tres fases.
Variación do		$\Delta f(\%) = \frac{f - f_n}{f_n} \times 100$
frecuencia	±4% a ±6%	Donde: f es la frecuencia de cada fase medida y f_n es la frecuencia nominal.
Factor de		$FP = \frac{P}{S}$
potencia	0,92	Donde: P es la potencia activa del sistema y S la potencia aparente del mismo.
		$THD_V = \left(\frac{\sqrt{\sum_{i=2}^n (V_i)^2}}{V_n}\right) \times 100$
Armónicos de voltaje	Medio y Bajo Voltaje 8%	Donde: V_i es el valor eficaz (rms) del voltaje armónico "i" (para i=2 hasta n=40) y V_n es el voltaje nominal del punto de medición.
		$THD_{l} = \left(\frac{\sqrt{\sum_{i=2}^{n} (I_{i})^{2}}}{I_{1}}\right) \times 100$
Armónicos de corriente	12%	Donde: I_i es el valor eficaz (rms) de la corriente armónica "i" (para i=2 hasta n=40) y I_1 es la corriente eficaz de la onda fundamental del punto de medición.

III. DISEÑO DE LOS CIRCUITOS PARA MEDICIÓN DE VOLTAJE, CORRIENTE Y FRECUENCIA

A. Diseño del circuito de acondicionamiento de voltaje

Para la medición de voltaje se empleó la técnica basada en el divisor de voltaje. Para encontrar el valor de las resistencias a utilizar, se parte del hecho de que el voltaje de entrada es 120V rms; sin embargo, se tomó en cuenta un porcentaje de variación que puede darse en las fases del sistema, que corresponde a 140V rms [3]. Entonces:

$$V_{out \ pico} = 2,5V; \ V_{int \ pico} = 140\sqrt{2}V$$
$$V_{out} = \frac{R_2}{R_1 + R_2} \times V_{in}$$
$$R_1 = \frac{R_2 \times V_{in} - R_2 \times V_{out}}{V_{out}}$$
$$Si: R_2 = 1,5k\Omega \rightarrow R_1 = 120k\Omega$$

Así se obtiene como salida una forma de onda senoidal con un voltaje pico de 2,5V, por lo que se agregó una componente DC que permita desplazar esta forma de onda hacia el eje positivo, es decir de 0 a 5V, y, de esta manera, sea digitalizada por el módulo de adquisición y procesamiento de señales.

El divisor de voltaje no brinda aislamiento con respecto a la fuente de tensión, por ello que se agregó un circuito de protección para evitar que el módulo de adquisición y procesamiento se vea afectada por sobretensiones.

En la figura 2, se presenta el circuito para adquirir la forma de onda de voltaje.

Fig. 2. Esquema del circuito de acondicionamiento de voltaje. Elaborado por los autores.

B. Diseño del circuito de acondicionamiento de corriente

A continuación se presenta dos acondicionamientos para las señales de corriente: el primero para realizar las mediciones de las corrientes de fase, y, el segundo, de la corriente del neutro. Diseño del circuito de acondicionamiento para la corriente de fase.

El transformador de corriente que se utilizó tiene una relación de transformación comercial de 2500:1: transformador seleccionado por su disponibilidad en el mercado local. Con el sistema de medición de calidad de energía se pretende medir hasta una corriente de fase máxima de 365A rms [6], equivalente a 516,19A pico; este valor a la salida del transformador de corriente corresponde a 0,2065A pico que es el valor máximo a medir. Debe ser transformado a un voltaje pico de 2,5V para posteriormente desplazar la señal de ±2,5V ha valores de señal de 0V a 5V y con ello pueda ser leída por el conversor analógico-digital (ADC) del módulo de adquisición y procesamiento de señales.

La conversión de 0,2065A a 2,5V se realizó mediante una resistencia conectada en el secundario del transformador de corriente, el valor de dicha resistencia se calculó mediante la ley de Ohm, obteniéndose como resultado una resistencia de 12,1 Ω .

Al tener la forma de onda senoidal de $\pm 2,5V$, se agregó una componente de DC de 2,5V, teniéndose acondicionada la señal de 0V a 5V.

En la figura 3 se muestra el circuito utilizado para la medición de corriente de fase.

Fig. 3. Esquema del circuito de acondicionamiento de corriente de fase. Elaborado por los autores.

Diseño del circuito de acondicionamiento para la corriente del neutro.

De igual forma que para el circuito de acondicionamiento de corriente de fase, se realizó los cálculos para la corriente del neutro, tomando en cuenta un transformador con relación de transformación comercial de 250:1 (seleccionado por su disponibilidad en el mercado) y una corriente máxima a medir en el neutro de 35A.

En la figura 4 se muestra el circuito utilizado para la medición de corriente del neutro.

Fig. 4. Esquema del circuito de acondicionamiento de corriente del neutro. Elaborado por los autores.

Diseño del circuito para medición de frecuencia.

Para determinar la frecuencia, se utilizó el comparador de nivel, circuito que analiza la señal de entrada y la compara con un nivel de referencia, emitiendo un resultado digital.

Fig. 5. Esquema del circuito para medición de frecuencia. Elaborado por los autores.

La figura 5 representa el circuito comparador de nivel. En ésta se observa que el nivel de la señal acondicionada se compara con un voltaje de 2,5V, teniéndose a la salida una señal cuadrada con la misma frecuencia de la señal de entrada. El circuito comparador arroja un voltaje de salida de 5V para valores de la señal de entrada mayores a 2,5V, y un voltaje de 0V para valores menores a 2,5V [7].

La señal de salida del circuito comparador de nivel es ingresada en el módulo de procesamiento de parámetros de energía y es detectada mediante una interrupción con flanco de bajada, en base a la cual se obtiene la frecuencia de la señal cuadrada que corresponde a la misma frecuencia de la señal acondicionada.

IV. DISEÑO DEL FIRMWARE PARA EL PROCESAMIENTO DE LOS PARÁMETROS DE ENERGÍA

Como módulo de procesamiento de datos, se utilizó la plataforma Arduino Mega 2560. Además, se incorporó sobre ésta el Shield Ethernet, donde se encuentra el conector RJ45 para comunicación Ethernet y la ranura de Micro SD para el almacenamiento de datos.

De igual forma, el software del prototipo analizador fue realizado en el entorno de desarrollo integrado de Arduino; entorno gratuito en el que se implementó los flujogramas requeridos para el cálculo de los parámetros eléctricos como: voltaje rms, corriente rms, frecuencia, potencia real, potencia aparente y potencia reactiva; así como los necesarios para la obtención de los indicadores de calidad de energía como: nivel de voltaje, desbalance de tensión, desequilibrio de corriente, factor de potencia y variación de frecuencia. Para el caso de la distorsión armónica de voltaje y de corriente, se integró los algoritmos sintetizados en el proyecto predecesor [8] al presente; recalcando que en el citado trabajo existieron errores en su evaluación.

Cabe señalar, que además de los flujogramas mencionados, se desarrolló los necesarios para la gestión de periféricos del módulo de procesamiento, tales como: presentación de los resultados en la GLCD, almacenamiento de datos en memoria Micro SD, y, la transmisión mediante comunicación Ethernet.

La figura 6 representa un esquema resumen de los procesos que se ejecutan en el módulo de procesamiento.

En la figura 7 y figura 8, se presenta el algoritmo para el cálculo de un parámetro eléctrico (voltaje rms) y otro para la obtención de un indicador de calidad de energía eléctrica (nivel del voltaje), respectivamente. El cálculo de los demás parámetros eléctricos y de calidad de energía siguen la misma estructura, plasmando en cada algoritmo la fórmula matemática (tabla I y tabla II) necesaria para la obtención de cada uno de ellos.

Fig. 6. Esquema resumen de los procesos ejecutados en el módulo de procesamiento. Elaborado por los autores.

Fig. 7. Flujograma para el cálculo de voltaje rms. Elaborado por los

Fig. 8. Flujograma para el cálculo de nivel de voltaje. Elaborado por los autores.

V. FABRICACIÓN DEL PROTOTIPO ANALIZADOR DE CALIDAD DE ENERGÍA ELÉCTRICA

Es de importancia abordar las partes principales para la fabricación del prototipo analizador de calidad de energía eléctrica, las cuales son: la elaboración de la placa de circuito impreso (PCB, Printed Circuit Board), las conexiones de los elementos del prototipo analizador de calidad, y, el diseño de su carcasa.

A. Elaboración de la PCB

La PCB se diseñó en el software ARES 7 Professional, en base al esquema presentado en la figura 9.

Fig. 9. Esquema de conexiones de la PCB. Elaborado por los autores.

Fig. 10. Tarjeta principal del prototipo analizador de calidad de energía eléctrica. Fotografía de los autores.

Posteriormente, la placa se elaboró mediante la técnica de transferencia de calor e inmersión en ácido Percloruro de Hierro. Luego de ello, se ubicó y soldó los elementos de la misma, teniéndose como resultado el presentado en la figura 10.

B. Conexiones de los elementos del prototipo analizador de calidad de energía

La figura 11 muestra las conexiones realizadas entre los elementos del prototipo y la tarjeta principal del mismo. Como conectores de voltaje se utilizó los tipo banana, mientras que para corriente se empleó los conectores TRS o Jack de audio. Además, existen tres buses de datos (Bus D1, bus D2 y bus D3), el primero conecta la GLCD al módulo de procesamiento de parámetros de energía, el bus D2 traslada las ondas acondicionadas de voltaje y corriente de las fases, y, el bus D3 transporta las ondas cuadradas para el cálculo de frecuencias, estos buses llegan al módulo de procesamiento de distorsión armónica, donde se calcula el THD tanto de voltaje como de corriente. También se presenta la conexión del pulsador, encargado de cambiar de pantalla para visualización de los datos del dispositivo.

Fig. 11. Conexiones de los elementos del prototipo analizador de calidad de energía. Elaborado por los autores.

C. Montaje del prototipo analizador de calidad de energía eléctrica

El case (estuche) del prototipo se realizó en el software SolidWorks 2014. Este diseño fue fabricado en una impresora 3D Makerbot Replicator 2. Posteriormente, se realizó el montaje y ensamblado del dispositivo completo, teniéndose como resultado el presentado en la figura 12, que corresponde al prototipo analizador de calidad de energía desarrollado.

Fig. 12. Prototipo analizador de calidad de energía eléctrica. Fotografía de los autores.

VI. EVALUACIÓN DE LA PERFORMANCE DEL PROTOTIPO ANALIZADOR DE CALIDAD DE ENERGÍA

Para la evaluación de los parámetros eléctricos y de calidad de energía, se graficó los valores obtenidos del prototipo analizador de calidad de energía eléctrica, frente a los resultados adquiridos por el instrumento tomado como referencia, Fluke 434; recalcándose que este instrumento no es un dispositivo normalizado.

Los resultados de las mediciones realizadas corresponden a los 6 parámetros eléctricos presentados en la tabla I y a cuatro parámetros de calidad de energía: nivel de voltaje, desbalance de tensión, desequilibrio de corriente y factor de potencia. Se excluyó variación de frecuencia, debido a que el instrumento tomado como referencia no calcula este parámetro.

Las mediciones se realizaron en el tablero de distribución de energía del Edificio de Unidades Productivas, ubicado dentro del Campus de la UTPL, edificación seleccionada por ser la de mayor consumo energético, de acuerdo a estudios anteriores [6].

De la figura 13 a la figura 18, se muestran los resultados obtenidos de la medición de los parámetros eléctricos del circuito trifásico, tanto del prototipo implementado (color rojo) como del instrumento tomado como referencia (color negro).

rig. 14. Resultado de medición de corriente rms de la fase 1. Elaborado por los autores.

Fig. 15. Resultado de medición de corriente del neutro. Elaborado por los autores.

Fig. 16. Resultado de medición de frecuencia de la fase 1. Elaborado por los autores.

Fig. 17. Resultado de medición de potencia activa de la fase 1. Elaborado por los autores.

Fig. 18. Resultado de medición de potencia activa de la fase 1. Elaborado por los autores. De la figura 19 a la figura 22, se presentan los resultados obtenidos de la medición de los parámetros de calidad de energía eléctrica, tanto del prototipo implementado (color rojo) como del instrumento tomado como referencia (color negro).

Fig. 19. Resultado de medición de nivel de voltaje de la fase 1. Elaborado por los autores.

Fig. 20. Resultado de medición de desbalance de tensión. Elaborado por los autores.

Fig. 21. Resultado de medición de desequilibrio de corriente. Elaborado por los autores.

Fig. 22. Resultado de medición de factor de potencia del circuito global. Elaborado por los autores.

De acuerdo a las gráficas anteriores, se observa que las mediciones realizadas por el prototipo implementado, siguen la misma tendencia respecto a las obtenidas por el instrumento tomado como referencia; lo que demuestra que los algoritmos implementados en la plataforma Arduino Mega 2560, funcionan adecuadamente.

VII.CONCLUSIONES

- En base a la normativa se seleccionó los parámetros eléctricos y de calidad de energía a medir y calcular en el prototipo desarrollado en este proyecto.
- Para medición de tensión se seleccionó la técnica del divisor de voltaje, considerando que en este trabajo se debe adquirir tanto la forma de onda fundamental como sus distintos armónicos. Esta técnica no brinda aislamiento con respecto a la fuente de tensión, por ello se agregó un circuito de protección para evitar que el módulo de procesamiento de parámetros se vea afectado por sobretensiones.
- Para medición de corriente se seleccionó la técnica basada en el transformador de corriente, debido a que no se requiere conectar el sensor en serie, con lo que se evita abrir el circuito; además, este sensor provee a la salida una corriente proporcional a la corriente medida, con lo que se reproduce la forma de onda de la señal medida.
- En el prototipo analizador de calidad de energía desarrollado, se implementaron correctamente los algoritmos para calcular los seis parámetros eléctricos y seis de los ocho parámetros de calidad de energía; excluyéndose Factor de Cresta y Flicker por limitaciones a nivel de hardware de la plataforma Arduino Mega 2560, tarjeta utilizada como módulo de procesamiento de datos.
- En base a las gráficas resultantes de las mediciones realizadas, se observa que los valores adquiridos por el prototipo desarrollado, siguen la misma tendencia respecto a los obtenidos por el instrumento tomado como referencia, Fluke 434, dispositivo empleado a falta de un equipo de medición normalizado; tendencia que se presenta tanto para los parámetros eléctricos como para los de calidad de energía eléctrica. Por consiguiente, este prototipo permite al usuario estimar la tendencia de la calidad de energía para una red trifásica.

VIII. REFERENCIAS

[1] NORMA IEEE 1159 - 1995, "Fundamentos de la Calidad de la Energía" [en línea], disponible en: http://dspace.ups.edu.ec/bitstream/123456789/75/7/Capitulo1.pdf, [consulta: 26 de noviembre 2013].

[2] OPEN ENERGY MONITOR, "AC Power Theory - Advanced maths" [en línea], disponible en: http://openenergymonitor.org/emon/buildingblocks/ac-power-advancedmaths, [consulta: 11 de diciembre 2013].

[3] Hernández E. y Rodríguez W. (2009), "Adquisición de formas de onda de tensión y de corriente para un prototipo de contador digital trifásico", Universidad Industrial de Santander, Bucaramanga, Colombia, [en línea], disponible en: http://repositorio.uis.edu.co/jspui/bitstream/123456789/3356/2/129605.pd f, [consulta: 14 de diciembre 2013].

[4] Prieto D., "Protección contra Sobretensiones en Fuentes de Alimentación" [en línea], disponible en: http://www.qsl.net/lu9dpd/Homebrew/Proteccion_sobretension/proteccion_sobretension.htm, [consulta: 18 de diciembre 2013].

[5] Foros de Electrónica, "*Protección de Fuentes (MCR106*)" [en línea], disponible en: http://www.forosdeelectronica.com/proyectos/proteccion-fuentes.htm, [consulta: 18 de diciembre 2013].

[6] Casierra K. e Íñiguez A. (2013), "Monitoreo y análisis de variables eléctricas que permiten validar el estado actual para futuras correcciones en el suministro de energía eléctrica de cada uno de los edificios del campus UTPL", Tesis de ingeniería, Universidad Técnica Particular de Loja, Loja, Ecuador, [en línea], disponible en: http://dspace.utpl.edu.ec//handle/123456789/6531, [consulta: 12 de diciembre 2013].

[7] Roldán A., "*Tema 1E – Amplificadores Operacionales - COMPARADORES*", Universidad de Granada, Granada, España, [en línea], disponible en: http://electronica.ugr.es/~amroldan/asignaturas/curso08-09/ftc/temas/Tema_01E_AO_Comparador.pdf, [consulta: 12 de diciembre 2013].

[8] Ganazhapa B. (2014), "Síntesis y validación de metodologías y algoritmos para la determinación de parámetros de calidad de energía eléctrica", Tesis de ingeniería no publicada, Universidad Técnica Particular de Loja, Loja, Ecuador.