

UNIVERSIDAD TÉCNICA PARTICULAR DE LOJA

La Universidad Católica de Loja

ÁREA TÉCNICA

TÍTULO DE INGENIERO EN ELECTRÓNICA Y TELECOMUNICACIONES

Desarrollo de una plataforma móvil para la adquisición de datos medio ambientales usando un vehículo aéreo no tripulado

TRABAJO DE TITULACIÓN

AUTORES: Aguirre Esparza, Cristian Bolívar. Paladines Bernal, Santiago Leonardo.

DIRECTOR: Quiñones Cuenca, Manuel Fernando, Ing.

LOJA – ECUADOR

2016

Esta versión digital, ha sido acreditada bajo la licencia Creative Commons 4.0, CC BY-NY-SA: Reconocimiento-No comercial-Compartir igual; la cual permite copiar, distribuir y comunicar públicamente la obra, mientras se reconozca la autoría original, no se utilice con fines comerciales y se permiten obras derivadas, siempre que mantenga la misma licencia al ser divulgada. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Septiembre, 2016

APROBACIÓN DEL DIRECTOR DEL TRABAJO DE TITULACIÓN

Ingeniero.
Manuel Fernando Quiñones Cuenca
DOCENTE DE LA TITULACIÓN
De mi consideración:
El presente trabajo de titulación: "Desarrollo de una plataforma móvil para la adquisición de datos medio ambientales usando un vehículo aéreo no tripulado", realizado por los profesionales en formación: Aguirre Esparza Cristian Bolívar y Paladines Bernal Santiago Leonardo; ha sido orientado y revisado durante su ejecución, por cuanto se aprueba la presentación del mismo.
Loja, mayo de 2016
f)

DECLARACIÓN DE AUTORÍA Y CESIÓN DE DERECHOS

Nosotros, Aguirre Esparza Cristian Bolívar y Paladines Bernal Santiago Leonardo,

declaramos ser autores del presente trabajo de titulación: Desarrollo de una plataforma

móvil para la adquisición de datos medio ambientales usando un vehículo aéreo no

tripulado, de la titulación de Electrónica y Telecomunicaciones, siendo el Ing. Manuel

Fernando Quiñones Cuenca director del presente trabajo; y eximimos expresamente a la

Universidad Técnica Particular de Loja y a sus representantes legales de posibles reclamos

o acciones legales. Además certifico que las ideas, conceptos, procedimientos y resultados

vertidos en el presente trabajo investigativo, son de nuestra exclusiva responsabilidad

Adicionalmente declaramos conocer y aceptar la disposición del Art. 88 del Estatuto

Orgánico de la Universidad Técnica Particular de Loja que en su parte pertinente

textualmente dice: "Forman parte del patrimonio de la Universidad la propiedad intelectual

de investigaciones, trabajos científicos o técnicos y tesis de grado o trabajos de titulación

que se realicen con el apoyo financiero, académico o institucional (operativo) de la

Universidad"

f. f. f.

Autor: Aguirre Esparza Cristian Bolívar

Autor: Paladines Bernal Santiago Leonardo

Cédula: 1900669688

Cédula: 1103738058

iii

DEDICATORIA

Dedico este trabajo de manera especial a mis padres, por ser los coautores de todo este proceso, por ser el pilar fundamental en mi educación y en mi vida, por su incondicional apoyo mantenido a través del tiempo; a mis hermanas, no solo por estar presentes aportando buenas cosas a mi vida, sino por los grandes lotes de felicidad y de diversas emociones que siempre me han causado, a mi novia quien me apoyo y alentó con sus consejos para continuar, cuando parecía que me iba a rendir; a familiares y amigos que participaron directa o indirectamente en la elaboración de este trabajo.

Cristian Aguirre Esparza.

Dedico este trabajo a todos quienes han participado en mi formación como persona y como profesional... a mis docentes y profesores por impartir ese conocimiento ganado en años de experiencia, sin eso la teoría no va más allá de los libros, a mis amigos y cuasicolegas, por ser ese acole y aguante en todos estos años de estudio y trabajos los cuales no habrían sido lo mismo sin ellos, a mis D+ amigos por haber estado ahí cuando necesitaba una ayuda, un concejo o una cerveza, en los momentos y noches de ocio y distracción, ya que son necesarias para distraer la mente, a mis hermanos por haberme aguantado todos estos años, cuando tenían que soportar la bulla de las amanecidas mientras usaba herramientas o hablaba solo. Y al final pero más importante dedico especialmente este trabajo a mis padres, por aguantarme las malas noches y los malos días, los 365 días de cada año de mi vida, y principalmente por ser ese ejemplo y empuje en la vida, para siempre seguir adelante y buscar lo que creemos merecer.

Santiago Paladines Bernal.

AGRADECIMIENTO

A nuestros padres que han dado todo el esfuerzo, sacrificio, confianza y apoyo incondicional para que ahora estemos culminando esta etapa de nuestras vidas. A nuestros hermanos, que han estado siempre presentes, motivándonos y apoyándonos día a día.

A nuestro director de tesis, Ing. Manuel Quiñones, que nos supo orientar y brindar su confianza y tiempo guiándonos en el desarrollo de este trabajo; además de transmitirnos sus diversos conocimientos, especialmente del campo y de los temas que corresponden a nuestra profesión.

A nuestra familia, compañeros y sobre todo amigos, que han sido parte de nuestra formación profesional y sobre todo por los buenos momentos compartidos a lo largo de todos estos años.

Cristian y Santiago.

ÍNDICE DE CONTENIDOS

APR	OBACION DEL DIRECTOR DEL TRABAJO DE TITULACION	ii
DEC	LARACIÓN DE AUTORÍA Y CESIÓN DE DERECHOS	iii
DED	ICATORIA	iv
AGR	RADECIMIENTO	v
ÍNDI	CE DE CONTENIDOS	vi
ÍNDI	CE DE FIGURAS	ix
ÍNDI	CE DE TABLAS	xii
RES	UMEN	13
ABS	TRACT	14
INTF	RODUCCIÓN	15
1.	CAPÍTULO I: ALCANCE DE LA INVESTIGACIÓN	16
	1.1. Objetivos.	17
	1.1.1. Objetivo general	17
	1.1.2. Objetivos específicos.	17
	1.2. Justificación	17
	1.3. Metodología	18
2.	CAPITULO II: ESTADO DEL ARTE	20
	2.1. Introducción	21
	2.2. Contaminación atmosférica.	22
	2.2.1. Fuentes de contaminación.	22
	2.2.2. Tipos de contaminantes.	23
	2.2.3. Factores que influyen en la contaminación	24
	2.2.4. Características de los gases atmosféricos	24
	2.2.5. Efectos adversos de los gases atmosféricos sobre el ser humano	25
	2.2.6. Valores recomendados de gases.	26
	2.2.7. Estaciones meteorológicas ambientales.	26
	2.2.8. Calidad del aire en el Ecuador.	27
	2.3. Red de sensores inalámbricos (WSN).	29
	2.3.1. Aplicaciones de las WSN.	29
	2.3.2. Topologías de red WSN.	30
	2.3.3. Ventajas y desventajas de las WSN.	31
	2.4. Protocolos de comunicación inalámbrica.	32

	2.4.1. Protocolo ZigBee	32
	2.4.1.1. Ventajas ZigBee	33
	2.4.2. Protocolo DigiMesh.	34
	2.4.2.1. Ventajas DigiMesh	34
	2.4.3. Diferencias Zigbee y DigiMesh	35
	2.4.4. Protocolo seleccionado.	36
	2.5. Vehículos aéreos no tripulados (VANT).	36
	2.5.1. Contribución de los vehículos aéreos no tripulados con el medioambiente	36
	2.5.2. Vehículo aéreo no tripulado "DJI INSPIRE 1"	37
	2.5.2.1. Características vehículo aéreo no tripulado DJI Inspire 1	38
	2.6. Tecnologías en sensores de gases.	39
	2.6.1. Tipos de sensores.	39
	2.6.1.1. Sensores electroquímicos.	39
	2.6.1.2. Sensores catalíticos.	40
	2.6.1.3. Sensores de gas de estado sólido	40
	2.6.1.4. Sensores infrarrojos.	41
	2.6.1.5. Detectores de fotoionización	41
3.	CAPITULO III: DESARROLLO	42
	3.1. Introducción	43
	3.2. Especificaciones del sistema	43
	3.3. Selección de sensores.	43
	3.4. Selección placa de procesamiento	46
	3.5. Arquitectura hardware del sistema.	47
	3.6. Arquitectura software del sistema	48
	3.7. Desarrollo del programa para la plataforma Waspmote	49
	3.7.1. Funciones para la medición de magnitudes	51
	3.7.1.1. Medición de monóxido de carbono (CO)	51
	3.7.1.2. Medición de dióxido de carbono (CO2)	52
	3.7.1.3. Medición de temperatura	54
	3.7.1.4. Medición de humedad relativa	55
	3.7.1.5. Medición de porcentaje de oxígeno	57
	3.7.1.6. Sensor de partículas de polvo GP2Y1010AU	58
	3.7.1.6.1. Placa de adaptación	59
	3.7.1.6.2. Cambios a la librería SensorGas_v20	61

	3.7.2. Comunicación con el módulo XBee.	62
	3.7.2.1. Información de la cabecera, Header.	62
	3.7.2.2. Información de datos, Payload	63
	3.8. Consumo energético del prototipo.	63
	3.9. Aplicación desarrollada en LabVIEW	65
	3.9.1. Elementos del VI.	65
	3.9.2. Funcionamiento de la aplicación.	66
	3.10. Ubicación de sensores.	69
	3.11. Verificación de pesos.	71
	3.12. Diseño del soporte y estructura de la placa de sensores de gases	72
	3.12.1.Implementación hardware.	76
	3.13. Desarrollo aplicación para móviles	77
4.	CAPITULO IV: RESULTADOS Y PRUEBAS	79
	4.1. Introducción.	80
	4.2. Test de alcance	80
	4.3. Verificación de interferencia usando el VANT.	85
	4.4. Test de autonomía de vuelo del VANT	86
	4.5. Test de medidas de sensores.	87
	4.6. Mediciones usando el vehículo aéreo no tripulado	91
	4.7. Mediciones junto con estación meteorológica	95
	4.8. Mediciones en diferentes puntos de la ciudad de Loja - Ecuador	98
	4.9. Resolución espacial que se cubre	102
	4.10. Comprobación almacenamiento de datos en servidor.	103
CON	CLUSIONES	104
REC	OMENDACIONES	106
ANE:	XOS	113
ANE:	XO A: VERIFICACION DE PESOS	114
ANE:	XO B: CÓDIGOS	117
ANE	XO C: DATOS DE EQUIPOS	119
ΔNE.	YO D: TARLAS DE MEDICIONES	1/16

ÍNDICE DE FIGURAS

Figura 1.1. Fase de desarrollo del proyecto	19
Figura 2.1. Composición del aire atmosférico	21
Figura 2.2. Fuentes de contaminación	
Figura 2.3. Tipos de contaminates	
Figura 2.4. Factores que influyen en la contaminación	
Figura 2.5. Características de los gases atmosféricos	
Figura 2.6. Componentes de WSN, puerta de enlace y nodos distribuidos	
Figura 2.7. Topología tipo estrella.	
Figura 2.8. Topología tipo árbol.	
Figura 2.9. Topología tipo malla	
Figura 2.10. Diferentes nodos en el protocolo ZigBee.	
Figura 2.11. Nodos en el protocolo DigiMesh	
Figura 2.12. Vehículo aéreo no tripulado DJI INSPIRE 1	
Figura 2.13. Sensor electroquímico	
Figura 2.14. Sensor catalítico	
Figura 2.15. Sensor de gas de estado sólido	
Figura 2.16. Sensor de gas infrarrojo	
Figura 2.17. Detector de fotoionización.	41
Figura 3.1. Arquitectura general del sistema.	47
Figura 3.2. Arquitectura hardware, nodo móvil	48
Figura 3.3. Arquitectura hardware, nodo estación base	48
Figura 3.4. Arquitectura software, nodo móvil	48
Figura 3.5. Arquitectura software, nodo estación base	49
Figura 3.6. Arquitectura software de la aplicación para dispositivos Android	49
Figura 3.7. Diagrama de bloques, nodo móvil	
Figura 3.8. Respuesta del sensor de CO.	51
Figura 3.9. Respuesta sensor CO ₂	
Figura 3.10. Respuesta sensor de temperatura	54
Figura 3.11. Respuesta sensor humedad relativa.	
Figura 3.12. Respuesta sensor oxígeno	
·	
·	
· ·	
-	
Figura 3.13. Esquema placa de adaptación del sensor de partículas de polvo	

Figura 3.22. Porcentaje de consumo del nodo móvil	64
Figura 3.23. Parte de los bloques utilizados en el GUI de Labview	66
Figura 3.24. Interfaz de usuario.	67
Figura 3.25. Interfaz de usuario GPS	68
Figura 3.26. Diagrama de bloques de la interfaz de usuario,	68
Figura 3.27. Distribución del aire en los rotores, vista lateral	69
Figura 3.28. Distribución del aire en los rotores vista superior	69
Figura 3.29. Distribución de las corrientes de aire en el VANT	70
Figura 3.30. (a) La velocidad del aire sobre el vehículo aéreo no tripulado	. (b) La velocidad
del airedel	
Figura 3.31. Vista lateral de la parte central del DJI Inspire 1	
Figura 3.32. Vista superior de la parte central del DJI Inspire 1	
Figura 3.33. Soporte, vista isométrica	
Figura 3.34. Soporte, vista lateral	
Figura 3.35. Estructura de los sensores, vista superior	
Figura 3.36. Tapa de la estructura de los sensores, vista superior	
Figura 3.37. Prototipo 3D, vista isométrica	
Figura 3.38. Prototipo 3D, vista superior	
Figura 3.39. Prototipo 3D, vista frontal.	75
Figura 3.40. Prototipo 3D, vista lateral	
Figura 3.41. Prototipo, estructura impresión 3D, vista lateral	76
Figura 3.42. Prototipo, estructura impresión 3D, vista frontal	
Figura 3.43. Prototipo, instalado en el VANT	
Figura 3.44. Aplicación móvil para celulares Android	78
Figure 4.1 Instalanda aquina Washmata	0.1
Figura 4.1. Instalando equipo WaspmoteFigura 4.2. Prueba de cobertura, Av. Barcelona	
Figura 4.3. Línea de vista, Av. Barcelona S-N	
Figura 4.4. Línea de vista, Av. Barcelona N-S	
Figura 4.5. Prueba de cobertura 100 metros de distancia	
Figura 4.6. Prueba de cobertura 300 metros de distancia	
Figura 4.7. Prueba de cobertura 500 metros de distancia	
Figura 4.8. Prueba de cobertura 500 metros de distancia	
Figure 4.40 Pruche company LTDI	
Figure 4.10. Prueba, campus UTPL	
Figure 4.11. Pruebas de cobertura VANT	
Figure 4.12. Pruebas de autonomía VANT.	
Figure 4.13. Registro de vuelo, control VANT.	
Figure 4.14. Valores de temperatura, periodo de 24 horas	
Figure 4.15. Valores de humedad relativa, periodo de 24 horas	
Figura 4.16. Valores de oxígeno, periodo de 24 horas.	
Figura 4.17. Valores de dióxido de carbono, periodo de 24 horas	
Figura 4.18. Valores de monóxido de carbono, periodo de 24 horas	
Figura 4.19. Valores de partículas de polvo, periodo de 24 horas	91

Figura 4.20. Veniculo aereo no tripulado en vuelo, con el sistema de calidad de aire	92
Figura 4.21. Ciclos de prueba	92
Figura 4.22. Valores sensado con y sin VANT, temperatura	92
Figura 4.23. Valores sensado con y sin VANT, humedad relativa	93
Figura 4.24. Valores sensados con y sin VANT, oxigeno	93
Figura 4.25. Valores censado con y sin VANT, dióxido de carbono	94
Figura 4.26. Valores censado con y sin VANT, monóxido de carbono	94
Figura 4.27. Prueba de medición junto a estación meteorológica	95
Figura 4.28. Valores sensados de temperatura, nodo móvil- estación meteorológica	96
Figura 4.31. Valores medidos, dióxido de carbono CO ₂	97
Figura 4.32. Valores medidos, monóxido de carbono CO ₂	97
Figura 4.33. Valores medidos, partículas de polvo	98
Figura 4.34. VANT, junto con el sistema de calidad de aire	98
Figura 4.35. Mediciones VANT, Plaza de la Independencia "San Sebastian"	99
Figura 4.36. Plaza de la Independencia "San Sebastián" Loja – Ecuador	99
Figura 4.37. Calidad de aire Plaza Independencia "San Sebastian"	100
Figura 4.38. Mediciones VANT, Parque Central	100
Figura 4.39. Calidad de aire, Parque central Loja – Ecuador	101
Figura 4.40. Mediciones VANT, Parque "Simón Bolívar"	101
Figura 4.41. Calidad de aire, Parque "Simón Bolívar"	102
Figura 4.42. Datos almacenados en servidor Ubidots	103

ÍNDICE DE TABLAS

Tabla 2.1. Síntomas que se presentan en el ser humano según los porcentajes de "CO"	25
Tabla 2.2. Efectos en el ser humano debido a la deficiencia de oxígeno "O2"	25
Tabla 2.3. Síntomas que se presentan en el ser humano según los porcentajes de "CO2".	. 25
Tabla 2.4. Valores recomendados de gases	26
Tabla 2.5. Escala de cobertura espacial	26
Tabla 2.6. Casos registrados de Infecciones Respiratorias Agudas en el Ecuador	27
Tabla 2.7. Tabla comparativa, protocolos ZigBee – DigiMesh	35
Tabla 2.8. Especificaciones VANT, Inspire 1	38
Tabla 2.9. Especificaciones control remoto, Inspire 1	38
Tabla 3.1. Especificaciones de cada variable	42
Tabla 3.2. Diferencias entre sensores de monóxido de carbono.	
Tabla 3.3. Diferencias entre sensores de dióxido de carbono	
Tabla 3.4. Diferencias entre sensores de oxígeno	44
Tabla 3.5. Diferencias entre sensores de partículas de polvo	45
Tabla 3.6. Diferencias entre sensores de temperatura	45
Tabla 3.7. Diferencias entre sensores de humedad	
Tabla 3.8. Comparación tarjeta Waspmote y Arduino	46
Tabla 3.9. Consumo en mA de cada dispositivo	
Tabla 3.10. Bloques LabView	66
Tabla 3.11. Pesos del Sistema calidad de aire	71
Tabla 4.1. Muestra de fichero Excel con los datos almacenados	. 87
Tabla 4.2. Fichero Excel con los datos almacenados.	
1 4014 11-1 1011010 EADDI OOH IOO 44100 4111400H4400	

RESUMEN

El propósito de este trabajo de titulación es desarrollar una plataforma móvil usando el vehículo aéreo no tripulado DJI Inspire 1, para la medición de variables medioambientales que determinen la calidad del aire, basada en una red de sensores con tecnología DigiMesh. Para cumplir con este propósito se ha utilizado los dispositivos Waspmote del fabricante Libelium, que al ser una tecnología de software libre permite la integración de sensores externos al fabricante; se diseñó una interfaz de usuario tanto en computador como en dispositivos móviles utilizando el software LabVIEW y Android Studio para la recepción de los datos obtenidos.

PALABRAS CLAVES: DJI Inspire 1, DigiMesh, Libelium, Waspmote, LabVIEW, Android Studio, software libre, WSN, calidad de aire, VANT.

ABSTRACT

In the present research develops a mobile platform using the unmanned aerial vehicle DJI Inspire 1 for measuring environmental variables that determine air quality, based on a network of sensors with DigiMesh technology. To fulfill this purpose has used the Waspmote devices manufacturer by Libelium, that being a free software technology, allows integration of external sensors manufacturer; a user interface was designed both computer and mobile devices using the software Android Studio and LabView for receiving the data.

KEYWORDS: DJI Inspire 1, DigiMesh, Libelium, Waspmote, LabVIEW, Android Studio, open software, WSN, UAVS, air quality.

INTRODUCCIÓN

La contaminación ambiental es un problema que se incrementa año a año, convirtiéndose en uno de los problemas ambientales con mayor importancia a nivel mundial. Los motivos de la contaminación son varios, pero la mayor parte es provocada por el hombre y sus actividades. El objetivo del presente trabajo de titulación es desarrollar una plataforma móvil usando el vehículo aéreo no tripulado "DJI Inspire 1" para que la medición de variables medioambientales que determinen la calidad del aire se realice en un área mayor, a diferencia de estaciones fijas que cubren solo una determinada zona. Todos los datos obtenidos son enviados mediante una red de sensores con tecnología DigiMesh hacia un nodo receptor, en donde el usuario puede visualizar los datos en una interfaz gráfica desarrollada en la plataforma LabVIEW. Adicionalmente los datos son almacenados en el servidor Ubidots, por lo que se desarrolló una aplicación para dispositivos móviles en donde el usuario puede acceder a los datos en cualquier momento.

El presente trabajo de titulación se ha dividido en 4 capítulos, el primer capítulo abarca el alcance del proyecto, los objetivos, la justificación y la metodología empleada. El segundo capítulo incluye la búsqueda y recolección de información para el desarrollo del presente trabajo de titulación. El capítulo cuatro muestra el desarrollo de la programación y diseño de los elementos utilizados. Finalmente en el capítulo cinco se explica los resultados obtenidos del sistema mediante pruebas desarrolladas en diferentes escenarios.

1. CAPÍTULO I ALCANCE DE LA INVESTIGACIÓN

1.1. Objetivos.

1.1.1. Objetivo general.

Desarrollar una plataforma móvil usando un vehículo aéreo no tripulado para la medición de variables medioambientales que determinen la calidad del aire, con una determinada tecnología de comunicación.

1.1.2. Objetivos específicos.

- Realizar un estudio actual de tecnologías de sensores, comunicación, procesamiento y trabajos relacionados.
- Establecer las variables medioambientales que permita determinar la calidad de aire.
- Desarrollar una arquitectura del sistema de calidad de aire, usando un vehículo aéreo no tripulado.
- Seleccionar los componentes de sensores, comunicación, procesamiento y software.
- Integrar los componentes hardware y software para ser implementados en un vehículo aéreo no tripulado.
- Desarrollar una interfaz gráfica de usuario en la PC y en dispositivos móviles, para visualización de los datos obtenidos del sistema.
- Evaluar el sistema en un ambiente de laboratorio y en escenarios reales.
- Analizar los resultados del sistema de calidad de aire.

1.2. Justificación.

La contaminación atmosférica constituye uno de los mayores problemas ambientales no solo de la ciudad de Loja - Ecuador, sino a nivel mundial. El rápido incremento del parque automotor y la concentración de las actividades diarias de las personas en el centro de la ciudad, constituyen factores que produce una gran cantidad de gases contaminantes que deterioran la calidad del aire de la ciudad, principalmente de los procesos de combustión de los vehículos, mientras que la contaminación industrial es mínima por la poca presencia de industrias en la urbe de la ciudad de Loja - Ecuador.

Los indicadores de calidad del aire en la ciudad de Loja - Ecuador son pocos, siendo el más relevante el Plan Nacional de Calidad del Aire ejecutado por el Ministerio del Ambiente en convenio con el Gobierno de la Provincia de Loja, desde el año 2012 posee un equipo de medición de material particulado ubicado en el edificio del Centro de Acción Social Matilde Hidalgo [1]. Entre las enfermedades más representativas que guardan relación con la contaminación del aire están las infecciones respiratorias agudas, que en nuestra ciudad se

registran con un mayor número [2], esto posiblemente se debe a los niveles de contaminación.

Es por estos motivos que se desarrolla el presente trabajo de titulación, con la finalidad de contar con equipos que nos permita realizar el monitoreo de la calidad del aire de la ciudad y llevar un registro de las diferentes variables medio ambientales, para ofrecer a las autoridades, mapas de polución de los niveles de toxicidad en el aire, que les sirva como herramienta para la toma de decisiones de control preventivo de la contaminación ambiental.

1.3. Metodología.

En el presente trabajo de titulación, se emplea una metodología de avance por fases, cada una de las cuales se las describe a continuación:

La primera fase corresponde a la búsqueda y recolección de información para la realización del presente trabajo de titulación. Se analizó libros, documentos técnicos, publicaciones científicas, para obtener la mayor información posible sobre equipos de medida portátil, dispositivos de sensores de gases contaminantes y sistemas de comunicación inalámbrica. Se estudia todas las opciones encontradas, sus arquitecturas y sus funciones, para seleccionar la opción que más se adecue a los objetivos propuestos.

La segunda fase comprende el desarrollo y programación de la placa de sensores de gases, el sistema de envío y recepción de los datos de cada sensor, el desarrollo de la plataforma de visualización de datos para el usuario utilizando la plataforma LabVIEW, el desarrollo de la aplicación para dispositivos móviles con sistema operativo Android; y el desarrollo de la estructura de soporte del dispositivo al vehículo aéreo no tripulado.

La tercera fase comprende la evaluación del funcionamiento del sistema mediante las pruebas desarrolladas en diferentes escenarios, documentando los resultados obtenidos en cada uno de ellos, además, las conclusiones y recomendaciones obtenidas al finalizar el proyecto de titulación.

La metodología descrita anteriormente se resume en la figura 1.1.

	 INVESTIGACIÓN: Contaminación atmosférica. Tecnologia en sensores de gases.
FASE 1	• Equipos de medida portatiles
	 DESARROLLO: Programacion placa de sensores de gases. Programacion sistema de comunicacion inalambrica.
Fase 2	
Fase 3	 DOCUMENTACIÓN: Pruebas en diferentes escenacios, comprobación del funcionamiento. Conclusiones. Recomendaciones.

Figura 1.1. Fase de desarrollo del proyecto. Fuente: Imagen propia de los autores.

2. CAPITULO II ESTADO DEL ARTE

2.1. Introducción

Los componentes del aire pueden dividirse tanto en constantes como en variables como se puede observar en la figura 2.1. Alrededor de 78% de nitrógeno, 21% de oxígeno y el 0.97% de gases como el dióxido de carbono, argón, neón, helio, hidrógeno, otros gases y vapor de agua se consideran constantes [3] [4].

El 0.03% constituye los componentes variables, son los demás gases y vapores característicos del aire de una zona o área determinada, por ejemplo, los óxidos de nitrógeno provenientes durante las tormentas eléctricas o el óxido de carbono que viene de los escapes de los motores de los vehículos así como también de las fábricas [3].

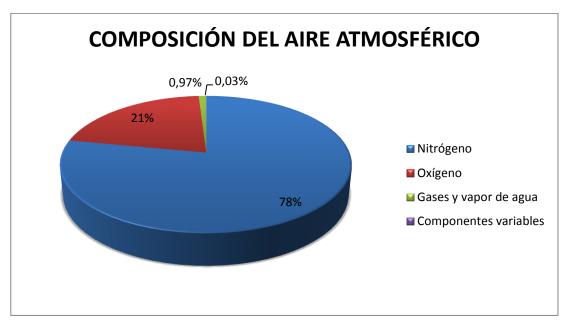


Figura 2.1. Composición del aire atmosférico.

Fuente: Propia de los autores.

El ser humano respira aproximadamente 14 000 litros de aire al día, y si en 3 minutos no recibe oxigeno se produce de manera lenta la muerte debido al daño irreversible de más del 50% del tejido cerebral. En 10 minutos todo el cerebro estaría muerto. El corazón y el pulmón son también órganos delicados y pueden aguantar entre 5-6 minutos sin recibir oxígeno, a partir de ahí el daño es irreversible [5].

Se entiende por contaminación a la alteración de cualquiera de las condiciones naturales de un ambiente o área determinada. De esta manera se pueden identificar distintos tipos de contaminación: del agua, del aire, de la tierra. La contaminación del aire que respiramos es cualquier alteración o modificación de su composición natural, por la presencia en la atmósfera de compuestos que tienen un efecto negativo en el ser humano, así como también sobre los animales y las plantas [3].

Siempre se ha escuchado; así como también, la mayoría de las personas opina, que la industria y los vehículos son los principales responsables de la contaminación del aire y, aunque esto en su mayoría es cierto, no debemos excusarnos de la responsabilidad de que nosotros participamos en su generación al hacer uso de estos sectores de la industria. Por ejemplo, utilizamos nuestros vehículos para ir a la tienda o para ir al trabajo o en muchas ocasiones utilizamos más de un vehículo por familia pudiendo compartir el mismo, cuando usamos ropas y productos que son producidos por la industria más contaminante y cuando empleamos electricidad o combustibles para cocinar [6].

Sabemos entonces que existe un problema y a medida en que lo vamos estudiando tenemos claro que es necesario implementar acciones para determinar las causas de la contaminación ambiental, evaluar sus efectos y problemas que se derivan, con la finalidad de diseñar estrategias para mejorar la calidad del aire y así proteger la salud humana.

2.2. Contaminación atmosférica.

Según la Organización Mundial de la Salud (OMS). "Existe contaminación del aire cuando en su composición aparecen una o varias sustancias extrañas en determinadas cantidades y durante determinados periodos de tiempo, que pueden resultar nocivas para el ser humano, los animales, las plantas o las tierras, así como perturbar el bienestar o el uso de los bienes" [7].

2.2.1. Fuentes de contaminación.

Tomando en cuenta su origen, las fuentes de contaminación del aire se pueden agrupar en dos tipos: naturales y artificiales como se puede apreciar en la figura 2.2 [7].

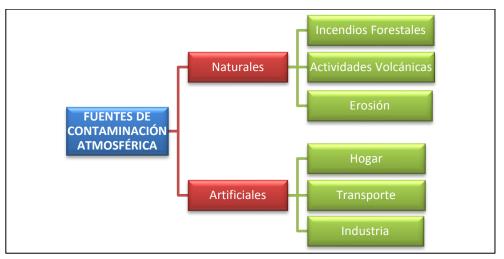


Figura 2.2. Fuentes de contaminación.

Fuente: Organización mundial de la salud (OMS) [7].

- Contaminantes naturales: Constituye las emisiones de contaminación formadas por la actividad natural [8].
 - Las erupciones volcánicas.
 - Los incendios forestales.
 - Ciertas actividades de los seres vivos como los procesos de respiración.
 - Las descargas eléctricas generadas en las tormentas.
 - Fuertes vientos con transporte de partículas.
- Contaminantes artificiales: Son consecuencia de la presencia y actividades del ser humano [8].
 - El uso de calefacciones en las casas y otros aparatos domésticos que se emplean en el uso diario.
 - El uso de automóviles y el avión generan un mayor valor de contaminación.
 - En la industria, siendo las centrales térmicas, las cementeras, las papeleras y las químicas las más contaminantes.
 - El uso intensivo de fertilizantes en la agricultura y ganadería.
 - En la eliminación de residuos sólidos mediante los proceso de incineración.

2.2.2. Tipos de contaminantes.

Existe una clasificación específica para los contaminantes atmosféricos como se puede apreciar en la figura 2.3, se considera como contaminantes primarios los gases que se encuentran en la atmosfera igual como fueron expuestos por sus fuentes, mientras que los contaminantes secundarios son los que resultan de la mezcla entre varios contaminantes primarios o con otras sustancias del medio [9].

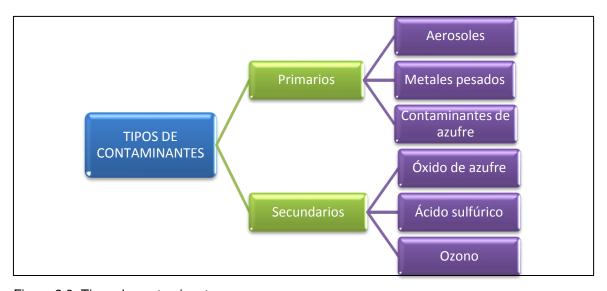


Figura 2.3. Tipos de contaminantes.

Fuente: Salud ambiental [9].

2.2.3. Factores que influyen en la contaminación.

Los niveles de contaminación en una zona dependerán muchas veces de las emisiones de contaminantes que reciba de otras zonas y de las condiciones de dispersión de los mismos. El transporte de contaminantes del aire están influenciados por complejos factores como por ejemplo: las variaciones locales del clima y las condiciones topográficas del lugar [10]. Es por esto que, es posible observar variaciones en cuanto a la medida de la calidad del aire en diferentes días en un lugar determinado, aunque las emisiones que provocan dicha contaminación permanezcan prácticamente constantes. Los factores que influyen en la contaminación se observan en la figura 2.4.

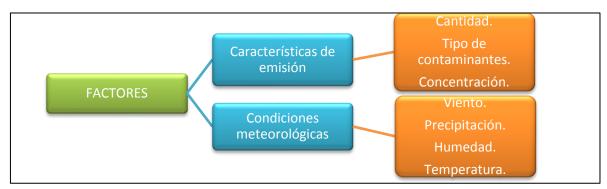


Figura 2.4. Factores que influyen en la contaminación Fuente: Salud ambiental [9].

2.2.4. Características de los gases atmosféricos.

Se presenta una breve descripción de las características de los gases atmosféricos en la figura 2.5; sus fuentes de emisión y los posibles efectos en la salud humana [11], [12].

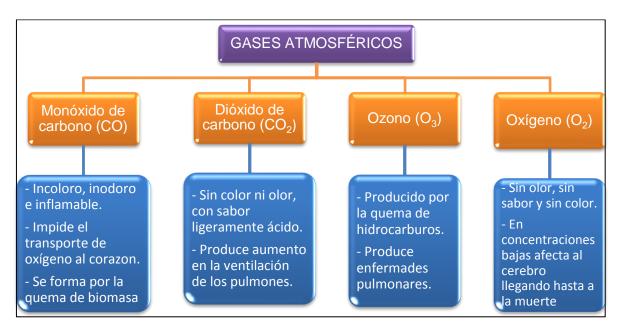


Figura 2.5. Características de los gases atmosféricos Fuente: Salud ambiental [9].

2.2.5. Efectos adversos de los gases atmosféricos sobre el ser humano.

Los principales gases atmosféricos se han asociado a efectos específicos sobre el sistema respiratorio. Los seres humanos están expuestos a cada uno de ellos, pero en determinadas concentraciones y el lapso de tiempo que estén expuestos, las personas pueden presenciar daños en su salud. En las tablas 2.1, 2.2 y 2.3 se han colocado los efectos adversos de dichos gases atmosféricos, estos valores han sido tomados de las recomendaciones por parte de la Organización Mundial de la Salud [13].

Tabla 2.1. Síntomas que se presentan en el ser humano según los porcentajes de "CO".

Monóxido de Carbono	Síntomas
0.02%	Produce dolor de cabeza después de cuatro horas de exposición
0.04%	Produce dolor de cabeza y malestar en dos horas de exposición.
0.12%	En media hora produce palpitaciones rápidas del corazón tendencia a perder el equilibrio en una hora y media.
0.20%	Produce inconsciencia en media hora

Fuente: Organización Mundial de la Salud [13].

Elaboración: Propia de los autores.

Tabla 2.2. Efectos en el ser humano debido a la deficiencia de oxígeno "O2".

Porcentaje de Oxígeno	Síntomas
17%	Respiración rápida y profunda.
15%	Vértigo, mareo, zumbido en oídos, aceleración de los latidos.
13%	Pérdida de conocimiento en exposición prolongada
9%	Desmayo e inconsciencia.
7%	Peligro de muerte.
6%	Movimientos convulsivos, muerte.

Fuente: Organización Mundial de la Salud [13].

Elaboración: Propia de los autores

Tabla 2.3. Síntomas que se presentan en el ser humano según los porcentajes de "CO2".

Dióxido de Carbono	Síntomas
3.3% - 5.4%	Durante 15 minutos se experimenta profundidad aumentada de respiración.
6.5%	Produce una sensación de inhabilidad para respirar (disnea), ritmo aumentado del pulso, jaqueca, mareos, sudor, fatiga, desorientación y distorsión visual desarrollada.
7.5%	Veinte minutos de exposición disminuye el rendimiento mental.

30%	Por 20 – 30 segundos, afecta el corazón.
-----	--

Fuente: Organización Mundial de la Salud [13].

Elaboración: Propia de los autores

2.2.6. Valores recomendados de gases.

El Ministerio del Ambiente del Ecuador en su "Plan nacional de la Calidad del Aire en Ecuador" [2] se establece la "Norma Ecuatoriana de Calidad de Aire, NECA" [14]. Determina que algunos de los principales contaminantes atmosféricos son sustancias que se encuentran en la atmosfera de forma natural pero se consideran contaminantes cuando sus concentraciones se encuentran en un nivel elevado, en la tabla 2.4 se compara los niveles de concentraciones entre aire limpio y aire contaminado [2].

La concentración de monóxido de carbono y dióxido de carbono no debe exceder un periodo continuo de 8 horas y el material particulado no deberá exceder un periodo continuo de 24 horas.

Tabla 2.4. Valores recomendados de gases.

Componente	Aire limpio	Aire contaminado
SO2	0.001 – 0.01 ppm	0.02 – 2 ppm
CO2	350 – 450 ppm	450 – 700 ppm
СО	30 - 60 ppm	60 – 200 ppm
Hidrocarburos	1 ppm	2 – 20 ppm
Partículas	10 – 20 ug/m ³	70 – 700 ug/m³

Fuente: Ministerio del Ambiente [2]. Elaboración: Propia de los autores

2.2.7. Estaciones meteorológicas ambientales.

Una estación meteorológica ambiental es una instalación definida para medir y registrar regularmente, varias variables ambientales, existen estaciones manuales, automáticas y mixtas. El rango de cobertura de estas estaciones se resume en la tabla 2.5, [15].

Tabla 2.5. Escala de cobertura espacial

Estación	Escala de cobertura
Mico	10 a 100 m
Media	100 a 500 m
Vecindario	500 a 4 Km
Urbana	4 a 100 Km
Regional	100 a 1000Km

Fuente: Manual de monitoreo de la calidad del aire [15].

Elaboración: Propia de los autores

2.2.8. Calidad del aire en el Ecuador.

En el año 2000 la Fundación Natura en su proyecto "Calidad del Aire" llevó a cabo algunos estudios epidemiológicos relacionados con la contaminación del aire, llevando un registrando de infecciones respiratorias agudas por efecto de la contaminación en el Ecuador [2].

En el año 2006 se realizó un estudio donde se relaciona el incremento de enfermedades respiratorias en niños de escuelas de Quito debido a la contaminación vehicular, el estudio se realizó a 1189 niños escolares, en los resultados se determinó que los niños que estudiaban en un sector urbano sobre todo en la parte central presentaron un nivel de carboxihemoglobina mayor a los establecidos como normales (COHB 5%), esto corrobora que se encuentran en zonas de alta contaminación ambiental, aumentando cuatro veces más el riesgo de presentar infecciones respiratorias agudas, a diferencia de los niños que se encuentran en escuelas en zonas urbanas periféricas (COHB 2%) y en la parte rural (COHB 0.7%) niveles mucho más bajos de carboxihemoglobina [2].

El Ministerio de Salud Pública del Ecuador en su Dirección Nacional de Vigilancia Epidemiológica con su anuario epidemiológico 2014 registra el número de casos de Infecciones Respiratorias Agudas como se puede apreciar en la tabla 2.6 de las provincias del Ecuador [16].

Tabla 2.6. Casos registrados de Infecciones Respiratorias Agudas en el Ecuador.

Provincia	Casos registrados de Infecciones Respiratorias Agudas
Guayas	391 889
Manabí	289 068
Pichincha	264 352
El Oro	139 027
Los Ríos	125 033
Azuay	134 016
Tungurahua	110 057
Loja	92 146
Esmeraldas	84 636
Napo	67 700
Morona Santiago	66 376
Imbabura	66 931
Chimborazo	63 033
Cañar	61 336

Cotopaxi	47 213
Bolívar	41 743
Santa Elena	37 014
Carchi	34 817
Zamora Chinchipe	32 384
Pastaza	32 047
Orellana	25 658
Galápagos	1 892
Sucumbíos	6 329
TOTAL	2 271 661

Fuente: Ministerio de Salud Pública del Ecuador, Anuario 2014 [16].

Elaboración: Propia de los autores

En una valoración realizada para el Ministerio del Ambiente (Páez, 2007) [17], se aprecia que de las 18 ciudades con poblaciones urbanas mayor a los 100 mil habitantes y en donde la concentración de actividades socioeconómicas se realizan en el centro de la urbe, estas ciudades son las principales aspirantes a poseer una mala calidad ambiental.

Quito con la creación de la Red Metropolitana de Monitoreo Atmosférico "REMMAQ" a cargo de la Secretaria Metropolitana de Ambiente, mantiene un sistema de revisión técnica vehicular sobre las emisiones y calidad de aire en la ciudad, posee 8 estaciones automáticas en línea y 37 puntos manuales distribuidos en 35 Parroquias, según el "Informe Calidad del Aire 2014" presentado por REMMAQ en abril del 2015 [18]. En dicho informe se observa que las emisiones de monóxido de carbono se han reducido en un 54%, esto lo atribuyen al trabajo realizado en la calibración de los vehículos y sus emisiones. EL nivel de ozono (O3) no supera los niveles de peligro y se registra una disminución desde el año 2004 en un 30% hasta el año 2011 en donde se ha mantenido constante. Se observa un aumento en el material particulado (PM₁₀ y PM_{2.5}) conforme la normativa de calidad de aire, en los meses de agosto y septiembre en donde 5 estaciones registran este aumento, durante los meses de enero y febrero ninguna estación superó la normativa, las estaciones ubicadas en Tababele, Quitumbe, y Guajaló que se mantuvieron por encima de la norma se atribuye a los trabajos realizados en la adecuación de las vías [18].

Cuenca con la Empresa Pública Municipal de Movilidad, Tránsito y Transporte de Cuenca "EMOV" y su "Red de Monitoreo de la Calidad de Aire" miden las concentraciones de ozono, dióxido de azufre, dióxido de nitrógeno y benceno, cuenta con 20 estaciones de monitoreo pasivas ubicadas en todo Cuenca [19].

Ambato en 2014 fue nombrada como una de las tres ciudades con el aire más limpio en Latinoamérica, según la Organización Mundial de la Salud (OMS) [20], el Cabildo Ambateño con el "Plan de Optimización de la Calidad del Aire", cuentan con una estación que monitorea partículas invisibles pero que son de gran afectación a la salud humana, monitorear la ceniza volcánica es uno de los principales propósitos [20].

Guayaquil está efectuado planes de acción ambiental para combatir las causas de la contaminación atmosférica y mejorar la calidad del aire [2].

2.3. Red de sensores inalámbricos (WSN).

Una red de sensores inalámbricos (WSN) es una red inalámbrica conformada por dispositivos de bajo costo y consumo, distribuidos autónomamente capaces de obtener información de su entorno ya sean condiciones físicas como ambientales, procesa los datos en el mismo nodo, y se envían a través de enlaces inalámbricos hasta un nodo central. En un sistema WSN una puerta de enlace es crucial, es la que provee conectividad inalámbrica entre los nodos, véase en la figura 2.6. En un principio sus aplicaciones fueron militares, pero actualmente con la tecnología avanzando existen un sin número de aplicaciones desarrolladas por personas civiles [21].

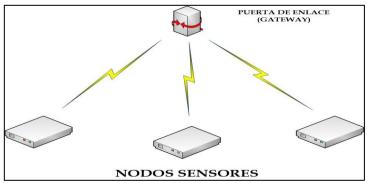


Figura 2.6. Componentes de WSN, puerta de enlace y nodos distribuidos.

Fuente: Imagen propia de los autores.

2.3.1. Aplicaciones de las WSN.

Existen aplicaciones WSN en un sin número de áreas, como por ejemplo: el cuidado de la salud, con el monitoreo a pacientes; el monitoreo de los servicios básicos como electricidad, agua, gas, etc. Aplicaciones de monitoreo remoto, monitoreo ambiental, monitoreo estructural para edificios y puentes, monitoreo industrial de máquinas, monitoreo de procesos, seguimiento de activos, etc. [21]. A continuación se describen algunas de estas aplicaciones:

- Monitorización del entorno: Una red de sensores pueden monitorear condiciones y movimientos de animales o plantas, donde se desea la mínima alteración del habitad de los mismos. El monitoreo de entorno se ha considerado como las principales aplicaciones de las WSN [22].
- Medicina: Se puede monitorear los signos vitales del paciente y con una WSN mantenerlos controlados con las oficinas de los doctores. Nodos sensores instalados en los hogares podrían alertar a los sistemas de seguridad como el ECU911 cuando un paciente cae o por algún motivo requiere atención médica inmediata [22].
- Control de procesos industriales: Los equipos industriales pueden estar controlados en todo momento, al presentarse un problema la WSN puede emitir alertas para que se tomen las precauciones necesarias [22].
- Control y monitorización de edificios: Una WSN instalada en un edificio puede monitorear y controlar la luz en el edificio, calefacción, ventiladores, etc [22].
- Monitorización de gases: Una WSN en minas o en túneles de trabajo puede garantizar la seguridad de los trabajadores, con el monitoreo de los diferentes gases como CO, CO2, O2 que se encuentran en este lugar de trabajo, permitiendo seguridad y control [22].

El presente trabajo de titulación está relacionado mucho con algunas aplicaciones descritas anteriormente, por este motivo consideramos que es de gran utilidad el conocimiento y aprendizaje de aplicaciones ya antes creadas, su control y su monitorización, de tal manera que nos guíen en el desarrollo de este proyecto.

2.3.2. Topologías de red WSN.

Existen diferentes posibilidades de interconectar los nodos de una red de sensores inalámbricos, están típicamente organizados en tres tipos de topologías de red las cuales se describe a continuación [23].

■ Estrella: Es la topología más básica. Los nodos se conectan directamente al coordinador como se puede observar en la figura 2.7 [23].

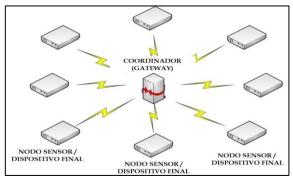


Figura 2.7. Topología tipo estrella. Fuente: Imagen propia de los autores.

 Arbol: Cada nodo se conecta a un nodo de mayor jerarquía en el árbol y después al coordinador, es decir los datos son trasladados desde el nodo de menor jerarquía en el árbol hasta el coordinador (ver figura 2.8) [23].

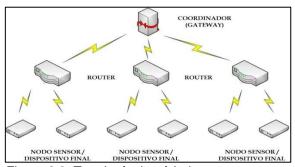


Figura 2.8. Topología tipo árbol. Fuente: Imagen propia de los autores.

• Malla: Para tener mayor fiabilidad muchos optan por las redes tipo malla, la característica de esta topología es que los nodos se pueden conectar a múltiples nodos en el sistema y pasar los datos por el camino disponible de mayor confiabilidad, como se puede observar en la figura 2.9 [23].

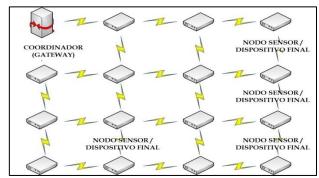


Figura 2.9. Topología tipo malla. Fuente: Imagen propia de los autores.

2.3.3. Ventajas y desventajas de las WSN.

A continuación se describe algunas de las ventajas y desventajas que más se presentan en las WSN [24].

Ventajas:

- Mayor tiempo de vida.
- Mayor cobertura de la red.
- Bajos costos y facilidad de instalación.
- Rápido tiempo de respuesta.
- Bajo consumo de potencia.
- Precisión y frecuencia de las mediciones.

Desventajas:

- Restricciones de energía.
- Menor capacidad de cómputo.
- Menor capacidad de memoria.
- Redes desatendidas con alta prioridad de fallo.

2.4. Protocolos de comunicación inalámbrica.

En los últimos años, las telecomunicaciones han evolucionado en todos los ámbitos a una velocidad sorprendente, lo que lleva al aparecimiento de nuevos protocolos de comunicación inalámbrica con capacidad de trabajar de una manera colaborativa y en diferentes topologías de redes. Tenemos el claro ejemplo de los protocolos Zigbee y Digimesh, estos serán los analizados en este trabajo de titulación. Con el uso de estos protocolos es posible implementar redes muy complejas ya sea para adquirir datos o algún sistema de control [25].

ZigBee, está diseñado específicamente para una baja tasa de trasmisión de datos y aplicaciones de baja potencia, Digi International¹ ofrece un sin número de productos basados en ZigBee, pero también Digi International desarrolló un protocolo alternativo llamado DigiMesh, ambos protocolos brindan características y ventajas únicas para diferentes aplicaciones, cada una de estas se describen a continuación [25], [26].

2.4.1. Protocolo ZigBee.

ZigBee utiliza el estándar IEEE 802.15.4 para redes inalámbricas de corto alcance, en donde se añade propiedades de enrutamiento y redes. Creado por Alianza ZigBee, para formar redes que involucra diversos nodos, sin necesidad de la intervención del usuario. Este protocolo se encarga de los reintentos de envío, confirmar la recepción, y enrutar los datos [26], [25].

¹ Digi International: Empresa que cuenta con una línea completa de módems de radio y módulos integrados basados en la plataforma de comunicación CDMA y GSM.

Este protocolo está especialmente diseñado para aplicaciones de bajo consumo, en donde la disponibilidad y versatilidad son lo más importante y no los grandes anchos de banda. Las bajas tasas de transmisión de los dispositivos ZigBee permiten mayor cobertura, sensibilidad, y una vida de batería mucho mayor, este protocolo es ideal para redes de sensores [26].

ZigBee define tres tipos de dispositivos como se puede ver en la figura 2.10, el coordinador, el router y los dispositivos finales, todos estos dispositivos pueden enviar y recibir datos, pero hay diferencias en los roles específicos que estos deben cumplir [26].

- Coordinador: Existe exactamente un coordinador en cada red y es el responsable de generar en un inicio dicha red, también participa en el encaminamiento y es capaz de guardar información de toda la red inclusive claves de seguridad [26].
- Router: Participa en el encaminamiento, es decir, actúan como nodos mediadores pasando datos de un dispositivo hasta otro [26].
- **Dispositivos finales:** No participan en el encaminamiento, no asocia otros dispositivos a la red, son de baja potencia en la mayoría de veces funcionan con batería, se comunican con el coordinador o con el router, son de costo bajo [26].

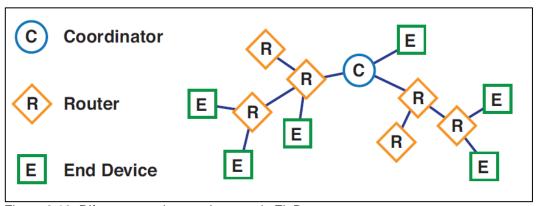


Figura 2.10. Diferentes nodos en el protocolo ZigBee.

Fuente: Imagen tomada de [26].

2.4.1.1. Ventajas ZigBee.

- Protocolo abierto, interoperabilidad entre marcas o fabricantes.
- Costo bajo para dispositivos finales.
- Topología de red de árbol, malla, híbrida
- Bajo consumo.
- Fácil integración

2.4.2. Protocolo DigiMesh.

DigiMesh creado por Digi International, se lo considera como una mejora del protocolo ZigBee. DigiMesh es capaz de trabajar dentro de topologías de redes inalámbricas tipo malla; no individualiza en cuanto a la funcionalidad de sus dispositivos o nodos de comunicación, en este protocolo, todos los dispositivos o nodos que pertenecen a la red poseen la misma capacidad funcional y no se necesita de la existencia de un coordinador dentro de la red (ver figura 2.11), con esta característica permite que el usuario pueda acceder a través de cualquier nodo dentro de la red y poder gestionar la red completa según se lo desee. DigiMesh no define un coordinador, un router, y dispositivos finales como lo hace ZigBee [25].

Este protocolo es perfecto para aplicaciones donde se requiere de nodos móviles, estos nodos se mantendrán conectados a la red mientras estén dentro del rango de cobertura de la red, es decir, lo más próximo a un nodo, muy parecido a lo que sucede en las redes celulares, el dispositivo se encontrará conectado siempre y cuando este dentro de la cobertura [25].

DigiMesh por sus características, puede tener una red de malla mucho más robusta y confiable ya que no existe dependencia padre-hijo entre los nodos, todos los nodos se relacionan entre sí, todos los nodos pueden utilizar el modo de ahorro de energía al poder entrar en un modo inactivo a diferencia del protocolo ZigBee solo los nodos finales pueden hacer esto, y al ser así, la configuración de la red se simplifica [25].

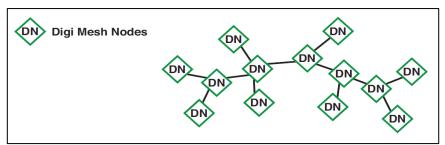


Figura 2.11. Nodos en el protocolo DigiMesh Fuente: Imagen tomada de [26].

2.4.2.1. Ventajas DigiMesh.

- Configuración más simple.
- Flexibilidad a la hora de expandir la red.
- Fiabilidad, al caerse un nodo los datos se pueden encaminar por otro nodo disponible.

2.4.3. Diferencias Zigbee y DigiMesh.

ZigBee al ser un protocolo abierto da la oportunidad a la interoperabilidad, es decir la combinación de dispositivos fabricados por distintas empresas, además de ello, ZigBee brinda perfiles pre-establecidos como por ejemplo, la gestión de energía, etc. DigiMesh al ser un protocolo propietario, no existe interoperabilidad, utiliza una técnica de direccionamiento simplificado, lo que mejora la configuración de red y solución de problemas. En la tabla 2.7 se describen las diferencias más significativas entre estos protocolos.

Tabla 2.7. Tabla comparativa, protocolos ZigBee – DigiMesh.

Característica	ZigBee – Digiwesii.	DigiMesh
Tipos de nodos, beneficios.	Coordinadores, routers y nodos finales. Nodos finales más baratos con funcionalidad reducida.	Nodos homogéneos, flexibilidad a la hora de expandir la red, mayor confiabilidad en donde un router puede fallar.
Característica de nodos inactivos	Únicamente los nodos finales se los puede poner en modo "inactivo"	Todos los nodos de la red pueden entrar en modo "inactivo"
Opciones de	Dispositivos ZigBee que pueden	Dispositivos DigiMesh que
largo alcance	alcanzar hasta 12km	alcanzan hasta 10km
Carga útil	Hasta 80 bytes dependiendo del producto	Hasta 256 bytes dependiendo del producto
Tamaño del código	Más grande, menor espacio para crecimiento de funciones	Cerca de la mitad de ZigBee, más espacio para crecimiento de funciones
Frecuencia y velocidad	Frecuencia 2.4GHz con velocidad 250 kbps, 900MHz con 40kbps y 868MHz con 20kbps.	Frecuencia 2.4Ghz con velocidad de 250kbps y 900MHz con velocidades de 10, 125, 150 kbps.
Seguridad	Utiliza cifrado AES, posibilidad de bloquear la red y evitar la inclusión de otros nodos	Utiliza cifrado AES
Interoperabilidad	Interoperabilidad entre fabricantes	Cuenta con propietario
Direccionamiento	Cuenta con dos capas la dirección MAC (64bit) y la	Únicamente dirección MAC (64bit).

dirección de red (16bit).	

Fuente: Tomado de [26].

Elaboración: Propia de los autores

2.4.4. Protocolo seleccionado.

En el presente trabajo de titulación, tanto en envío y recepción se usarán dispositivos XBee S1; trabajando bajo el protocolo DigiMesh a una frecuencia de 2.4GHz, se ha seleccionado este protocolo porque es ideal para aplicaciones donde los nodos son móviles, los nodos se mantienen conectados a la red mientras esté dentro del rango de cobertura de la propia red, y, al no existir la dependencia padre-hijo nos da la facilidad de ampliar el presente trabajo de titulación en trabajos futuros, incluyendo nuevos nodos sin necesidad de configurar toda la red nuevamente, únicamente se lo realiza con el nodo que se aumentará.

2.5. Vehículos aéreos no tripulados (VANT).

Los vehículos aéreos no tripulados con sus siglas en ingles UAV (Unmanned Aerial Vehicle) o comúnmente llamados drones, son aeronaves sin tripulación humana a bordo, controlados de manera remota o inclusive a través de aplicaciones con smartphones o tablets [27].

Tienen un amplio campo de trabajo en muchas áreas, esto gracias a su gran velocidad de desplazamiento sobre cualquier capa de terreno, y la facilidad para eludir cualquier obstáculo que se le presente, los vehículos aéreos no tripulados vienen diseñados en su mayoría con cámaras de alta resolución, localización GPS y sensores de distintos tipos [27].

2.5.1. Contribución de los vehículos aéreos no tripulados con el medioambiente.

Sin duda los vehículos aéreos no tripulados brindan un sin número de aplicaciones, pero en cuanto se refiere a medioambiente también se ha dado un salto importante, como se puede apreciar en el trabajo de Patrick Haas (2014), "Análisis de la calidad del aire en entornos urbanos" [28], trabajo que fue presentado en la 32ª AIAA "Applied Aerodynamics Conference de Atlanta" en el cual se detalla un sistema basado en vehículos aéreos no tripulados para la medición de la concentración de variables como PM₁₀, O₃, NO₂, para generar mapas con respecto a los índices de contaminación y el movimiento de las partículas contaminantes [29].

Otros de los trabajos presentados es un hexacóptero mediante el cual se controla la calidad del aire y las radiaciones ionizantes de las zonas mineras de Perú [29], empleando esta tecnología pretenden mejorar las condiciones atmosféricas en cuanto a la contaminación

que existe, toda la maquinaria y las explotaciones en el lugar para sacar los minerales generan emisiones contaminantes [29].

En China el estado posee un programa para obtener información de los niveles de contaminación en áreas críticas como por ejemplo, lugares donde se encuentran grandes fábricas, áreas de altos índices de tráfico, etc. Todo esto lo realizan utilizando vehículos aéreos no tripulados, el gobierno considera que el uso de drones representa grandes ventajas en comparación con las típicas estaciones base que se usan, la más importante, con el uso de un dron se puede llegar a medir los niveles de contaminación en varios puntos a mucha más velocidad, este programa ha dado grandes resultados según informan las autoridades chinas se ha logrado disminuir los niveles de contaminación en 74 ciudades [30].

En Estados Unidos, la EPA (Enviromental Protection Agency) al igual que China posee un programa para identificar la distribución de la contaminación dentro de su zona geográfica utilizando vehículos aéreos no tripulados, utilizan tecnología GPS y cámaras de alta resolución, de tal manera que generan un mapa de la contaminación, miden las emisiones de compuestos volátiles, dióxido de nitrógeno y más contaminantes [30].

2.5.2. Vehículo aéreo no tripulado "DJI INSPIRE 1".

El vehículo aéreo no tripulado que se utiliza en este trabajo de titulación es el "Inspire 1" de la compañía DJI que se aprecia en la figura 2.12, posee una tecnología avanzada que lo hace fácil de manejar, posee todos los detalles en una sola plataforma de vuelo que puede ser instalada en cualquier dispositivo smartphone o tablet, posee un gimbal de 360 grados y una cámara de 4K a 30fps [31].

Posee un diseño aerodinámico y cuenta con brazos de fibra de carbono, diseño duradero y ligero, corta el aire perfectamente para que el vuelo sea suave y el tiempo de vuelo mucho más largo, posee sistema de navegación GPS, despegue y aterrizaje automático mediante la app, posee control compartido en donde un usuario puede pilotear el dron y el compañero manejar la cámara. Tiene un peso de 2935 gramos incluida la batería y un tiempo de vuelo de 15 minutos [31].

Figura 2.12. Vehículo aéreo no tripulado DJI INSPIRE 1. Fuente: Imagen tomada de [31].

2.5.2.1. Características vehículo aéreo no tripulado DJI Inspire 1.

A continuación en la tabla 2.8 se describen las características más relevantes del vehículo aéreo no tripulado DJI Inspire 1, y en la tabla 2.9 las principales especificaciones del control remoto.

Tabla 2.8. Especificaciones VANT, Inspire 1.

Especif	Especificaciones VANT Inspire 1			
Modelo T600				
Peso completo 2935 g				
Velocidad máxima Ascenso 5 m/s, descenso 4 m/s, horizontal 22				
Inclinación máxima	35° con resistencia a viento de 10 m/s.			
Altura máxima	4500 msnm, 120 m por encima del punto de			
	despegue.			
Autonomía de vuelo	utonomía de vuelo 15 min.			
Temperatura de funcionamiento -10°C a 40°C				

Fuente: Tomado de [31].

Elaboración: Propia de los autores.

Tabla 2.9. Especificaciones control remoto, Inspire 1.

Especificaciones VANT Inspire 1			
Frecuencia de operación 2.400 – 2.483 GHz, 5.725 – 5.825 GHz.			
Máxima distancia de transmisión3.5km con línea de vista.			
Bateria Tipo LiPo 6000 mAh			
Potencia de salida	9W.		

Fuente: Tomado de [31].

Elaboración: Propia de los autores.

2.6. Tecnologías en sensores de gases.

La tecnología en sensores de gases sobre todo para la calidad de aire está avanzando, debido a la demanda en la producción de sensores de alta sensibilidad y selectividad, pero a la vez es un tema complejo, ya que es muy importante poder detectar un sin número de gases utilizando sistemas de bajo costo [32].

Algunos sensores realizan la detección de un gas específico eliminando lecturas de otros gases presentes, un ejemplo de esto son aplicaciones que detecten el oxígeno molecular "O2" teniendo que eliminar lecturas de gases como el nitrógeno "N" que se encuentra en mayor medida en el ambiente. Así mismo existen aplicaciones que realizan el efecto contrario en la cual realizan mediciones de cada gas que se encuentra en el medio [33].

2.6.1. Tipos de sensores.

Hay un sin número de tecnologías usadas para la detección de gases, pero en este proyecto nos enfocaremos sobre sensores de calidad de aire. Hay que diferenciar entre categorías de monitoreo de gases tóxicos para la salud humana o monitoreo de gases de combustible, ya que dependiendo de la aplicación a desarrollar, se requiere un sensor más sensible a niveles bajo de concentración o lo contrario sensible a altas concentraciones [33].

2.6.1.1. Sensores electroquímicos.

Los componentes básicos de un sensor electroquímico son un electrodo de trabajo también denominado cátodo el cual es el que detecta, un contra-electrodo denominado ánodo y generalmente también un electrodo de referencia. Estos se encuentran dentro de la carcasa del sensor y en contacto con un líquido electrolítico como se lo puede apreciar en la figura 2.12 [34], [32].

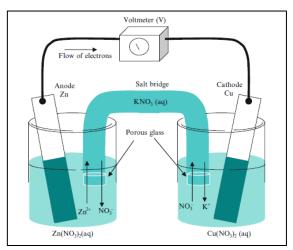


Figura 2.13. Sensor electroquímico. Fuente: Imagen tomada de [35].

"En una reacción por oxidación, se produce un flujo de electrones desde el electrodo de trabajo hacia el contra-electrodo a través del circuito exterior. Por otro lado, en una reacción por reducción, el flujo de electrones toma el camino inverso. Este flujo de electrones produce una corriente eléctrica proporcional a la concentración de gas" [34].

2.6.1.2. Sensores catalíticos.

"Estos sensores se utilizan para detectar vapores y gases. En principio poseen bobinas de alambre, bobinas que se mezclan con dos tipos de catalizadores: uno para que el elemento sea activo y otro para que no. Estas diferentes bobinas luego son combinadas en pares de elementos de detección y de referencia" [36]. En presencia de gases, las moléculas de gas se queman sobre la superficie del sensor, esto ocasiona que la resistencia interna que posee el sensor se altere, ésta se encuentra conectada a un puente de Wheatstone, como se puede apreciar en la figura 2.13 [36].

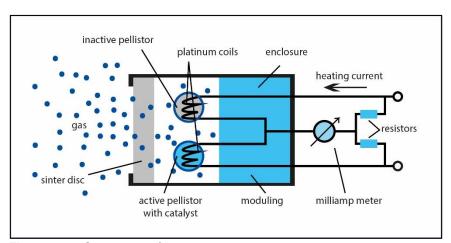


Figura 2.14. Sensor catalítico.

Fuente: Imagen propia de los autores en base a [33].

2.6.1.3. Sensores de gas de estado sólido.

Esta clase de sensores "se compone de uno o más óxidos metálicos de metales de transición. Estos tipos de óxidos metálicos están preparados en una pasta usada para formar un sensor en forma de burbuja [32]" (ver figura 2.14). EL sensor reacciona con el tipo de gas a detectar en donde el óxido metálico causa una descomposición del gas en iones cargados, resultando la transferencia de electrones [33].

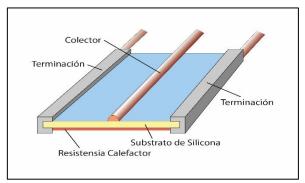


Figura 2.15. Sensor de gas de estado sólido. Fuente: Imagen propia de los autores en base a [33].

2.6.1.4. Sensores infrarrojos.

La radiación pasa a través de la sección de absorción y luego se contrae al rango de longitud de onda requerida para el gas que deseamos detectar, a medida que aumenta la concentración del gas, se absorbe más radiación traduciéndose en una señal eléctrica [37].

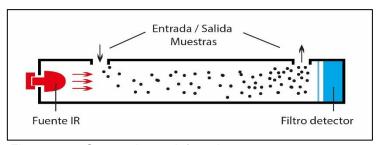


Figura 2.16. Sensor de gas infrarrojo. Fuente: Propia de los autores en base a [33].

2.6.1.5. Detectores de fotoionización.

Este tipo de detector de fotoionización, utiliza luz ultravioleta, de tal manera que ioniza las moléculas de gas (ver figura 2.14). Los electrones libres resultantes chocan con los electrodos del instrumento, produciendo una corriente. La magnitud de la corriente es proporcional a la concentración del gas [38].

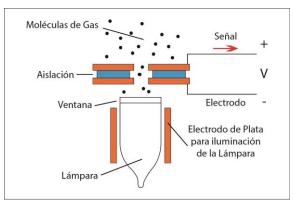


Figura 2.17. Detector de fotoionización. Fuente: Propia de los autores en base a [33].

3. CAPITULO III DESARROLLO

3.1. Introducción.

El presente capítulo muestra los requerimientos del sistema, la arquitectura hardware y software, el desarrollo del programa base, la aplicación desarrollada en la plataforma LabVIEW para la recolección de los datos, la aplicación para dispositivos móviles Android, y, el diseño y elaboración de la estructura que soporta la placa de sensores de gases con el vehículo aéreo no tripulado.

3.2. Especificaciones del sistema

El sistema se encargará de detectar la concentración de monóxido de carbono (CO), dióxido de carbono (CO₂), oxígeno molecular (O₂), humedad relativa (HR), temperatura (°C) y partículas de polvo (kg/m³) en los márgenes indicados en la tabla 3.1. Estos niveles de concentración se han considerado en base a las recomendaciones del Ministerio del Ambiente del Ecuador y a los efectos en el ser humano [14]. EL tiempo de respuesta de cada sensor debe ser bajo, así como también, el consumo de corriente.

La placa de procesamiento debe tener unas dimensiones reducidas ya que va instalada en el vehículo aéreo no tripulado, un consumo de corriente bajo, capaz de soportar módulos GPS, micro SD y módulos de radio.

Tabla 3.1. Especificaciones de cada variable.

Variable	Concentración
Monóxido de carbono (CO)	30 – 500 ppm
Dióxido de carbono (CO₂)	350 – 1000 ppm
Oxígeno (O₂)	12 – 21%
Humedad relativa (HR)	0 – 100%
Temperatura (°C)	-10 – +50 °C
Partículas de polvo	1e ⁻⁸ – 7e ⁻⁷ Kg/m ³

Elaboración: Propia de los autores.

3.3. Selección de sensores.

En base a las características que debe tener cada uno de los sensores, se realiza una búsqueda en el mercado de distintos fabricantes que se adecuen a nuestros propósitos. En las tablas 3.2, 3.3, 3.4, 3.5, y 3.6 se expone las diferencias entre cada sensor con sus características.

Tabla 3.2. Diferencias entre sensores de monóxido de carbono.

Variable	Sensor	Rango de medida (ppm)	Consumo (mA)	Tiempo de respuesta (s)	Fabricante
CO	TGS-2442	30 – 1000	3	1	Figaro

CO	TGS-3870	50 – 1000	8	20	Figaro
CO	TGS-5042	0 – 1000	6	60	Figaro
CO	CO-CE	0 – 2000	42	90	Alphasense
CO	CO-A4	220 – 375	15	90	Alphasense
CO	CO-730	10 – 700	30	200	Synkera

Elaboración: Propia de los autores.

Sensor para monóxido de carbono – CO: Se ha seleccionado el sensor TGS2442
del fabricante Figaro ya que cumple con las especificaciones del sistema, cubre el
rango de medida deseado, el tiempo de respuesta es bajo y el consumo de corriente
es bajo.

➤ Rango del sensor: 30 – 1000 ppm.

> Rango solicitado: 30 – 100 ppm.

> Tiempo de respuesta: 1 segundo.

Consumo: 3mA.Precio: \$27.30.

Tabla 3.3. Diferencias entre sensores de dióxido de carbono.

Variable	Sensor	Rango de medida (ppm)	Consumo (mA)	Tiempo de respuesta (s)	Fabricante
CO ₂	TGS-4161	350 – 10000	50	30	Figaro
CO ₂	CO2-D1	200 – 5000	15	90	Alphasense
CO ₂	MG811	350 - 10000	200	40	DFRobot

Elaboración: Propia de los autores.

 Sensor para dióxido de carbono – CO₂: Se ha seleccionado el sensor TGS4161 del fabricante Figaro, cubre el rango de medida deseado, el tiempo de respuesta es menor y el consumo de corriente es bajo.

➤ Rango del sensor: 350 – 10000 ppm.

> Rango solicitado: 350 – 1000 ppm.

> Tiempo de respuesta: 30 segundos.

Consumo: 50mAPrecio: \$62.57.

Tabla 3.4. Diferencias entre sensores de oxígeno.

Variable	Sensor	Rango de medida (%)	Consumo (uA)	Tiempo de respuesta (s)	Fabricante
O ₂	SK – 25F	0 – 30	0	15	Figaro
O ₂	KE – 50	0 – 100	0	60	Figaro
O ₂	KE – 12	0 -100	0	20	Figaro
O ₂	O2 – G2	0 - 20.9	30	40	Alphasense
O ₂	O2 – A3	0 - 20.9	2.5	25	Alphasense
O ₂	ME2 – O2	0 - 25	150	15	Seeed

Elaboración: Propia de los autores.

 Sensor para oxígeno – O₂: Para el oxígeno se ha seleccionado el sensor SK-25F del fabricante Figaro, cumple con las especificaciones del sistema, el rango de medida se encuentra en lo deseado, el tiempo de respuesta es mucho menor a sus competidores y bajo consumo de corriente.

Rango del sensor: 0 – 30%.
 Rango solicitado: 12 – 21%.

> Tiempo de respuesta: 15 segundos.

Consumo: 0uAPrecio: \$130.83.

Tabla 3.5. Diferencias entre sensores de partículas de polvo.

Variable Sensor		Rango de medida (kg/m³)	Consumo (mA)	Tiempo de respuesta (ms)	Fabricante
Partículas de polvo	OPC – N2	3.8e ⁻⁷ – 1.7e ⁻⁵	95	140	Alphasense
Partículas de polvo	GP2Y1010AU0F	0 – 8e ⁻⁷	20	15	Sharp

Elaboración: Propia de los autores.

• Sensor para partículas de polvo: Se ha seleccionado el sensor GP2Y1010 del fabricante Sharp, cumple con las especificaciones del sistema, posee un consumo de corriente más bajo comparado con su competidor, y un tiempo de respuesta bajo.

> Rango del sensor: 8e⁻⁷ Kg/m³.

➤ Rango Solicitado: 1e⁻⁸ – 7e⁻⁷ Kg/m³.

> Tiempo de respuesta: 0.015 segundos.

Consumo: 20mA.Precio: \$10.52.

Tabla 3.6. Diferencias entre sensores de temperatura.

Variable	Sensor	Rango de medida (°C)	Consumo (uA)	Tiempo de respuesta (s)	Fabricante
°C	MCP9700A	-40 +125	6	1.65	Microchip
°C	MCP9701A	-10 +125	12	2.5	Microchip
°C	LM35	-60 +150	10mA	10	Texas Instrument

Elaboración: Propia de los autores.

• Sensor para temperatura: Se seleccionó el sensor MCP9700A del fabricante Microchip, el rango de medida se encuentra en lo deseado, el tiempo de respuesta es bajo y el consumo es menor que sus competidores.

> Rango del sensor: -40 +125°C.

> Rango solicitado: -10 +50°C.

> Tiempo de respuesta: 1,65 segundos.

Consumo: 12uAPrecio: \$4.55.

Tabla 3.7. Diferencias entre sensores de humedad.

Variable	Sensor	Rango de medida (%)	Consumo (mA)	Tiempo de respuesta (s)	Fabricante
HR	808H5V5	0 - 100	0.5	3	Sencera
HR	HS1101LF	0 - 99	1	5	Measurement Specialties
HR	HR-202	20 - 95	0.7	10	AOSONG

Elaboración: Propia de los autores.

• **Sensor para humedad:** Se seleccionó el sensor 808H5V5 del fabricante Sencera, el rango de medida se encuentra en lo deseado, el tiempo de respuesta es bajo y el consumo es menor que sus competidores.

Rango del sensor: 0 – 100%.
 Rango solicitado: 0 – 100%.

> Tiempo de respuesta: 3 segundos.

Consumo: 0.5mA.Precio: \$27.30.

3.4. Selección placa de procesamiento.

Se compara la tarjeta Waspmote y Arduino disponibles para el presente trabajo de titulación, se describen las características que brindan cada una de estos en la tabla 3.8.

Tabla 3.8. Comparación tarjeta Waspmote y Arduino.

Tarjeta Característica	Waspmote	Arduino
RAM	8Kb	8Kb
EEPROM	4 Kb	4 Kb
Pines I/O	86	54
Socket de almacenamiento externo SD-Card	Si	No
Socket integrado para módulos Xbee	Si	No
Socket integrado para módulo de gases	Si	No
Socket integrado para módulo de GPS	Si	No
Consumo On	73.1 mA	25.2 mA

Sleep	62.4 mA	8.2 mA				
Dimensiones	7.35 x 5.10 cm					

Elaboración: Propia de los autores.

Se seleccionó la tarjeta Waspmote del fabricante Libelium, puesto que cumple con las especificaciones del sistema, permite la integración de una sola placa de sensores de gases reduciendo el tamaño, posee un socket destinado tanto para dispositivos SD-Card, Xbee y GPS; y posee un consumo de corriente menor a su competidor Arduino.

3.5. Arquitectura hardware del sistema.

La arquitectura general del sistema de calidad de aire se presenta en la figura 3.1. Se establecen dos nodos, un nodo móvil compuesto por el VANT y la placa de sensores de gases, que permite adquirir las variables medioambientales; y el nodo estación base que es el encargado de receptar los datos enviados por el nodo móvil.

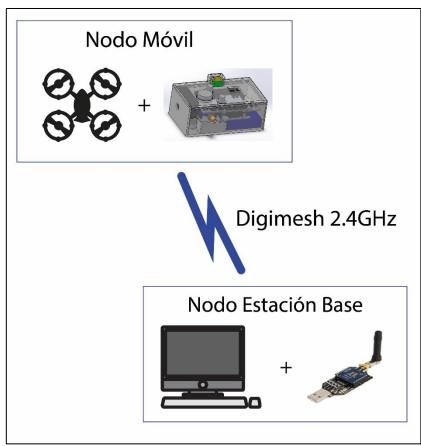


Figura 3.1. Arquitectura general del sistema. Fuente: Imagen propia de los autores.

La arquitectura hardware del nodo móvil se presenta en la figura 3.2, se observa la parte de adquisición de variables, procesamiento de información, almacenamiento y envío de datos.

Figura 3.2. Arquitectura hardware, nodo móvil.

Fuente: Imagen propia de los autores.

En la figura 3.3 se presenta la arquitectura hardware del nodo estación base, donde se detalla las funciones de recepción de datos, procesamiento, visualización de datos para el usuario y la subida de los datos al servidor de Ubidots.

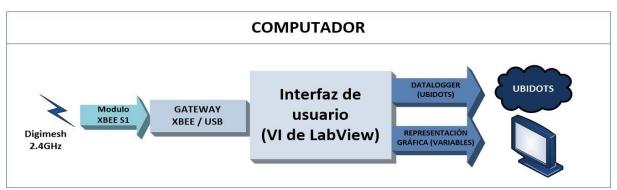


Figura 3.3. Arquitectura hardware, nodo estación base

Fuente: Imagen propia de los autores.

3.6. Arquitectura software del sistema.

La arquitectura software del nodo móvil presenta las características de la figura 3.4, se aprecia la adquisición, lectura y conversión de los datos, la creación de la trama a enviar, y el almacenamiento de los datos. Esto se realiza en la placa de sensores de Waspmote

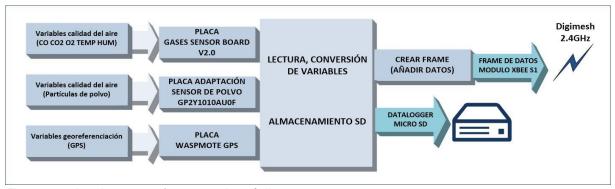


Figura 3.4. Arquitectura software, nodo móvil

Fuente: Propia del autor.

En la figura 3.5 se presenta la arquitectura software del nodo estación base, desarrollada en la plataforma LabVIEW, la recepción de la trama, lectura y extracción de los datos, la representación gráfica, la visualización de los datos para el usuario y la subida de los datos al servidor de Ubidots.

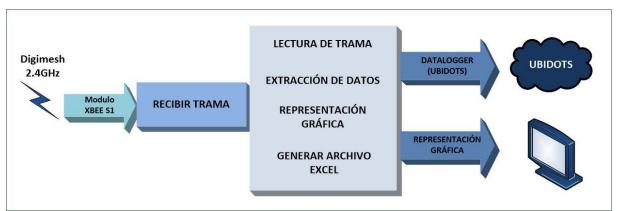


Figura 3.5. Arquitectura software, nodo estación base.

Fuente: Propia del autor.

En la figura 3.6 se presenta la arquitectura software de la aplicación desarrollada para dispositivos móviles con sistema operativo Android.

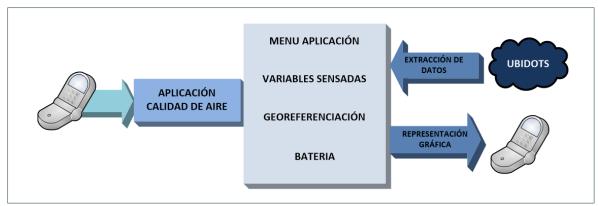


Figura 3.6. Arquitectura software de la aplicación para dispositivos Android. Fuente: Propia del autor.

3.7. Desarrollo del programa para la plataforma Waspmote.

La programación se ha extendido durante todo el transcurso de este proyecto a prueba de fallos e introduciendo nuevos cambios y características; se programó primeramente la placa base junto con la placa de sensores de gases, y, posteriormente cada sensor, finalizado esto, se programó y configuro el módulo de comunicación y el módulo GPS.

El software del nodo móvil, desarrollado en la plataforma de Waspmote presenta las especificaciones que se observan en la figura 3.7.

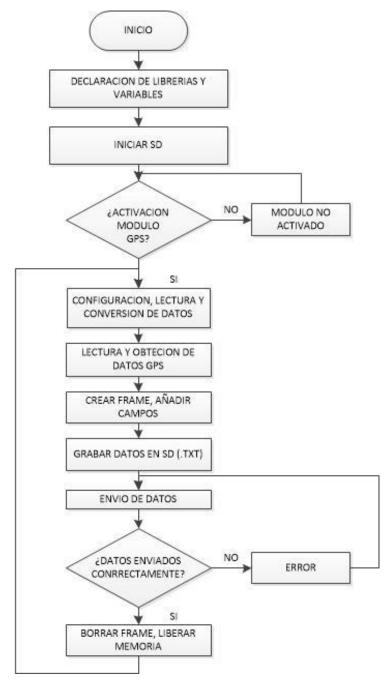


Figura 3.7. Diagrama de bloques, nodo móvil. Fuente: Propia del autor.

Inicialmente se declara todas las librerías utilizadas para el correcto funcionamiento de nuestro programa así como también cada una de las variables que utilizaremos.

En el "setup", que es la primera parte del código, el cual solo se ejecuta una vez al iniciar el programa, se enciende la tarjeta micro SD que almacena en un nuevo fichero cada dato obtenido, se inicializa la placa de sensores de gases y se inicializa el módulo GPS.

En el loop, que es un bucle infinito que se ejecuta continuamente, se realiza la configuración, lectura y conversión de los datos obtenidos por cada uno de los sensores, así

como también la lectura y obtención de los datos GPS, se guardan cada uno de estos datos en la tarjeta SD, entre cada dato obtenido se calcula un retardo de obtención de muestra, este retardo dependerá del número de muestras y el tiempo de ejecución del programa. A continuación, se crea el frame con los datos obtenidos, se envía al módulo Xbee y los datos son enviados al nodo estación base en el computador, al finalizar se limpia la memoria cache de envío y se repite el procedimiento.

3.7.1. Funciones para la medición de magnitudes.

3.7.1.1. Medición de monóxido de carbono (CO).

El sensor resistivo TGS2442, presenta una variación logarítmica de la resistencia en función de la concentración en ppm (partes por millón) de monóxido de carbono [39], como lo apreciamos en la figura 3.8.

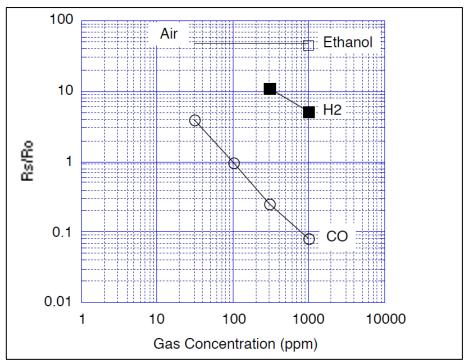


Figura 3.8. Respuesta del sensor de CO. Fuente: imagen tomada de la hoja de datos del fabricante [39].

Analizando la figura 3.8 se puede obtener la siguiente ecuación:

$$\log(R) = a * \log(CO) + b \tag{3.1}$$

Dónde:

- R = resistencia del sensor (Rs/Ro).
- Co = concentración en ppm.
- a y b obtenidos de la calibración.

Con valor de 30 ppm en condiciones normales Rs/Ro = 4 entonces Ro= Rs/4.

$$Rs = \left(Vc * \frac{RL}{V_{out}}\right) - RL \tag{3.2}$$

$$V_{out} = \frac{Vc * RL}{Rs + RL} \tag{3.3}$$

Dónde:

- Vc = 5V voltaje que se le entrega al sensor.
- RL = 50kΩ resistencia de carga

$$V_{out} = \frac{5 * 10}{Rs + 10} \tag{3.4}$$

El sensor de CO TGS2442 en condiciones normales nos entrega un valor de 0.29032V.

$$Rs = \left(\frac{50}{V_{out}}\right) - 10\tag{3.5}$$

$$Rs = \left(\frac{50}{0.29032}\right) - 10 = 4Ro\tag{3.6}$$

$$Ro = 40.6 k\Omega \tag{3.7}$$

Por lo tanto se ha considerado una concentración mínima de 30 ppm y se implementa una función lineal en el código de la siguiente manera.

$$Valor = \frac{((V_{out} * 100) * 30) - 10}{330 - 50}$$
(3.8)

SensorGasv20.configureSensor(SENS_SOCKET4CO, 1, 100); SensorGasv20.setSensorMode(SENS_ON, SENS_SOCKET4CO); COfloat = SensorGasv20.readValue(SENS_SOCKET4CO); SensorGasv20.setSensorMode(SENS_OFF, SENS_SOCKET4CO); y2 = ((COfloat * 100) * 30)-10; ppmCO= y2/(330-50); Utils.float2String(COfloat, COstring, 3); USB.print("CO: "); USB.print(ppmCO);

3.7.1.2. Medición de dióxido de carbono (CO2).

Se emplea el sensor analógico TGS4161 que presenta una señal analógica en función del valor de CO₂ en donde 350ppm es una concentración normal en el aire, se puede observar en la figura 3.9.

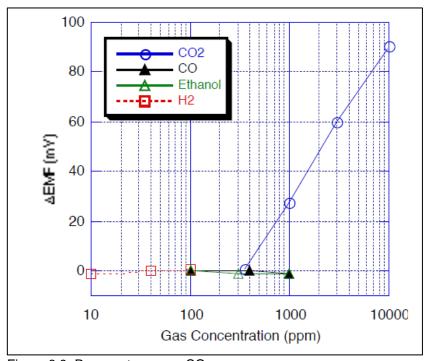


Figura 3.9. Respuesta sensor CO₂. Fuente: imagen tomada de la hoja de datos del fabricante [40].

Analizando la figura 3.9 obtenemos la siguiente ecuación:

$$y = m * \log(x) + b \tag{3.9}$$

Nos damos cuenta que el eje X se encuentra en escala logarítmica y el eje Y en escala estándar, procedemos a calcular el gradiente (m) de la siguiente manera:

- P1 = (3000, 60)
- P2 = (1000, 30)

$$m = \frac{(Y2 - Y1)}{Log(X2) - Log(X1)}$$
(3.10)

$$m = \frac{(30 - 60)}{Log(1000) - Log(3000)} \tag{3.11}$$

$$m = 62.877 (3.12)$$

Se obtiene la constante b de la ecuación 3.9.

$$y = m * \log(x) + b \tag{3.13}$$

$$b = y - m * \log(x) \tag{3.14}$$

$$b = 30 - 62.877 * \log(1000) \tag{3.15}$$

$$b = -158.631\tag{3.16}$$

La ecuación para el cálculo de CO₂ quedaría de la siguiente manera:

$$y = 62.877 * \log(x) - 158.631 \tag{3.17}$$

Despejamos X que es la concentración en ppm de CO₂ tenemos:

$$x = 10 \, \left(\frac{y + 158.631}{62.877} \right) \tag{3.18}$$

Con esta fórmula se implementa las siguientes líneas de código para obtener el valor de CO₂ en ppm.

```
SensorGasv20.configureSensor(SENS_CO2, 5);

SensorGasv20.setSensorMode(SENS_ON, SENS_CO2);

CO2float = SensorGasv20.readValue(SENS_CO2);

x =((CO2float + 158.631)/ 62.877);

ppmCO2 = pow(10,x);

USB.print(ppmCO2);

USB.println(" ppm ");
```

3.7.1.3. Medición de temperatura

Se emplea el sensor analógico MCP9700A que transforma un valor de temperatura en una señal de voltaje analógica, la figura 3.10 muestra la respuesta del sensor:

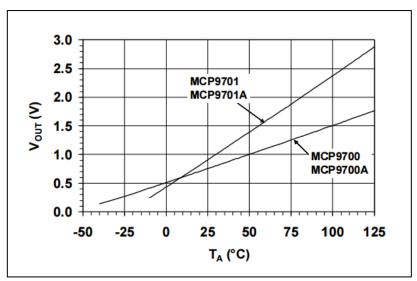


Figura 3.10. Respuesta sensor de temperatura. Fuente: imagen tomada de la hoja de datos del fabricante [41].

Analizando la figura 3.10 tenemos la siguiente ecuación:

$$y = m * (x) + b (3.19)$$

Se procede a calcular el gradiente (m) de la siguiente manera:

- P1 = (100, 1.5)
- P2 = (0, 0.5)

$$m = \frac{Y2 - Y1}{X2 - X1} \tag{3.20}$$

$$m = \frac{0.5 - 1.5}{0 - 100} \tag{3.21}$$

$$m = 0.01 (3.22)$$

Se obtiene la constante b de la ecuación 3.19.

$$y = m * (x) + b \tag{3.23}$$

$$b = y - m *(x) \tag{3.24}$$

$$b = 1.5 - 0.01 * (100) \tag{3.25}$$

$$b = 0.5 (3.26)$$

La ecuación para el cálculo de temperatura °C quedaría de la siguiente manera:

$$y = m *(x) + b \tag{3.27}$$

$$y = 0.01 *(x) + 0.5 \tag{3.28}$$

Despejamos X que es la temperatura en °C, tenemos:

$$x = \left(\frac{y - 0.5}{0.01}\right) \tag{3.29}$$

Con esta fórmula se implementa las siguientes líneas de código para obtener el valor de temperatura en °C.

tempVal = SensorGasv20.readValue(SENS_TEMPERATURE); floattemp = ((tempVal - 0.5/0.01)); USB.print("Temperatura: "); USB.print(floattemp); USB.println(" °C ");

3.7.1.4. Medición de humedad relativa

Se implementa el sensor analógico 808H5V5 que transforma un valor de humedad relativa en una señal de voltaje analógico. La gráfica de respuesta del sensor la podemos ver en la figura 3.11

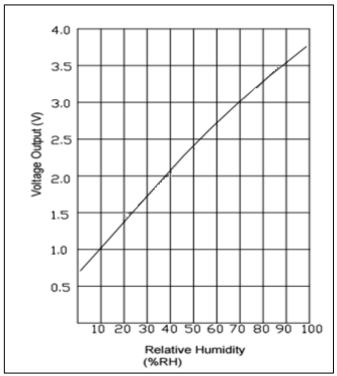


Figura 3.11. Respuesta sensor humedad relativa. Fuente: imagen tomada de la hoja de datos del fabricante [42].

Analizando la figura 4.8 tenemos la siguiente ecuación:

$$y = m * (x) + b (3.30)$$

Se procede a calcular el gradiente (m) de la siguiente manera:

- P1 = (80, 3)
- P2 = (10, 1)

$$m = \frac{Y2 - Y1}{X2 - X1} \tag{3.31}$$

$$m = \frac{1-3}{10-80} \tag{3.32}$$

$$m = 0.029 (3.33)$$

Se obtiene la constante b de la ecuación 3.30.

$$y = m * (x) + b \tag{3.34}$$

$$b = y - m *(x) \tag{3.35}$$

$$b = 1 - 0.029 * (10) \tag{3.36}$$

$$b = 0.71 (3.37)$$

La ecuación para el cálculo de humedad relativa quedaría de la siguiente manera:

$$y = m *(x) + b \tag{3.38}$$

$$y = 0.029 *(x) + 0.71 \tag{3.39}$$

Despejamos X que es la humedad relativa en porcentaje, tenemos:

$$x = \left(\frac{y - 0.71}{0.029}\right) \tag{3.40}$$

Con esta fórmula se implementa las siguientes líneas de código para obtener el valor de humedad relativa en porcentaje.

humPro=0; humVal = SensorGasv20.readValue(SENS_HUMIDITY); floathum = ((humVal - 0.71)/0.029); USB.print(F("Humedad: ")); USB.print(floathum); USB.println(F(" %RH"));

3.7.1.5. Medición de porcentaje de oxígeno.

El sensor SK-25 es un sensor analógico que proporciona una salida de voltaje proporcional a la concentración de O2 en la atmósfera como se puede apreciar en la figura 3.12.

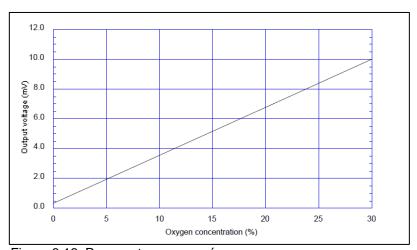


Figura 3.12. Respuesta sensor oxígeno.

Fuente: imagen tomada de la hoja de datos del fabricante [43].

Analizando la figura 3.12 tenemos la siguiente ecuación:

$$y = m * (x) + b \tag{3.41}$$

Se procede a calcular el gradiente (m) de la siguiente manera:

- P1 = (30, 10)
- P2 = (5, 2)

$$m = \frac{Y2 - Y1}{X2 - X1} \tag{3.42}$$

$$m = \frac{2 - 10}{5 - 30} \tag{3.43}$$

$$m = 0.32 (3.44)$$

Se obtiene la constante b de la ecuación 3.41.

$$y = m * (x) + b \tag{3.45}$$

$$b = y - m *(x) \tag{3.46}$$

$$b = 2 - 0.32 * (5) \tag{3.47}$$

$$b = 0.4 (3.48)$$

La ecuación para el cálculo de porcentaje de oxígeno quedaría de la siguiente manera:

$$y = m *(x) + b \tag{3.49}$$

$$y = 0.32 *(x) + 0.4 \tag{3.50}$$

Despejamos X que es el oxígeno en porcentaje, tenemos:

$$x = \left(\frac{y - 0.4}{0.32}\right) \tag{3.51}$$

Con esta fórmula se implementa las siguientes líneas de código para obtener el valor de oxígeno en porcentaje.

SensorGasv20.setSensorMode(SENS_ON, SENS_O2);
O2float = (SensorGasv20.readValue -0.4)/0.32));
SensorGasv20.setSensorMode(SENS_OFF, SENS_O2);
USB.print("O2: ");
USB.print(O2float);
USB.print(" ");
USB.println("% Concentración de oxígeno");

3.7.1.6. Sensor de partículas de polvo GP2Y1010AU

Para la medición de la cantidad de partículas de polvo en el aire se usa el sensor de polvo de marca Sharp modelo GP2Y1010AU, el cual no se posible implementarlo directamente en la placa Gases Sensor Board 2.0 de Waspmote, no está diseñada para recolectar datos de

sensores fuera de los indicados en su hoja de datos, por ende, se diseñó una placa de adaptación y se realizó modificaciones en la librería interna "SensorGas_V2.0" de la placa Waspmote, se debe resaltar que el polvo es un nombre genérico para las partículas sólidas con un diámetro menor a los 500 micrómetros, y, en forma más general, materia fina.

3.7.1.6.1. Placa de adaptación.

La placa de adaptación contiene un conector de 6 pines como se puede observar en la figura 3.13, se conectan con los pines del sensor de polvo que se observan en la figura 3.14, un circuito RC a la entrada del sensor de polvo entre los pines 1 y 2 para mantener una alimentación estable en el diodo infrarrojo que posee el sensor, a este diodo se le ingresa una señal cuadrada utilizando el PWM del pin digital 1 de la placa de Waspmote hacia el pin 3 del sensor de polvo, el pin 6 alimenta el circuito amplificador como se puede observar en la figura 3.14 y el pin 4 es la tierra del sensor, finalmente con el pin 5 se toma la señal generada por el sensor la cual es analizada en la placa de Waspmote. Para el diseño e implementación de dicha placa se ha utilizado el software Proteus².

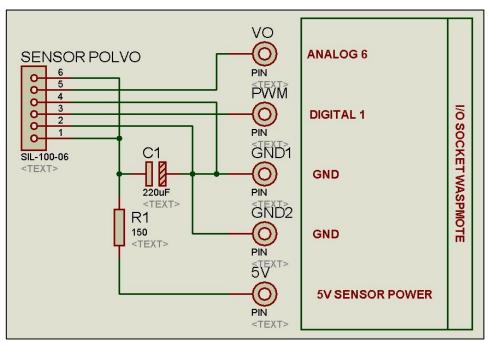


Figura 3.13. Esquema placa de adaptación del sensor de partículas de polvo. Fuente: Imagen propia de los autores.

59

² **Proteus:** Es un software para el diseño y simulación de circuitos electrónicos, además permite el diseño de circuitos impresos.

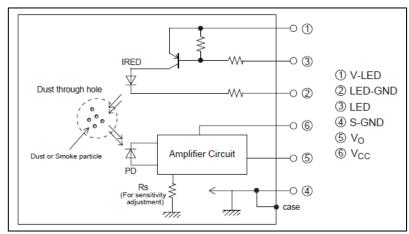


Figura 3.14. Arquitectura sensor de polvo. Fuente: Imagen tomada de la hoja de datos del fabricante [44] .

En la imagen 3.15 y 3.16 se observa el esquema de impresión y la visualización 3D de la placa de adaptación del sensor de partículas de polvo.

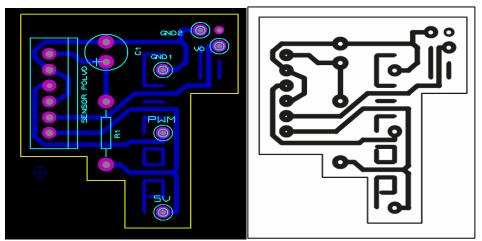


Figura 3.15. Esquema de impresión, placa de adaptación. Fuente: Imagen propia de los autores.

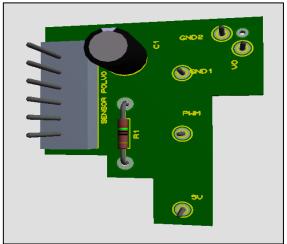


Figura 3.16. Vista en 3D, placa de adaptación Fuente: Imagen propia de los autores.

3.7.1.6.2. Cambios a la librería SensorGas_v20.

Para obtener el valor del sensor de partículas de polvo además de la placa de adaptación es necesario modificar ciertas líneas de código para acondicionar la señal de pulso que ingresamos al sensor, así también la lectura y conversión de los datos obtenidos del mismo, usando la fórmula de linealización que nos da el fabricante en su hoja de datos, la cual podemos observar en la parte de anexos en la sección "C" de este documento.

Primeramente en la librería "SensorGas_v20" que viene integrada en el IDE de Waspmote para el uso de sus sensores, identificamos las funciones que no estén en uso para modificar las mismas, utilizamos la función "SENS_SOCKET3CO" que se puede apreciar en la figura 3.18 ya que el valor del sensor de CO lo obtenemos de la función "SENS_SOCKET4CO" y el socket 3 no se encuentra en uso. Con esta información sabemos cuáles son los pines de la placa "Gases Sensor Board 2.0" a los cuales debemos conectar la placa de adaptación.

Tomamos el pin DIGITAL1 para generar el pulso con las especificaciones que se pueden ver en la figura 3.17.

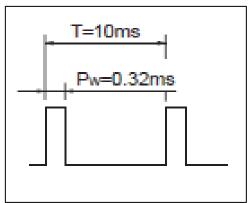


Figura 3.17. Características pulso digital. Fuente: Imagen propia de los autores.

Figura 3.18. Líneas de código modificadas en la librería SensorGas_v2.0. Fuente: Imagen propia de los autores.

Por ultimo calculamos el valor equivalente a mg/m³ en relación al valor que nos entrega el sensor, con la formula proporcionada por el fabricante en la hoja de datos del sensor que se puede observar en la parte de anexos en la sección "C" de este documento:

$$P = 0.17 * SA - 0.1 \tag{3.52}$$

Dónde:

- P = Partículas de polvo (mg/m³).
- SA = Señal analógica.

Con esta fórmula se implementa las siguientes líneas de código.

```
SensorGasv20.setSensorMode(SENS_ON, SENS_SOCKET3CO);
SensorGasv20.readValue(SENS_SOCKET3CO);
voMeasured = SensorGasv20.readValue(SENS_SOCKET3CO);
calcVoltage= (voMeasured) * (5.0 / 1024.0);
dustDensity = 0.17 * calcVoltage - 0.1;
USB.print("Particulas de polvo");
USB.print(dustDensity);
USB.print("mg/m3");
USB.println("");
```

3.7.2. Comunicación con el módulo XBee.

En este proyecto de titulación, una parte crucial es transmitir los datos recolectados a un computador de manera inalámbrica. Es importante saber qué el tipo de frame³ que se utilizó es el tipo ASCII, y tramas de un tamaño máximo de 95 Bytes, el frame se compone como se puede observar en la figura 3.19.

		HEADER								PAYLO	AD		
<=> Frame Type Nur	m Fields #	Serial ID	#	Waspmote ID	#	Sequence	#	Sensor_1	#	Sensor_2	#	 Sensor_n	#

Figura 3.19. Estructura de un frame ASCII.

Fuente: Imagen tomada de [45].

Consta de dos partes, una cabecera (header) y el (payload) en donde se incluye todos los datos recogidos por los sensores. La cabecera posee información única en donde se almacena los datos específicos del Waspmote y la comunicación que se está realizando.

3.7.2.1. Información de la cabecera, Header.

• <=>: Se usa para identificar el inicio de cada trama.

³ Frame: Técnica de conmutación de paquetes capaz de transmitir tramas, útil para él envió de grandes cantidades de datos.

- Frame Type: Se usa para saber el tipo de trama que se está enviando, en nuestro caso es ASCII.
- Num of Fields: Se usa para saber el número de sensores enviados y el tamaño de la trama
- Serial ID: Identifica el Waspmote con un número único parecido a una dirección MAC.
- Waspmote ID: Identifica la mota dentro de una red de sensores.
- #: Funciona como separador.
- Sequence: Es un contador que se usa para identificar el número de tramas enviadas.

3.7.2.2. Información de datos, Payload.

En el "payload" va cada uno de los datos de los sensores en formato "string", por ejemplo "CO:59.370", seguido de un "#" que funciona como separador entre cada variable, como lo podemos apreciar en la figura 3.20.

Figura 3.20. Estructura del frame ASCII enviado.

Fuente: Imagen propia de los autores.

Resolución

3.8. Consumo energético del prototipo.

El consumo total del sistema, está dado por: el consumo de los sensores, el procesado de los datos, y, el envío de los mismos. El suministro de energía debe ser capaz de alimentar a todo el sistema, para ello, conocer cuánto consume nuestro dispositivo es esencial. Se realizan pruebas utilizando el multímetro digital KEYSIGHT 3446 que se observa en la figura 3.21, con software BenchVue Keysight Agilent para determinar el consumo total del sistema.

Figura 3.21. Multímetro digital Keysight 3446. Fuente: Imagen propia de los autores.

Se realizó mediciones de cada uno de los sensores y módulos del sistema. En la tabla 3.9 se resume el consumo de cada dispositivo.

Tabla 3.9. Consumo en mA de cada dispositivo.

Dispositivo	mA
Placa Waspmote	9.234
Modulo GPS	37.332
Sensor de humedad relativa	0.384
Sensor de temperatura	0.015
Sensor de CO	9.026
Sensor de CO ₂	39.654
Sensor de O ₂	0.010
Sensor de partículas de polvo	21.300
Xbee S1	45.34
TOTAL	163.295

Fuente: Autor. Elaboración: Autor.

Todo el dispositivo funcionando en conjunto tiene un consumo de 163.295mA como se apreciar en la tabla 3.9.

Porcentaje de consumo Placa Waspmote 6% Xbee S1 Modulo GPS 28% 23% Sensor de humedad relativa 0,384 Sensor de 0% partículas de polvo Sensor de CO2 Sensor de 13% 24% temperatura 0,015 0% Sensor de O2 Sensor de CO 0,010 6% 0%

Figura 3.22. Porcentaje de consumo del nodo móvil.

Fuente: Imagen propia de los autores.

Teniendo en cuenta que el consumo es de 163,295mA y que se utiliza una batería de ion de litio de 2300mAh con un voltaje de salida de 3.7V, se determina la capacidad del sistema para permanecer encendido.

$$B_L = \frac{B_C}{C_D * 0.7} \tag{3.53}$$

Dónde:

- B_L = Autonomía del sistema.
- B_c = Capacidad de la batería.
- C_D = Consumo del dispositivo.
- 0.7 = El factor de 0.7 permite tolerancias a factores externos que pueden afectar la vida del sistema.

$$B_L = \frac{2300 \, mAh}{163.295 mA * 0.7} \tag{3.54}$$

$$B_L = 9.85h (3.55)$$

El sistema posee una autonomía de 9.85 horas sin carga alguna, hay que considerar que el dispositivo no está pensado para ser instalado y que funcione durante horas, días o meses, si fuera el caso, se estaría considerando un sistema de carga alterno como podría ser la instalación de un panel solar. Como este proyecto se basa en la utilización de un vehículo aéreo no tripulado, estamos sujetos a la autonomía de vuelo del mismo para tomar las mediciones de los sensores, es por esto que, el sistema se ha programado para mantenerse en constante funcionamiento tomando el mayor número de muestras en el menor tiempo posible, si no fuera el caso, el dispositivo se programaría para que entre en un estado de hibernación entre cada muestra disminuyendo el consumo energético y aumentando la autonomía del sistema.

3.9. Aplicación desarrollada en LabVIEW.

Para la recepción y visualización de los datos enviados por el nodo móvil, se diseñó un programa en el software LabVIEW para el nodo estación base. Se ha seleccionado este software, por la eficacia que ofrece gracias a las múltiples funciones implementadas en esta plataforma, y, la facilidad que se nos presenta al ser una herramienta gráfica. Con este programa pretendemos que la visualización y el manejo de los datos para el usuario, sean de una manera rápida, efectiva, y, fácil, al optar con un entorno gráfico de usuario.

3.9.1. Elementos del VI.

El método que se ha utilizado para desarrollar el VI⁴, consiste en varios subdiagramas, como se puede apreciar en la figura 3.23. Se ejecutan secuencialmente, y, todos estos dentro de

⁴ Los programas desarrollados con Labview se llaman Instrumentos Virtuales o Vis.

un bloque "While loop", de tal manera que el programa se ejecute siempre, hasta que el usuario decida detenerlo. En la tabla 3.10 se describe los bloques utilizados en este Vis.

Tabla 3.10. Bloques LabView.

Bloque	Descripción
Visa serial	Inicializa los puertos seriales y las configuraciones realizadas.
Property node	Lee y escribe las propiedades de referencia.
Concatenate strings	Concatena cadenas de entradas y matrices.
Match pattern	Busca una expresión dentro de una cadena.
For loop	Ejecuta subdiagramas "n" tiempos.
Ubidos part	Sube los datos al servidor de ubidots.
Wait	Espera el número especificado de milesegundos.
Write to measurement file	Permite generar un archivo con los datos obtenidos.
Flat sequence structure	Conjunto de subdiagramas que se ejecutan secuencialmente.
Case structure	Contiene un subdiagrama, se ejecuta sujeto a condiciones fijadas.
While loop	Repite el código hasta que una condición la detenga.

Fuente: Autor. Elaboración: Autor.

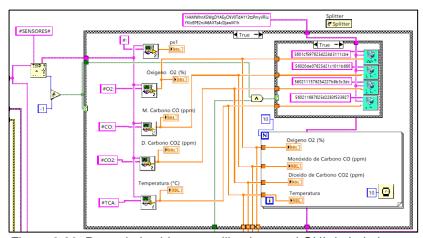


Figura 3.23. Parte de los bloques utilizados en el GUI de Labview. Fuente: Imagen propia de los autores.

3.9.2. Funcionamiento de la aplicación.

Al utilizar el bloque "Visa Serial" se inicializa el puerto serial para establecer la comunicación entre el módulo XBee y el programa desarrollado en LabVIEW, al no encontrar conectado ningún puerto, se emite un error debido al no poder establecer dicha comunicación, al no existir error se inicializa el programa esperando la llegada de las tramas enviadas por el

nodo móvil, al llegar las tramas, se extrae la información deseada utilizando el bloque "Match pattern", donde se compara la trama y se va separando el dato deseado, posteriormente, se visualiza al usuario los datos obtenidos en el panel frontal que es la interfaz de usuario cuando el programa se está ejecutando, como se puede observar en la figura 3.24

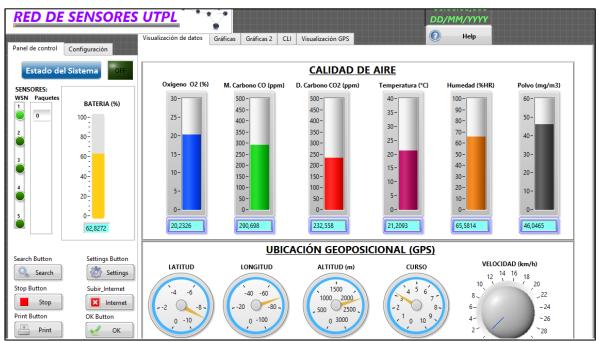


Figura 3.24. Interfaz de usuario. Fuente: Imagen propia de los autores.

Simultáneamente se genera un archivo Excel cada vez que se ejecuta el programa, en donde cada columna de manera ordenada, almacena los datos obtenidos de cada sensor, de tal manera que, el usuario pueda tener un registro guardado de cada prueba realizada.

Con los datos GPS se ha realizado un subdiagrama especial, permitiéndole al usuario poder visualizar de manera instantánea, el mapa y la ubicación de los datos de latitud y longitud, ubicando el punto exacto, cada vez que se obtiene un nuevo punto el mapa se actualiza uniendo el punto nuevo con el anterior, así, se genera una ruta de las pruebas obtenidas en distintos puntos, se puede observar en la figura 3.25.

Figura 3.25. Interfaz de usuario GPS. Fuente: Imagen propia de los autores.

Para realizar esto, se ha utilizado los recursos de Google Maps vinculados con LabVIEW, accediendo a todos los mapas deseados. Toda la documentación detallada del programa se encuentra en los anexos de este documento, la interfaz de la estación base desarrollada en LabVIEW persigue las especificaciones de la figura 3.26.

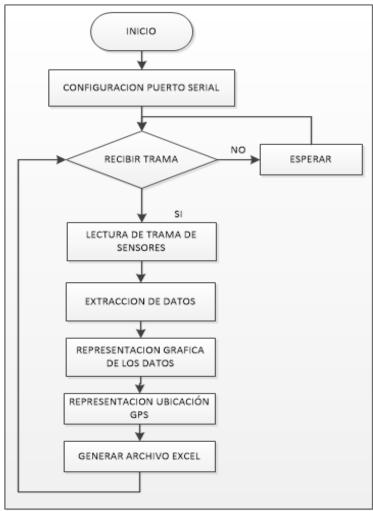


Figura 3.26. Diagrama de bloques de la interfaz de usuario, nodo estación base.

Fuente: Imagen propia de los autores.

3.10. Ubicación de sensores.

Para el lugar en donde se colocan los sensores en el VANT, se requiere tomar algunas consideraciones. La principal y más importante son los flujos de aire que son producidos por el movimiento de las hélices, que pueden afectar a las mediciones que realizan los sensores, otro factor importante es el peso del sistema, afecta el vuelo del VANT ejerciendo mayor potencia en sus rotores para elevarse [46].

Nos hemos centrado en tres estudios, los cuales abordan la aerodinámica de los VANT [46], [47], [48], en dichos estudios sus resultados son similares. En todos se concluye que si tomamos un rotor únicamente, la velocidad del viento emitida por el mismo, llega a su punto máximo en todo su perímetro y mínima en el centro y exterior del rotor. Tomando en cuenta todos los rotores, y realizando el mismo experimento, la velocidad del viento emitida por los rotores, es máxima cerca de los rotores y mínima en el centro y fuera del VANT como se puede apreciar en la figura 3.27 y 3.28.

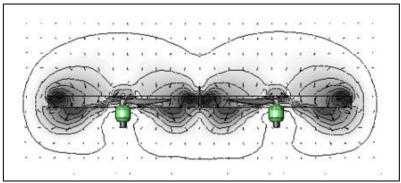


Figura 3.27. Distribución del aire en los rotores, vista lateral. Fuente: Imagen tomada de [47] .

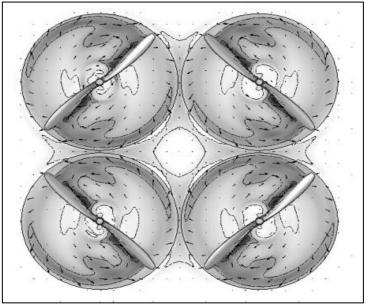


Figura 3.28. Distribución del aire en los rotores vista superior. Fuente: Imagen tomada de [47].

Considerando esto, únicamente hay dos lugares en donde se puede colocar el sistema: la primera es, fuera del vehículo aéreo no tripulado, a una considerable distancia; y la segunda, en la parte central de la parte superior. Con estas dos opciones, si consideramos la primera, requerimos de un montaje demasiado complejo, además modificando el centro de gravedad del vehículo aéreo no tripulado; la segunda opción es la más conveniente, y, la que se ha considerado para este proyecto de titulación.

En dichos estudios, se realizan simulaciones en software de aerodinámica computacional, de tal manera, validar lo mencionado anteriormente, se puede observar en la figura 3.29 y 3.30, en donde cada trama se asocia con su tiempo de simulación (t) y con el ángulo de la hélice (α) , se observa como la trayectoria del viento se sitúa a la periferia evitando el centro del vehículo aéreo no tripulado [46].

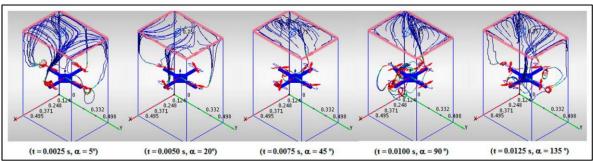


Figura 3.29. Distribución de las corrientes de aire en el VANT.

Fuente: Imagen tomada de [46].



Figura 3.30. (a) La velocidad del aire sobre el vehículo aéreo no tripulado. (b) La velocidad del aire bajo el vehículo aéreo no tripulado.

Fuente: Imagen tomada de [46].

Los resultados obtenidos en cada estudio, muestran que la velocidad del aire repelido por los rotores, es más alta que la velocidad del aire atraído por ellas.

3.11. Verificación de pesos.

Como sabemos, los vehículos aéreos no tripulados vienen fabricados con una autonomía de vuelo específica, es decir con un tiempo de vuelo determinado, al incluir el sistema de calidad de aire, se interfiere con esta autonomía, es por esto que, se procede a verificar los pesos de cada componente que se utiliza, de tal manera que, en las pruebas experimentales, comprobar cómo le afecta el peso agregado en la duración de la batería del vehículo aéreo no tripulado.

Para esta prueba se utilizó una báscula Ohaus⁵ analítica de precisión, obteniendo los resultados de la tabla 3.11 con cada uno de nuestros instrumentos, las imágenes de los pesos obtenidos se pueden observar en los anexos en la sección "A" de este documento.

Tabla 3.11. Pesos del Sistema calidad de aire

INSTRUMENTO	PESO (gramos)
Placa Waspmote PRO V1.2	22.4874
Placa de Sensores de Gases	43.1157
Placa 3G/GPRS	21.5234
Xbee – S1	6.2542
Sensor de partículas de polvo –	15.1260
GP2Y1010AU0F	
Antena omnidireccional	23.7779
Antena 3G	0.6894
Antena GPRS	5.9150
Batería placa Waspmote	47.1841
Estructura plástica	50.320
TOTAL	236.3934

Fuente: Propia de los autores. Elaboración: Propia de los autores.

⁵ Ohaus: Empresa adaptada al mercado Mexicano y Latinoamericano, creadores de básculas de precisión para todo tipos de materiales.

3.12. Diseño del soporte y estructura de la placa de sensores de gases.

Para el ajuste de la placa de sensores de gases en el vehículo aéreo no tripulado, se diseñó un soporte que se ajuste al modelo curvo del DJI Inspire 1, como se puede observar en la figura 3.31 y 3.32, de tal manera que su centro de gravedad no se encuentre afectado.

Figura 3.31. Vista lateral de la parte central del DJI Inspire 1 Fuente: Imagen propia de los autores.

Figura 3.32. Vista superior de la parte central del DJI Inspire 1 Fuente: Imagen propia de los autores.

Se han tomado las medidas para modelar un diseño en 3D utilizando el software SolidWorks, logrando un ajuste entre el soporte y el vehículo aéreo no tripulado. Se diseñó primeramente el soporte como se aprecia en la figura 3.33 y 3.34.

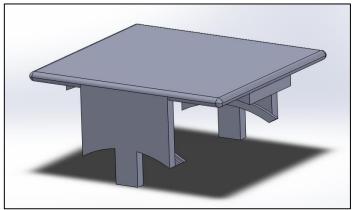


Figura 3.33. Soporte, vista isométrica. Fuente: Imagen propia de los autores.

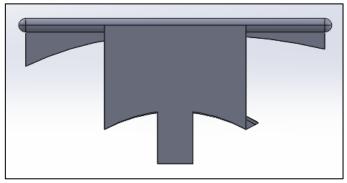


Figura 3.34. Soporte, vista lateral Fuente: Imagen propia de los autores.

Posteriormente, se diseñó la estructura que alojará todo nuestro sistema de sensores de gases, con esto nos aseguramos el resguardo de todos los elementos, pero sin afectar en las mediciones que realizan los sensores. Para que el sistema no sea demasiado pesado, se redujo el peso, y, aunque la superficie frontal afecta a la aerodinámica del VANT, se obvio de realizar una estructura demasiado compleja, tratando de que el peso no aumente. La estructura se observa en la figura 3.35.

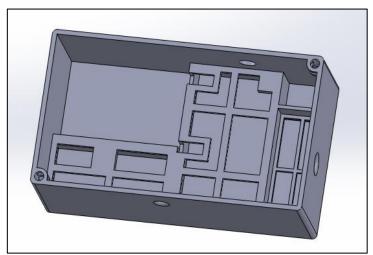


Figura 3.35. Estructura de los sensores, vista superior. Fuente: Imagen propia de los autores.

Del mismo modo se realizó la tapa de la estructura, tomando en cuenta la abertura que necesita cada sensor y la antena GPS del dispositivo, de tal forma que, no interfiera con las medidas realizadas, como se lo puede apreciar en la figura 3.36.

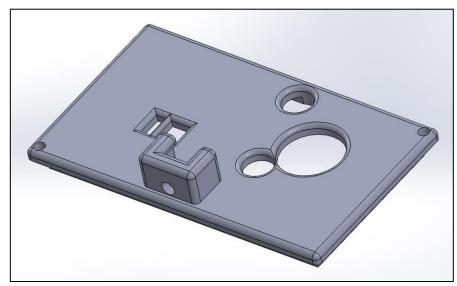


Figura 3.36. Tapa de la estructura de los sensores, vista superior. Fuente: Imagen propia de los autores.

Se procede a unir tanto la estructura, con la tapa superior, y, el soporte del vehículo aéreo no tripulado, se puede apreciar en la figura 3.37, 3.38, 3.39 y 3.40, como queda la estructura con el sistema de sensores de gases.

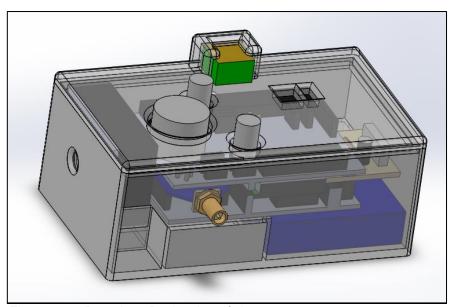


Figura 3.37. Prototipo 3D, vista isométrica Fuente: Imagen propia de los autores.

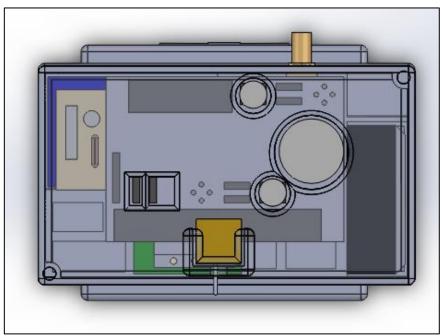


Figura 3.38. Prototipo 3D, vista superior. Fuente: Imagen propia de los autores.

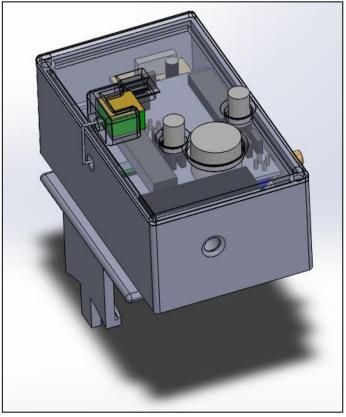


Figura 3.39. Prototipo 3D, vista frontal. Fuente: Imagen propia de los autores

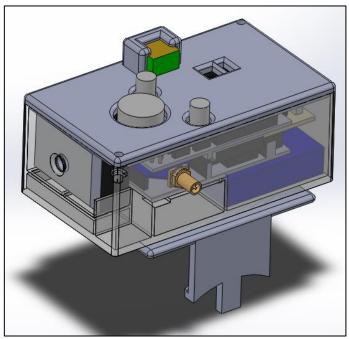


Figura 3.40. Prototipo 3D, vista lateral. Fuente: Imagen propia de los autores

3.12.1. Implementación hardware.

Realizado el diseño, se procede a la impresión en 3D de la estructura, obteniendo los resultados que se observa en las figuras 3.41, 3.42 y 3.43.

Figura 3.41. Prototipo, estructura impresión 3D, vista lateral. Fuente: Imagen propia de los autores.

Figura 3.42. Prototipo, estructura impresión 3D, vista frontal. Fuente: Imagen propia de los autores.

Figura 3.43. Prototipo, instalado en el VANT Fuente: Imagen propia de los autores.

3.13. Desarrollo aplicación para móviles.

Se desarrolla la aplicación móvil utilizando el software Android Studio, la aplicación consiste en la visualización de los datos censados por nuestro sistema en el dispositivo celular accediendo al servidor de Ubidots en donde se encuentran los datos almacenados, la aplicación se puede observar en la figura 4.41

Figura 3.44. Aplicación móvil para celulares Android. Fuente: Imagen propia de los autores.

4. CAPITULO V RESULTADOS Y PRUEBAS

4.1. Introducción.

En el presente capítulo se hace una evaluación del funcionamiento del sistema mediante pruebas desarrolladas en diferentes escenarios, documentando los resultados obtenidos, se realiza:

- Test de alcance de los dispositivos de comunicación.
- Verificación de interferencia usando el VANT.
- Test de autonomía de vuelo del vehículo aéreo no tripulado.
- Prueba de mediciones de sensores durante 24 horas.
- Mediciones usando el vehículo aéreo no tripulado.
- Mediciones junto a estación meteorológica.
- Mediciones en diferentes puntos de la ciudad de Loja Ecuador.
- Comprobación de almacenamiento de datos en servidor Ubidots.

4.2. Test de alcance.

Se realiza una prueba de alcance del dispositivo, el nodo móvil compuesto por la placa de sensores de gases Waspmote, se encuentra equipada con una antena dipolo de 5dBi y un XBee S1, el nodo estación base, se encuentra equipado con una antena de 5dBi y un XBee S1, utilizando el software XCTU, y ejecutando la herramienta "Radio range test" que permite verificar el rango de un enlace de radio mediante el envío de un conjunto de paquetes de datos de usuario, esperando el mismo número de paquetes de respuesta, dentro de un tiempo específico, de tal manera se comprueba si existe la pérdida de algún paquete a diferentes distancias.

La zona elegida para realizar esta prueba es en la avenida Barcelona y avenida Turunuma sitio donde se encuentra ubicado el "Sistema Integrado de Seguridad ECU 911" de la ciudad de Loja - Ecuador. Se instala de manera provisional el equipo Waspmote a una altura de 8 metros como se puede apreciar en la figura 4.1.

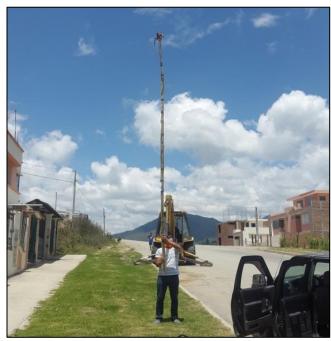


Figura 4.1. Instalando equipo Waspmote. Fuente: Imagen propia de los autores.

Se ha seleccionado esta ubicación por la distancia que podemos alcanzar con línea de vista directa, que se puede observar en la figura 4.2, 4.3 y 4.4, se alcanza 501,62 metros aproximadamente.

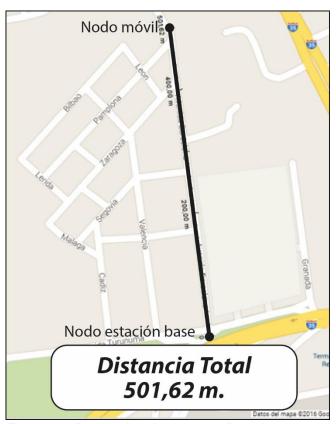


Figura 4.2. Prueba de cobertura, Av. Barcelona. Fuente: Imagen propia de los autores.

Figura 4.3. Línea de vista, Av. Barcelona S-N. Fuente: Imagen propia de los autores.

Figura 4.4. Línea de vista, Av. Barcelona N-S. Fuente: Imagen propia de los autores.

Se inicia la prueba, comprobándose la recepción correcta de los paquetes a diferentes distancias, 100m, 300m y 500m, que en las especificaciones de los Xbee utilizados, es el máximo alcance que se obtiene.

Distancia 100 metros.

Paquetes enviados 100, paquetes recibidos 100, ningún paquete perdido, se puede apreciar en la figura 4.5.

Figura 4.5. Prueba de cobertura 100 metros de distancia. Fuente: Imagen propia de los autores.

Distancia 300 metros.

Paquetes enviados 100, paquetes recibidos 100, ningún paquete perdido, se puede apreciar en la figura 4.6.

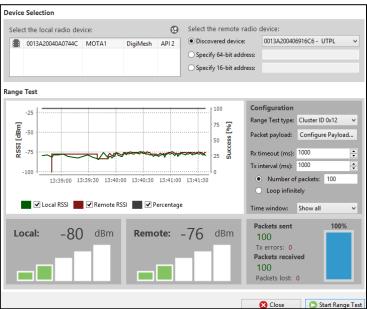


Figura 4.6. Prueba de cobertura 300 metros de distancia. Fuente: Imagen propia de los autores.

Distancia 500 metros.

Paquetes enviados 100 paquetes recibidos 100, ningún paquete perdido se puede apreciar en la figura 4.7.

Figura 4.7. Prueba de cobertura 500 metros de distancia.

Fuente: Imagen propia de los autores.

Distancia 600 metros.

Paquetes enviados 100, paquetes recibidos 81, errores de transmisión 18, paquetes perdidos 2, con esto se comprueba que a medida que se supera los 500 metros de distancia se tiene errores de transmisión y pérdida de paquetes como se puede apreciar en la figura 4.8.

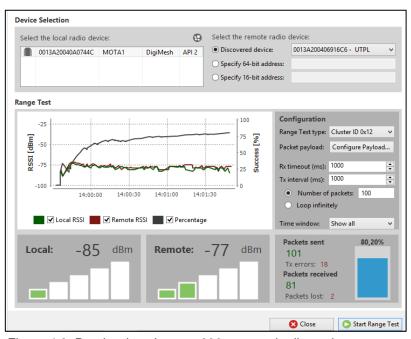


Figura 4.8. Prueba de cobertura 600 metros de distancia.

4.3. Verificación de interferencia usando el VANT.

Se realiza esta prueba, para comprobar, si existe interferencia entre los equipos Xbee del sistema de calidad de aire, y la comunicación del VANT con su control remoto, ya que ambos dispositivos utilizan la frecuencia de 2.4GHz, se realiza esta prueba en el campus de la Universidad Técnica Particular de Loja - Ecuador, el VANT se encuentra a una altura de 50 metros como se puede apreciar en la figura 4.9.

Figura 4.9. Prueba en VANT 50m. de altura.

Fuente: Imagen propia de los autores.

El nodo estación base se ubicó a una distancia de 476,54 metros como se observa en la figura 4.10. Obteniendo los resultados de la figura 4.11 en donde se observa que no existe interferencia alguna, receptando los 100 paquetes enviados.

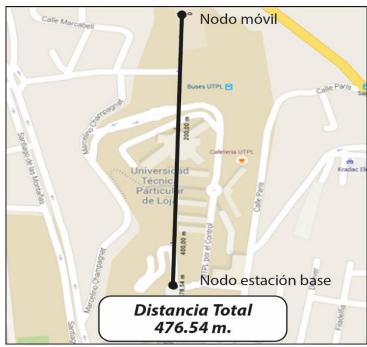


Figura 4.10. Prueba, campus UTPL. Fuente: Imagen propia de los autores.

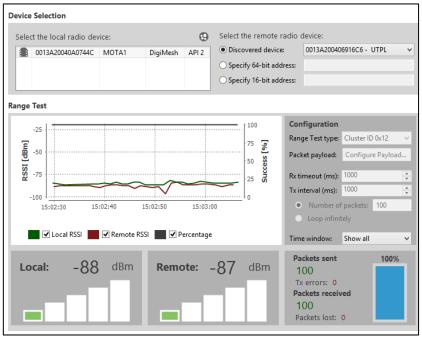


Figura 4.11. Pruebas de cobertura VANT Fuente: Imagen propia de los autores.

4.4. Test de autonomía de vuelo del VANT.

Al incorporarle mayor peso al VANT, provoca que los rotores ejerzan mayor fuerza para poder elevarlo, por lo tanto el consumo de corriente aumenta, disminuyendo su autonomía de vuelo. Se realizó pruebas de vuelo con la plataforma de sensores de gases colocada en el VANT como se aprecia en la figura 4.12, a diferentes alturas para comprobar el tiempo de autonomía que tiene el VANT con el peso agregado.

Figura 4.12. Pruebas de autonomía VANT. Fuente: Imagen propia de los autores.

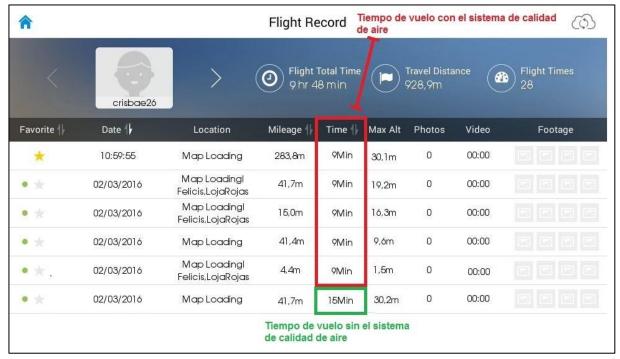


Figura 4.13. Registro de vuelo, control VANT.

Fuente: Imagen propia de los autores.

La autonomía del VANT sin peso agregado es de 15 minutos, como se observa en la figura 4.13; con el peso agregado, el tiempo de vuelo es de 9 minutos, se realizó la prueba a una altura de 30, 19, 16, 9.6 y 1.5 metros. Con esta prueba se concluye que, con el peso agregado la autonomía del VANT se disminuye en un 40%, de 15 minutos se disminuye a 9 minutos.

4.5. Test de medidas de sensores.

Se realizan las pruebas de funcionamiento de la placa de sensores de gases, en un periodo de 24 horas durante el mes de Enero en el día 23 comenzando a las 00:00:30 y terminando a las 23:59:30, se ubicó el equipo en la calle Nicolás García entre Teniente Maximiliano y Mercadillo de la ciudad de Loja- Ecuador se somete el equipo a realizar medidas con intervalos de 60 segundos para comprobar la funcionalidad del mismo, los datos son almacenados en un fichero Excel que presenta el aspecto que se observa en la tabla 4.1, la tabla completa se encuentra en los anexos de este documento en la sección "D".

Tabla 4.1. Muestra de fichero Excel con los datos almacenados.

Inicio de prueba	N°	DD/ MM/ AA	Hora	Bat %	Temp °C	Hum %HR	O ₂ %	CO2 ppm	CO ppm	Polvo mg/m ³	Longitud (°)	Latitud (°)	Altura (msnm)
	1	23/01 /2016	00:00:30	84	17,7	92	19.7	375	47,9	0,027	-3,999572	-79,206	1845
	2	23/01 /2016	00:01:30	84	17,7	92	19.7	377	47,9	0,027	-3,999572	-79,206	1845
	3	23/01 /2016	00:02:30	84	17,6	92	19.7	376	53,1	0,027	-3,999572	-79,206	1845
	4	23/01	00:03:30	84	17,7	92	19.7	376	53,1	0,027	-3,999572	-79,206	1845

		/2016											
	5	23/01 /2016	00:04:30	84	17,7	92	19.5	376	53,1	0,027	-3,999572	-79,206	1845
	6	23/01 /2016	00:05:30	84	17,7	92	19.5	376	53,1	0,027	-3,999572	-79,206	1845
	7	23/01 /2016	00:06:30	84	17,7	92	19.5	376	53,1	0,027	-3,999572	-79,206	1845
	8	23/01 /2016	00:07:30	84	17,7	92	19.6	377	53,1	0,027	-3,999572	-79,206	1845
Toma de muestras	9	23/01 /2016	00:08:30	84	17,7	92	19.6	377	53,1	0,027	-3,999572	-79,206	1845
cada 60 segundos	10	23/01 /2016	00:09:30	84	17,7	92	19.6	377	54,7	0,027	-3,999572	-79,206	1845
Medidas	11	23/01 /2016	00:10:30	84	17,7	92	19.6	377	54,7	0,027	-3,999572	-79,206	1845
en el exterior	12	23/01 /2016	00:11:30	84	17,6	92	19.3	377	54,7	0,027	-3,999572	-79,206	1845
	13	23/01 /2016	00:12:30	84	17,6	92	19.3	377	54,7	0,048	-3,999572	-79,206	1845
	14	23/01 /2016	00:13:30	84	17,6	92	19.3	377	54,7	0,048	-3,999572	-79,206	1845
	15	23/01 /2016	00:14:30	84	17,6	92	19.3	377	54,7	0,048	-3,999572	-79,206	1845

Fuente: Propia de los autores. Elaboración: Propia de los autores.

Se realiza un total de 1440 muestras, con estos datos, se disponen de gráficas con la evolución de las magnitudes de:

- Monóxido de carbono CO (ppm).
- Dióxido de carbono CO₂ (ppm).
- Temperatura (°C).
- Oxígeno O₂ (%).
- Humedad relativa (%HR).
- Partículas de polvo (mg/m³).

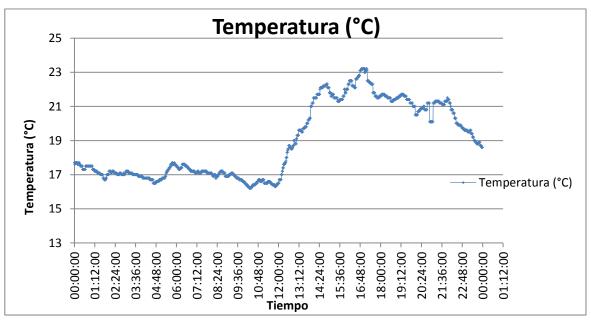


Figura 4.14. Valores de temperatura, periodo de 24 horas.

En la figura 4.14 se observa los valores de temperatura obtenidos durante el periodo de prueba, se observa que las temperaturas más bajas se dan durante el transcurso de las 00:00:30 hasta las 12:30:00 de la mañana, pasando el medio día, la temperatura se incrementa, siendo la temperatura más alta 23.2°C registrada a las 16:52:30 hasta las 17:11:30.

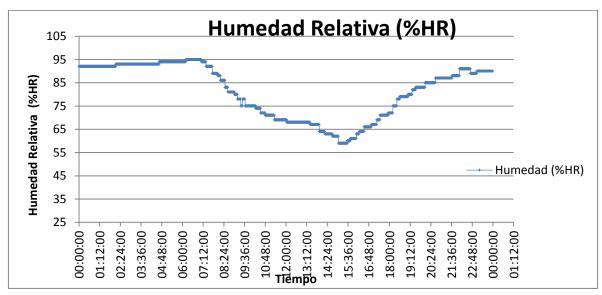


Figura 4.15. Valores de humedad relativa, periodo de 24 horas.

Fuente: Imagen propia de los autores.

En la figura 4.15 se observa los valores de humedad relativa obtenidos durante el periodo de prueba, se puede apreciar como la humedad relativa disminuye conforme el día avanza y la temperatura aumenta, se registra una humedad relativa de 59% a las 15:03:30 hasta las 15:33:30, siendo esta la más baja.

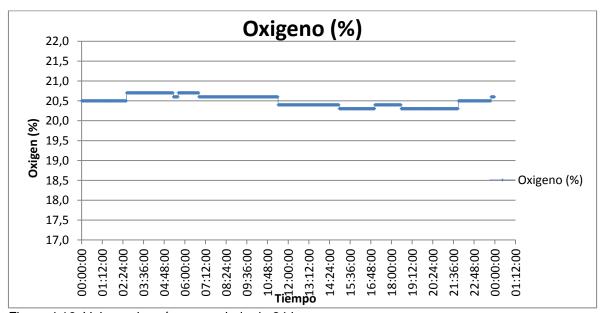


Figura 4.16. Valores de oxígeno, periodo de 24 horas.

En la figura 4.16 se observa los valores de oxígeno obtenidos durante el periodo de prueba, se aprecia que el oxígeno se mantiene prácticamente constante entre 20.2% y 20.7%, valores que se encuentran dentro de los parámetros normales de oxígeno.

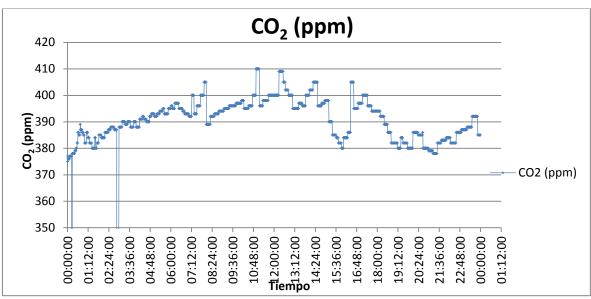


Figura 4.17. Valores de dióxido de carbono, periodo de 24 horas.

Fuente: Imagen propia de los autores.

En la figura 4.17 se observa los valores de dióxido de carbono obtenidos durante el periodo de prueba, se aprecia que en ciertos instantes del medio día se llega a medidas de 410 ppm de CO₂, esto asociado al aumento de vehículos o actividades diarias de la urbe, pero los valores medidos no superan la "Norma Ecuatoriana de Calidad de Aire", recordar que concentraciones de 350 a 450 se consideran normales.

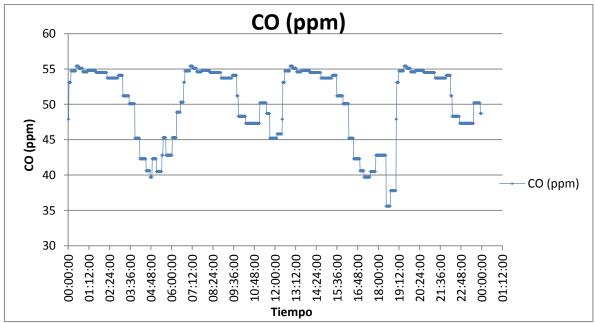


Figura 4.18. Valores de monóxido de carbono, periodo de 24 horas.

En la figura 4.18 se observa los valores de monóxido de carbono obtenidos durante el periodo de prueba, se aprecia que durante la prueba, valores de 55 ppm de CO son los puntos más elevados, pero no se supera la "Norma Ecuatoriana de Calidad de Aire" que establece que concentraciones mayores a 60 ppm de CO por más de 24 horas es una alerta.

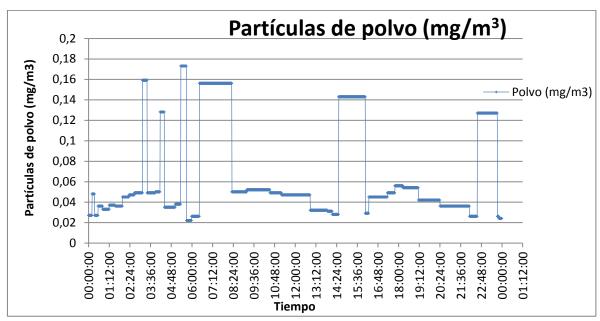


Figura 4.19. Valores de partículas de polvo, periodo de 24 horas.

Fuente: Imagen propia de los autores.

En la figura 4.19 se observa los valores de partículas de polvo obtenidos durante el periodo de prueba, se aprecia que durante la prueba existen ciertos picos en nuestras medidas, alcanzando hasta 0.17mg/m3, estos valores podrían estar asociados al paso de vehículos, las construcciones a los alrededores o la velocidad del viento, pero los valores medidos no superan la "Norma de Calidad de Aire del Ecuador".

4.6. Mediciones usando el vehículo aéreo no tripulado.

Se realizan mediciones para validar que la influencia del flujo de aire de los rotores, al usar un vehículo aéreo no tripulado, no es significativa en la medición de los sensores. Todas las mediciones se hicieron con el DRONE fijo a una altura de 8 metros, se puede apreciar en la figura 4.20. Se ha utilizado dos placas Waspmote con sistemas de calidad de aire, una colocada en el VANT, y otra en un soporte, ubicada a la misma altura para tener una referencia y poder comparar los datos obtenidos. Las pruebas se realizaron el día 25 del mes de marzo del 2016, comenzando las pruebas a las 10:05:30 y concluyendo a las 14:13:20; se logró 5 ciclos de prueba, con una duración de 9 minutos cada uno, tomando un total de 10 muestras en cada prueba.

Figura 4.20. Vehículo aéreo no tripulado en vuelo, con el sistema de calidad de aire Fuente: Imagen propia de los autores.

Figura 4.21. Ciclos de prueba Fuente: Imagen propia de los autores.

Se observa en la figura 4.22 los datos de temperatura obtenidos tanto, con la placa Waspmote sujeta al VANT, y con la otra placa Waspmote colocada a la misma altura, se comprueba que existe un error relativo de 1.79%.

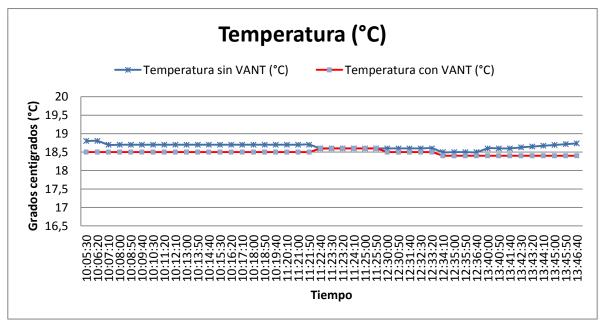


Figura 4.22. Valores sensado con y sin VANT, temperatura.

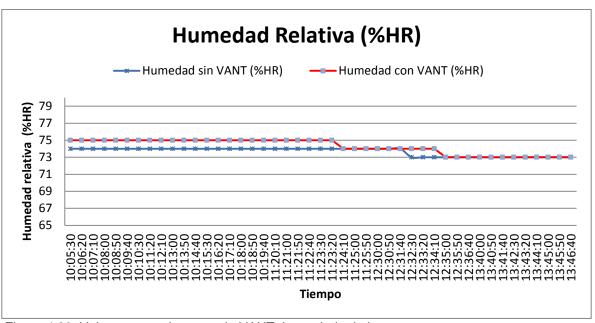


Figura 4.23. Valores sensado con y sin VANT, humedad relativa Fuente: Imagen propia de los autores.

Se observa en la figura 4.23 los datos de humedad relativa obtenidos tanto, con la placa Waspmote sujeta al VANT, y la placa colocada a la misma altura, el error relativo que existe es de 1.37%.

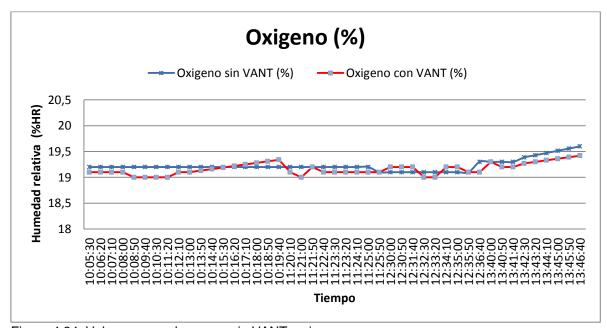


Figura 4.24. Valores sensados con y sin VANT, oxigeno.

Fuente: Imagen propia de los autores.

Se observa en la figura 4.24 los datos de oxígeno tanto con la placa Waspmote sujeta al VANT y la placa colocada a la misma altura, el error relativo que existe es de 1.04%.

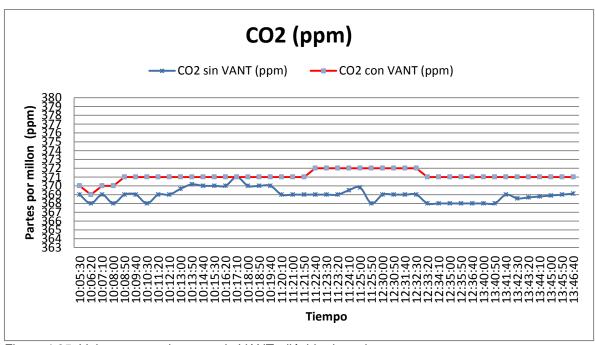


Figura 4.25. Valores censado con y sin VANT, dióxido de carbono.

Fuente: Imagen propia de los autores.

Se observa en la figura 4.25 los datos de dióxido de carbono obtenidos tanto con la placa Waspmote sujeta al VANT y la placa colocada a la misma altura, el error relativo que existe es de 1.09%.

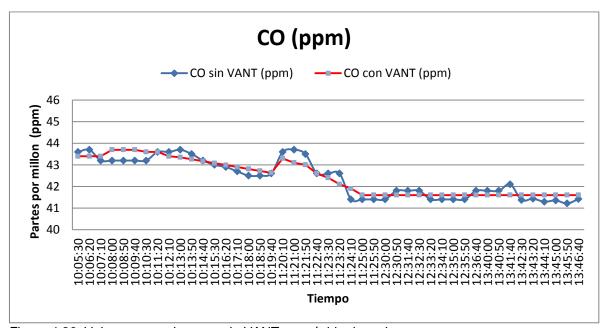


Figura 4.26. Valores censado con y sin VANT, monóxido de carbono. Fuente: Imagen propia de los autores.

Se observa en la figura 4.26 los datos de monóxido de carbono tanto con la placa Waspmote sujeta al VANT y la placa colocada a la misma altura, el error relativo que existe es de 1.37%.

No se realizan mediciones del sensor de partículas de polvo puesto que no se cuenta con otro sensor o equipo disponible para realizar una comparación de sus mediciones.

El error relativo máximo se presenta en el sensor de temperatura de 1.79%, en la mayoría de sensores no se supera un error relativo del 2%, aunque los rangos medidos son muy estrechos como para concluir absolutamente que el VANT no influye en las mediciones.

4.7. Mediciones junto con estación meteorológica.

Se realizó pruebas de la placa de sensores de gases, junto con la estación meteorológica que posee la Universidad Técnica Particular de Loja, de tal manera tener la referencia de: dirección del viento, presión atmosférica, temperatura ambiente y velocidad del viento, siendo este el más importante, como ya se mencionó en el capítulo 2, la velocidad del viento despeja partículas contaminantes, o a la vez, trae estas partículas de otros sectores. Las pruebas se realizaron en la parte posterior del campus universitario como se observa en la figura 4.27, en donde se encuentra la estación meteorológica "Wheather Meters" del fabricante Sparkfun [49].

Figura 4.27. Prueba de medición junto a estación meteorológica. Fuente: Imagen propia de los autores.

El equipo se instaló durante 6 horas y media desde las 12am hasta las 18:30pm con un intervalo de 60 segundos entre cada prueba, obteniendo los resultados que se observa en la tabla 4.2, se adjunta únicamente 25 muestras en esta sección, la tabla completa se adjunta en los anexos de este documento en la sección "D"

Tabla 4.2. Fichero Excel con los datos almacenados.

Inicio de prueba	N°	Temp	HR %	O ₂ (%)	CO2 ppm	CO ppm	Polvo mg/m3	Dirección del viento (°)	Presión atmosf érica	Temp ambiente	Velocidad del viento Km/h
	1	16,5	70	20,4	400	45,2	0,047	135	1026	16,8	3,2
	2	16,5	70	20,4	400	45,2	0,046	90	1026	16,8	3,4
	3	16,7	70	20,4	402	45,2	0,046	0	1026	17	0,2
	4	16,7	70	20,4	403	45,2	0,045	0	1026	17	2,8
	5	16,7	68	20,4	403	45,2	0,045	0	1026	17	0,2
	6	16,7	68	20,4	403	45,2	0,045	0	1025,9	17	1
	7	16,7	68	20,4	404	45,2	0,043	315	1025,9	17	2,7
	8	16,7	68	20,4	404	45,8	0,043	270	1025,9	17	2,2
	9	16,7	68	20,4	404	45,8	0,042	0	1025,9	17	3,2
	10	16,7	68	20,4	404	45,8	0,042	0	1025,9	17	2,6
	11	17	68	20,2	405	45,8	0,042	0	1025,9	17,2	2,2
	12	17	68	20,2	406	45,8	0,042	0	1025,9	17,2	2,8
	13	17	68	20,2	406	45,8	0,042	315	1026	17,2	5,8
	14	17,2	68	20,2	406	45,8	0,042	315	1026	17,1	5,2
	15	17,2	68	20,2	406	45,8	0,042	315	1026	17,1	5,6
Toma de muestras	16	17,4	68	20,2	406	45,8	0,042	315	1026	17,4	5,6
cada 60s	17	17,4	68	20,2	406	45,8	0,043	270	1026	17,6	4,4
Medidas	18	17,4	68	20,2	409	45,8	0,043	0	1026	17,6	2,8
en el exterior	19	17,6	68	20,2	409	45,8	0,043	135	1026	17,6	2,6
con	20	17,6	68	20,2	409	45,8	0,043	270	1025,9	17,6	7
estación	21	17,6	68	20,2	409	45,8	0,043	270	1025,9	17,8	4
	22	17,6	68	20,2	409	45,8	0,043	180	1025,9	17,8	2,7
	23	17,7	68	20,3	409	45,8	0,044	225	1025,9	17,8	0,6
	24	17,7	68	20,3	409	45,8	0,044	270	1025,9	17,8	2,1
	25	17,7	68	20,3	409	45,8	0,044	0	1025,9	17,9	3,5

Fuente: Propia de los autores. Elaboración: Propia de los autores.

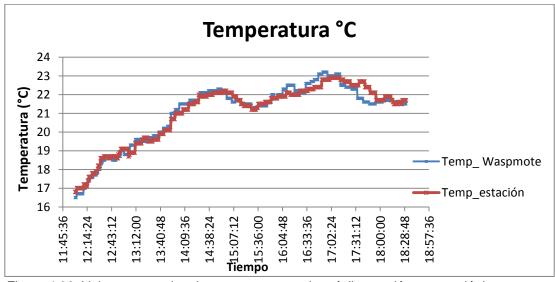


Figura 4.28. Valores sensados de temperatura, nodo móvil- estación meteorológica. Fuente: Imagen propia de los autores.

Se observa en la figura 4.28 los valores medidos de temperatura de la placa de sensores de Waspmote y de la estación meteorológica, se observa que los valores medidos únicamente se diferencian por algunos decimales, esto lo podemos asociar a que la estación meteorológica posee equipos más exactos.

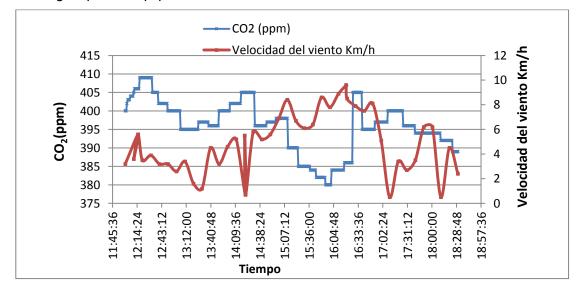


Figura 4.29. Valores medidos, dióxido de carbono CO₂.

Fuente: Imagen propia de los autores.

Se observa en la figura 4.31 los valores medidos de dióxido de carbono, se aprecia que las mediciones disminuyen, cuando la velocidad del viento es mayor, bordeando los 8 a 10 Km/h, esto asociado a que la velocidad del viento limpia las partículas de la zona. Se observa el mismo fenómeno en la figura 4.32 en las mediciones del monóxido de carbono.

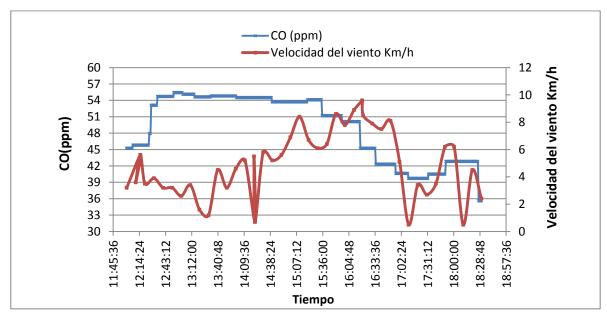


Figura 4.30. Valores medidos, monóxido de carbono CO₂.

Se observa en la figura 4.33 como el sensor de partículas de polvo presenta una variación considerable de un punto a otro, esto seguramente asociado a las partículas que arrastra el viento desde otras zonas hacia el punto de prueba.

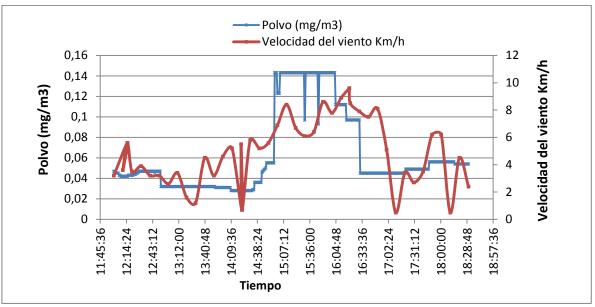


Figura 4.31. Valores medidos, partículas de polvo.

Fuente: Imagen propia de los autores.

4.8. Mediciones en diferentes puntos de la ciudad de Loja - Ecuador.

Se realizó mediciones en diferentes puntos de la ciudad de Loja, usando el VANT, como se puede observar en la figura 4.34, con la finalidad de realizar mediciones de la calidad del aire en puntos críticos de la ciudad, la prueba se realizó durante el mes de marzo en los días 29, 30 y 31 del año 2016, a las 12:00 horas, a una altura de 45m, con un intervalo de medición de 50 segundos, durante 9 minutos que es la autonomía del VANT.

Figura 4.32. VANT, junto con el sistema de calidad de aire.

Figura 4.33. Mediciones VANT, Plaza de la Independencia "San Sebastian". Fuente: Imagen propia de los autores.

Se realizó mediciones en la Plaza de la Independencia "San Sebastián" de la ciudad de Loja – Ecuador el dia 29 de Marzo del 2016 a las 12:00 horas con un intervalo de medición de 50 segundos, durante 9 minutos, en la figura 4.35 se observa los puntos por donde sobrevoló el VANT y las mediciones realizadas. En la figura 4.36 se observa una foto realizada con el VANT.

Figura 4.34. Plaza de la Independencia "San Sebastián" Loja – Ecuador. Fuente: Imagen propia de los autores.

En la figura 4.37 se observa, los valores máximos alcanzados de las diferentes variables medioambientales en la Plaza de Independencia "San Sebastián", se observa una temperatura de 18.3°C, una humedad relativa de 65%, un valor de oxígeno de 19.3% todos

estos considerados dentro de los valores normales, las concentraciones de monóxido y dióxido de carbono se encuentran dentro de los valores establecidos como normales en la "Norma Ecuatoriana de Calidad de Aire".

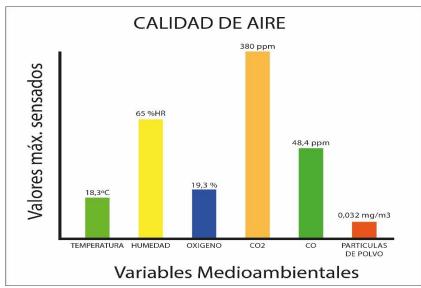


Figura 4.35. Calidad de aire Plaza Independencia "San Sebastian" Loja – Ecuador.

Fuente: Imagen propia de los autores.

Figura 4.36. Mediciones VANT, Parque Central Fuente: Imagen propia de los autores.

Se realizó mediciones en el Parque Central de la ciudad de Loja – Ecuador el día 30 de Marzo del 2016 a las 12:00 horas con un intervalo de medición de 50 segundos, durante 9

minutos, en la figura 4.38 se observa los puntos por donde sobrevoló el VANT y las mediciones realizadas.

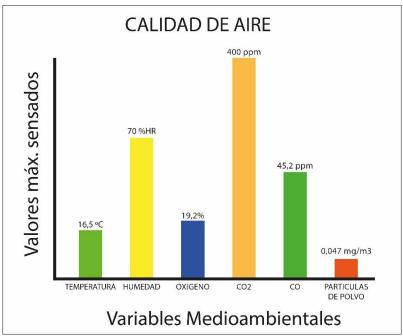


Figura 4.37. Calidad de aire, Parque central Loja – Ecuador. Fuente: Imagen propia de los autores.

En la figura 4.39 se observa los valores máximos alcanzados de las diferentes variables medioambientales en el Parque Central de la ciudad de Loja - Ecuador, se observa una temperatura de 16.5°C una humedad relativa de 70% y un valor de oxígeno de 19.2%, las concentraciones de monóxido y dióxido de carbono se encuentran dentro de los valores establecidos como normales en la "Norma Ecuatoriana de Calidad de Aire".

Figura 4.38. Mediciones VANT, Parque "Simón Bolívar" Fuente: Imagen propia de los autores.

Se realizó mediciones en el Parque "Simón Bolívar" de la ciudad de Loja – Ecuador el día 31 de Marzo del 2016 a las 12:00 horas con un intervalo de medición de 50 segundos, durante 9 minutos, en la figura 4.40 se observa los puntos por donde sobrevoló el VANT y las mediciones realizadas.

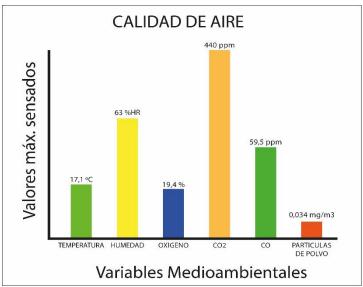


Figura 4.39. Calidad de aire, Parque "Simón Bolívar" Fuente: Imagen propia de los autores.

En la figura 4.41 se observa los valores máximos alcanzados de las diferentes variables medioambientales en el Parque "Simón Bolívar" de la ciudad de Loja, se observa una temperatura de 17.3°C una humedad relativa de 63% y un valor de oxígeno de 19.4% considerado dentro de los valores normales, las concentraciones de monóxido y dióxido de carbono se encuentran dentro de los valores establecidos como normales en la "Norma Ecuatoriana de Calidad de Aire"

4.9. Resolución espacial que se cubre.

El VANT con el sistema de calidad de aire, posee una autonomía de vuelo de 9 minutos; una velocidad de vuelo horizontal de 20m/s en condiciones donde la velocidad de viento es menor a 10m/s. Con estas condiciones, el sistema de calidad de aire, con el VANT, cubre un área de 6.25Km² con un perímetro de 10Km.

La resolución en tiempo de los datos adquiridos es de 50 segundos, este tiempo se lo definió en base al tiempo de respuesta que tiene cada sensor, ya que estamos sujetos a los 9 minutos de vuelo del VANT, tratando de tomar el mayor número de muestras en ese tiempo.

4.10. Comprobación almacenamiento de datos en servidor.

Realizadas todas las pruebas en diferentes escenarios se comprueba que los datos se hayan almacenado en el servidor de "Ubidots" con su respectiva variable como se aprecia en la figura 4.42.

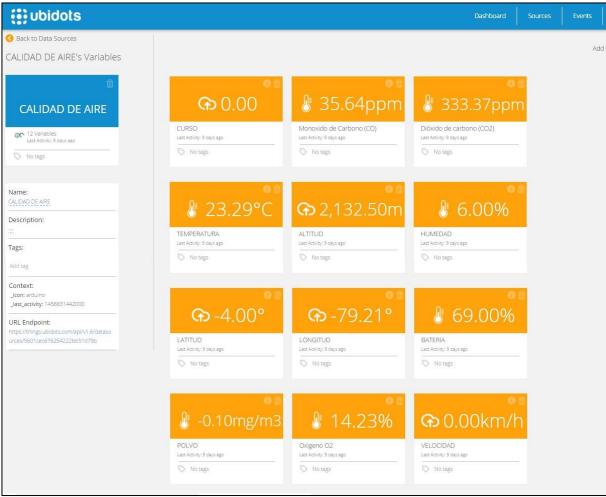


Figura 4.40. Datos almacenados en servidor Ubidots.

CONCLUSIONES

- Se ha realizado un estudio de tecnologías actuales de sensores, sistemas de comunicación, procesamiento y trabajos relacionados, con lo que se definió los componentes de hardware y software adecuados para cumplir con los objetivos de este trabajo de titulación. También, mediante estudios ya realizados, acerca de la aerodinámica de VANTs, se determinó la ubicación de los sensores.
- Para la implementación del nodo móvil se usa la plataforma Waspmote debido a que es una tecnología abierta, permitiendo integrar sensores que no pertenecen a la misma. También, se modificaron las librerías necesarias para el acople y funcionamiento del sensor de partículas de polvo.
- Se ha logrado diseñar un circuito electrónico en una placa de adaptación para que el sensor de partículas de polvo se acople a la tarjeta Waspmote y no interfiera con el funcionamiento de los demás sensores del sistema.
- Se ha diseñado la estructura adecuada, utilizando software de diseño en 3D, logrando un soporte que se integra al VANT en un punto, donde no afecte el centro de gravedad. Brindando una estructura de protección a los módulos de sensores, comunicación, procesamiento y de abastecimiento de energía. Esta estructura no interfiere con las mediciones de los sensores.
- Se ha desarrollado una interfaz gráfica de usuario, empleando el software LabView; permitiendo al usuario observar las variables de calidad de aire en tiempo real al establecer la comunicación entre el nodo móvil (sensores) y la estación base. Adicionalmente, se visualiza la ubicación del nodo móvil con la utilización de los recursos de Google Maps y de un GPS; y la función de extraer la información en un archivo de Excel para su posterior análisis.
- Se ha logrado desarrollar una aplicación para los dispositivos móviles Android, con el fin de que usuarios remotos puedan visualizar los datos obtenidos de los sensores, la ubicación del nodo móvil e información de batería mediante el acceso al servidor de Ubidots, que es donde la estación base envía los datos.
- Se ha seleccionado el protocolo Digimesh debido a la flexibilidad que brinda a la hora de expandir la red y tener la posibilidad de incluir nuevos nodos que recolecten información meteorológica de las zonas de estudio, sin la necesidad de configurar y modificar la red, para futuros proyectos.
- Se ha conseguido realizar un sistema de medición de variables medioambientales que permite determinar la calidad de aire de una zona utilizando un vehículo aéreo no tripulado y mediante el establecimiento de un enlace inalámbrico entre el nodo móvil y la estación base que emplea el protocolo de comunicación DigiMesh, se consigue enviar información en tiempo real que se visualiza en una aplicación de escritorio y para dispositivos móviles.

- Se ha comprobado que el peso agregado del sistema de calidad de aire, al vehículo aéreo no tripulado disminuye su autonomía de vuelo de 15 minutos a 9 minutos. Limitando a realizar estudios con un área máxima de 6.25Km², en condiciones donde la velocidad es de 20m/s, y a una altura de 45m para evitar los árboles, cables de alta tensión y edificios cercanos a los lugares de las pruebas realizadas. El recorrido máximo fue calculado teniendo en cuenta que el nodo móvil almacena los datos medidos, mas no son enviados al nodo estación base, debido al alcance de los módulos de comunicación que abarcarían un área de 0.785Km² con un diámetro de 1Km.
- Se ha comprobado que la corriente de aire formada por las hélices, genera un error de no mayor al 2%, en las mediciones realizadas por el sistema calidad de aire, en los escenarios y rangos medidos, en los cuales se realizó las pruebas.
- Se ha logrado comprobar que los valores de las variables medidas por el sistema calidad de aire, en la ciudad de Loja – Ecuador se encuentra dentro de los valores recomendados por la OMS en los puntos específicos donde se realizaron las pruebas.

RECOMENDACIONES

- Libelium está en constante desarrollo, se recomienda comprobar la versión de IDE que se utiliza junto con la API, debido a las actualizaciones que existen, algunos equipos no son compatibles con versión anteriores, con lo que se pueden generar errores al momento de su programación.
- Durante el desarrollo de este trabajo de titulación, Libelium lanzó al mercado la placa "Gases Pro Sensor Board" una versión mejorada de la utilizada, brindando la posibilidad de integrar 16 sensores de gases a diferencia de la versión anterior que integra 12, característica que se podría aprovechar en un futuro.
- Si se desea llegar a un enlace de comunicación con una distancia mayor a 500 metros se deben reemplazar los módulos XBee S1 a unos que transmitan a mayor distancia, como por ejemplo los módulos XBee S1 Pro.
- Es necesario que el manejo de los equipos Waspmote sea de sumo cuidado, posee pines y conectores frágiles que al momento de desarrollar el código se manipula de manera repetida; así como también, el tener que mantener siempre la batería conectada y en movimiento daña el conector.
- Para trabajar con sensores o módulos que no pertenezcan a la plataforma Waspmote se debe modificar las librerías internas del IDE, tomando en cuenta los pines que se utilizan de tal forma que no se modifique ninguna otra variable.
- La persona a cargo del manejo del VANT debe estar calificada debido a la dificultad y peligro que presentan estos al momento de sobrevolar zonas urbanas.
- Para abarcar zonas de mayor distancia se recomienda utilizar un VANT que posea una autonomía de vuelo mayor y que permita llevar una mayor carga útil. También la posibilidad de disminuir el peso del sistema de sensores de gases, ayudaría para aumentar la autonomía de vuelo y por ende poder abarcar zonas más extensas.

BIBLIOGRAFÍA

- [1] F. Rojas, «Prefectura de Loja,» 2015 Abril 2015. [En línea]. Available: http://www.prefecturaloja.gob.ec/?p=2948. [Último acceso: 1 Abril 2016].
- [2] Ministerio del Ambiente, Plan Nacional de la Calidad de Aire, Quito: Ministerio del Ambiente, 2013.
- [3] M. Semmartin, «Facultad de Agronomia, Universidad de Buenos Aires,» 16 Marzo 2015. [En línea]. Available: http://www.agro.uba.ar/users/semmarti/Atmosfera/contatmosf.pdf. [Último acceso: 29 Noviembre 2015].
- [4] A. García, Optimización del Diseño de Redes de Vigilancia y Control de la Calidad del Aire y su Aplicacióon en Andalucía, Sevilla, 2014.
- [5] E. Samper, «Blog de Medicina, Limites en el cuerpo humano,» [En línea]. Available: http://medtempus.com/archives/los-limites-extremos-del-cuerpo-humano/. [Último acceso: 30 Noviembre 2015].
- [6] M. Gobierno, «SEMARNAT,» 25 Septiembre 2013. [En línea]. Available: http://www.semarnat.gob.mx/archivosanteriores/informacionambiental/Documents/05_serie/yelmedioambiente/5_contaminacion_v08.pdf. [Último acceso: 30 Noviembre 2015].
- [7] Organización Mundial de la Salud (OMS), «Salud pública y medio ambiente,» Ginebra, Suiza, 2013.
- [8] Instituto Nacional de Ecologia y Cambio Climatico (INECC), «Fuentes de Contaminación del Aire,» Mexico, 2014.
- [9] J. F. Rodríguez, «Biblioteca virtual de desarrollo sostenible y salud ambiental,» 2009. [En línea]. Available: http://www.bvsde.paho.org/bvstox/fulltext/toxico/toxico-02a9.pdf. [Último acceso: 1 Diciembre 2015].
- [10] J. L. Inche, «Gestion de la calidad del aire: Causas, efectos y soluciones,» Lima, pp. 59-61.
- [11] Secretaria del Medio Ambiente, «Red Automática de Monitoreo Atmosférico de la Zona Metropolitana del Valle de Toluca,» 2014. [En línea]. Available: http://portal2.edomex.gob.mx/rama/contaminacion_atmosferica/caracteristicas_contaminante s/index.htm. [Último acceso: 2 Diciembre 2015].
- [12] UTN, «Gases de Minas,» 2014.
- [13] Organizacion Mundial de la Salud "OMS", «Guías y Normas de Calidad del Aire en Exteriores,» OMS, 2014.

- [14] Ministerio del Ambiente, «Norma Ecuatoriana de Calidad de Aire,» Quito, 2011.
- [15] N. d. C. García Guzman, «Universidad Politécnica del Centro UPC,» 30 Enero 2014. [En línea]. Available: http://es.slideshare.net/NancyGarciaGuzman/monitoreode-la-calidad-del-aire. [Último acceso: 3 Mayo 2016].
- [16] Ministerio de Salud Pública del Ecuador, «www.salud.gob.ec,» 2014. [En línea]. Available: http://www.salud.gob.ec/direccion-nacional-de-vigilancia-epidemiologica/. [Último acceso: 10 Marzo 2016].
- [17] C. Páez Pérez, «Flacso Ecuador,» 2009. [En línea]. Available: http://www.flacsoandes.edu.ec/web/imagesFTP/10088.ContaminacionQuito.pdf. [Último acceso: 10 Marzo 2016].
- [18] Secretaría de Ambiente, «Quito Ambiente,» Abril 2015. [En línea]. Available: http://www.quitoambiente.gob.ec/ambiente/images/Secretaria_Ambiente/red_monitoreo/inf ormacion/iqca_2014.pdf. [Último acceso: 4 Abril 2016].
- [19] GAD Municipal de Cuenca, «Empresa Pública Municipal de Movilidad, Transito y Transporte de Cuenca,» 2014. [En línea]. Available: http://www.emov.gob.ec/?q=content/red-de-monitoreode-la-calidad-del-aire. [Último acceso: 2 Abril 2016].
- [20] El Telégrafo, «El Telégrafo en Línea,» 31 Marzo 2016. [En línea]. Available: http://www.eltelegrafo.com.ec/noticias/regional-centro/1/ambato-mide-calidad-del-aire-con-4-equipos. [Último acceso: 2 Abril 2016].
- [21] National Instruments, «National Instruments,» 22 Abril 2016. [En línea]. Available: http://www.ni.com/white-paper/7142/es/. [Último acceso: 5 Diciembre 2015].
- [22] D. R. Egea, Posicionamiento con una red de sensores inalámbricos (WSN): implementación para una aplicación real, Barcelona.
- [23] Libelium, «Waspmote Technical Guide,» Libelium Comunicaciones Distribuidas S.L., 2013.
- [24] F. Valenzuela Riquelme, «Redes de Sensores Inalámbricos y sus Aplicaciones,» Universidad Santiago de Chile, Santiago, 2012.
- [25] G. Ayala, A. Duarte, H. Castillo y A. Rodríguez, «Revista Ra Ximhai,» 3 junio 2014. [En línea]. Available: http://www.redalyc.org/pdf/461/46131111002.pdf. [Último acceso: 16 Diciembre 2015].
- [26] Digi International, «Wireless Mesh Networking Zigbee vs DigiMesh,» Minesota, 2013.
- [27] C. Saltillo, «PV-UAV,» Agosto 2014. [En línea]. Available: http://rc-saltillo.yolasite.com/fpv-uav/que-significa-fpv-o-uav-. [Último acceso: 3 Abril 2016].

- [28] P. Haas, «Aerospace Research Central,» 25 Octubre 2014. [En línea]. Available: http://arc.aiaa.org/doi/abs/10.2514/6.2014-2272. [Último acceso: 26 Enero 2016].
- [29] J. Urquijo, «Basoinsa S.L Ingenieria medioambiental,» 5 Agosto 2014. [En línea]. Available: http://basoinsa.com/es/noticias/248-drones-contribucion-medioambiente. [Último acceso: 26 Enero 2016].
- [30] P. G. Bejerano, «ToDrone,» 13 Abril 2015. [En línea]. Available: http://www.todrone.com/monitorizacion-polucion-drones/. [Último acceso: 31 Enero 2016].
- [31] DroneShop, «DJI Inspire 1,» 15 Septiembre 2015. [En línea]. Available: http://droneshop.mx/producto/dji-inspire-1/. [Último acceso: 3 Febrero 2016].
- [32] J. García, «Desarrollo placa sensores para monitorización de gases tóxicos en tuneladora en escudo abierto,» Madrid, 2011.
- [33] ATS Intech, «Guia practica para monitoreo de gases peligrosos,» [En línea]. Available: http://www.atsintech.com/tablas//ISTBook.pdf. [Último acceso: 9 Diciembre 2015].
- [34] Industrial Scientific, «Sensores Electroquímicos,» 16 Marzo 2014. [En línea]. Available: http://www.indsci.es/servicios/capacitacion/educacion-general-sobre-gas/sensor-electroquimico/. [Último acceso: 8 Diciembre 2015].
- [35] K. Kalantar-zadeh, SENSORS, An Introductory Course, Melbourne, Victoria: Springer Science.
- [36] Industrial Scientific, The gas detection people, [En línea]. Available: http://www.indsci.es/servicios/capacitacion/educacion-general-sobre-gas/sensor-de-difusion-catalitica/. [Último acceso: 8 Diciembre 2015].
- [37] Testo Argentina S.A, «Academia Testo,» [En línea]. Available: http://www.academiatesto.com.ar/cms/absorcion-infrarroja-proceso-ir. [Último acceso: 11 Diciembre 2015].
- [38] Universidad de Castilla, «Sensores de gas,» [En línea]. Available: http://www.info-ab.uclm.es/labelec/solar/Otros/Domotica(2005)/Detector%20de%20gas%20y%20humo/Detector%20de%20gas.htm. [Último acceso: 12 Diciembre 2015].
- [39] Figaro, «Technical infromation for TGS2442,» Figaro USA Inc., Estados Unidos, 2014.
- [40] Figaro, «TGS 4161 for the detection of Carbon Dioxide,» Figaro USA, INC, Arlington, 2014.
- [41] Microchip, «MCP9700/9700A,» Microchip Technology Inc., Atlanta, 2015.
- [42] Sencera Co. Ltd, «808H5V5 humidity transmitter,» Sencera Co. Ltd, 2014.
- [43] Figaro, «Technical information for SK-25F,» Figaro Engineering Inc., Arlington, 2014.

- [44] SHARP Corporation, «Sensor de particulas de polvo GP2Y1010AU0F,» Sharp, 2006.
- [45] Libelium, «Redes de Sensores Inalámbricos,» [En línea]. Available: http://wsnblog.com/tag/waspmote/page/2/. [Último acceso: 5 Diciembre 2015].
- [46] J. J. Roldán, G. Joossen, D. Sanz, J. d. Cerro y A. Barrientos, «National Center for Biotechnology Information,» 2 Febrero 2015. [En línea]. Available: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4367361/#b32-sensors-15-03334. [Último acceso: 14 Febrero 2016].
- [47] I. Penkov y D. Alekssandrov, «International DAAAM Baltic Conference,» 19 Abril 2012. [En línea]. Available: http://innomet.ttu.ee/daaam_publications/2012/Aleksandrov.pdf. [Último acceso: 13 Febrero 2016].
- [48] R. T. Tabuchi Fukuhara, Diseño de un Vehículo Aéreo no Tripulado de cuatro rotores para una carga útil de 1kg, Lima, 2015.
- [49] Sparkfun, «Weather Meters,» [En línea]. Available: https://www.sparkfun.com/products/8942. [Último acceso: 3 Mayo 2016].
- [50] J. Montes y A. Geraldo, «Redes de Sensores,» 15 Julio 2012. [En línea]. Available: http://redesdesensoreswsn.blogspot.com/2012/07/redes-de-sensores-inalambricas-wsn-upt.html. [Último acceso: 5 Diciembre 2015].
- [51] E. Haba Fuentes, *Red de Sensores inalñambricos de largo alcance para medicion de la calidad del aire*, Sevilla, 2013.
- [52] Libelium, Gases 2.0 Technical Guide, 4.1 ed., Libelium Comunicaciones Distribuidas S.L., 2013, p. 50.
- [53] J. Alavés Sempere, Monitorización remota de las condiciones ambientales de un entorno delimitado, Alicante, 2015.
- [54] C. R. García Cruz, Implementación de una Red de Monitoreo Metereológico con sensores Waspmote, 2015.
- [55] SolidWorks, «SolidWorks Corporations,» 2016. [En línea]. Available: http://www.solidworks.es/default.htm. [Último acceso: 14 Febrero 2016].
- [56] Arduino, «Arduino,» Enero 2015. [En línea]. Available: https://www.arduino.cc/en/Main/ArduinoBoardUno. [Último acceso: 11 Marzo 2016].
- [57] DF Robot, «Drive the Future,» 2015. [En línea]. Available: http://www.dfrobot.com/index.php?route=product/product&product_id=1023#.VuLy9fnhDIV. [Último acceso: 11 Marzo 2016].

- [58] DF Robot, «Drive the future,» [En línea]. Available: http://www.dfrobot.com/index.php?route=product/product&product_id=1023#.Vm8NjrjhDIW. [Último acceso: 14 Diciembre 2015].
- [59] Libelium, «Waspmote,» [En línea]. Available: http://www.libelium.com/products/waspmote/overview/. [Último acceso: 14 Dlciembre 2015].
- [60] Intelligenia Dynamics, «Vehículos aéreos no tripulados,» 2014. [En línea]. Available: http://www.iuavs.com/pages/aplicaciones_y_usos. [Último acceso: 26 Enero 2016].
- [61] SeedStudio, «Grove Gas Sensor(O₂),» 17 Febrero 2016. [En línea]. Available: http://www.seeedstudio.com/wiki/Grove_-_Gas_Sensor(O%E2%82%82). [Último acceso: 14 Diciembre 2015].
- [62] Recurso Nacional Canadiense de Seguridad y Salud Ocupacional CCSSO, «Principales riesgos de salud asociados con la respiración y el gas dióxido de carbono,» 2014.
- [63] Seeed WIKI, «Grove Gas Sensor(O₂),» 17 Febrero 2016. [En línea]. Available: http://www.seeedstudio.com/wiki/Grove_-_Gas_Sensor(O%E2%82%82). [Último acceso: 11 Marza 2016].
- [64] Arduino Tics, «Arduino,» [En línea]. Available: http://arduinodhtics.weebly.com/iquestqueacute-es.html. [Último acceso: 14 Diciembre 2015].
- [65] A. García, «Universidad Politécnica de Catalunya, Barcelonatech,» [En línea]. Available: http://upcommons.upc.edu/bitstream/handle/2099.1/7805/memoria.pdf. [Último acceso: 5 Diciembre 2015].
- [66] Figaro, «FIGARO ENGINEERING USA, INC,» [En línea]. Available: http://www.figarosensor.com/. [Último acceso: 3 Abril 2016].
- [67] Alphasense Air, «Alphasense Air "Sensors for air quality networks",» 2013. [En línea]. Available: http://www.alphasense.com/index.php/air/products/. [Último acceso: 3 Abril 2016].
- [68] Synkera, «Synkera Technologies, INC.,» 2015. [En línea]. Available: http://www.synkerainc.com/. [Último acceso: 3 Abril 2016].
- [69] Arduino, «Arduino USA,» 2016. [En línea]. Available: https://www.arduino.cc/. [Último acceso: 3 Abril 2016].
- [70] Sencera, «Sencera, Innovative Energy Conversion Systems,» 2016. [En línea]. Available: http://www.sencera.com/. [Último acceso: 4 Abril 2016].
- [71] Sharp, «Sharp Corporation,» 2016. [En línea]. Available: http://www.sharp-world.com/index.html. [Último acceso: 4 Abril 2016].

[72] Android Studio, «Android Studio Overview,» 2016. [En línea]. Available: http://developer.android.com/intl/es/tools/studio/index.html. [Último acceso: 4 Abril 2016].

ANEXOS

ANEXO A: VERIFICACION DE PESOS.

Placa Waspmote PRO V1.2.

Sensor de monóxido de carbono (CO) -TGS2442.

Placa de sensores de gases.

Placa 3G/GPRS.

Sensor de partículas de polvo-GP2Y1010AU0F

XBee - S1

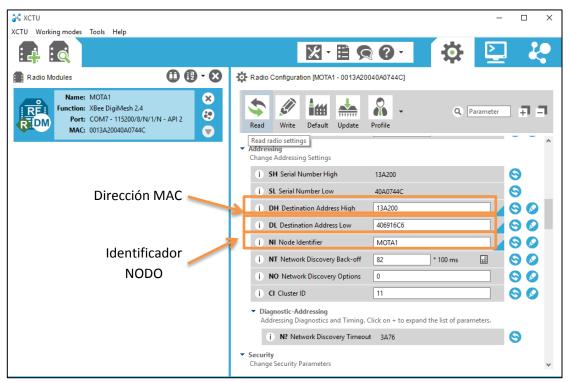
Batera placa Waspmote PRO V1.2

Antena omnidireccional.

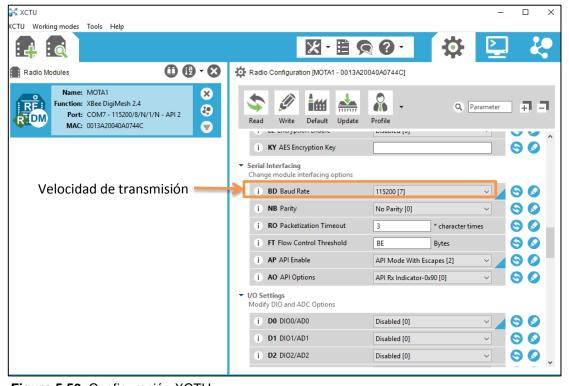
Antena 3G. Antena GPRS.

ANEXO B: CÓDIGOS.

Configuración módulos XBEE


Para la configuración de los módulos de comunicación Xbee se ha usado la herramienta XCTU de la empresa DIGI con la cual se establecen los parámetros necesarios para el funcionamiento de la red de sensores. Para una correcta comunicación entre los diferentes nodos se debe configurar diferentes parámetros pero específicos con los que aseguramos el funcionamiento de la red, estos son PAINID, canal de frecuencia, velocidad de transmisión, dirección de destino y modo de transmisión.

En la primera parte se modifica el PANID y el canal de frecuencia el cual debe ser el mismo en todos para que se encuentre en la misma red y de esta manera se puedan comunicar.


Figura 5.48. Configuración XCTU. **Fuente:** Imagen propia de los autores.

Luego la dirección de destino, en este caso se colocó la dirección del módulo receptor que se conectara al computador.

Figura 5.49. Configuración XCTU. **Fuente:** Imagen propia de los autores.

Y por ultimo se configura la velocidad de transmisión con la que trabajara la red.

Figura 5.50. Configuración XCTU. **Fuente:** Imagen propia de los autores

ANEXO C: DATOS DE EQUIPOS

Placa Waspmote PRO V1.2.

Hardware

4. Hardware

4.1. Modular Architecture

Waspmote is based on a modular architecture. The idea is to integrate only the modules needed in each device. These modules can be changed and expanded according to needs.

The modules available for integration in Waspmote are categorized in:

- ZigBee/802.15.4 modules (2.4GHz, 868MHz, 900MHz).
- GSM/GPRS Module (Quadband: 850MHz/900MHz/1800MHz/1900MHz)
- 3G/GPRS Module (Tri-Band UMTS 2100/1900/900MHz and Quad-Band GSM/EDGE, 850/900/1800/1900 MHz)
- GPS Module
- Sensor Modules (Sensor boards)
- Storage Module: SD Memory Card

4.2. Specifications

- Microcontroller: ATmega1281
- Frequency: 14.7456 MHz
- SRAM: 8KB
- EEPROM: 4KB
- FLASH: 128KB
- SD Card: 2GB
- Weight: 20gr
- Dimensions: 73.5 x 51 x 13 mm
- Temperature Range: [-10°C, +65°C]

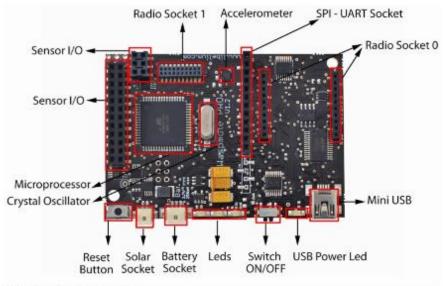


Figure: Main Waspmote components - Top side

-44- v5.1

Power signals:

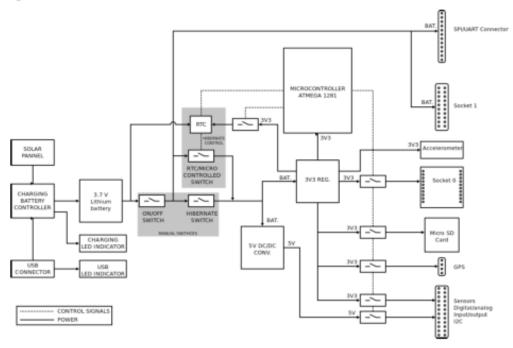


Figure: Waspmote block diagrams - Power signals

4.4. Electrical Data

Operational values:

Minimum operational battery voltage
 Maximum operational battery voltage
 USB charging voltage
 Solar panel charging voltage
 Battery charging current from USB 100 mA (max)
 Battery charging current from solar panel
 280 mA (max)

Absolute maximum values:

Voltage in any pin [-0.5 V, +3.8 V]
 Maximum current from any digital I/O pin 40 mA
 USB power voltage 7V
 Solar panel power voltage 18V
 Charged battery voltage 4.2 V

-46- v5.1

20. Energy Consumption

20.1. Consumption tables

Waspmote

ON	15mA
Sleep	55μΑ
Deep Sleep	55μΑ
Hibernate	0,06μΑ

XBee

	ON	SLEEP	OFF (Waspmote switches)	SENDING	RECEIVING
XBee 802.15.4 PRO	56,68mA	0,12mA	0μΑ	187,58mA	57,08mA
XBee ZigBee PRO	45,56mA	0,71mA	0μΑ	105mA	50,46mA
XBee 868	60,82mA		0μΑ	160mA	73mA
XBee 900	64,93mA	0,93mA	0μΑ	77mA	66mA

Bluetooth Module

ON	14 mA
OFF	0 mA
Scanning	40 mA
Sending	39 mA
Receiving	20 mA

GPS

ON (tracking)	32 mA
OFF (Waspmote switch)	0 μ A

GSM/GPRS

Connecting	~100mA
Calling	~100mA
Receiving Calls	~100mA
Transmitting GPRS	~100mA
SLEEP	1mA
OFF	~0µA

Hardware

3. Hardware

3.1. General Description

The Waspmote Gases 2.0 board has been designed to monitor environmental parameters such as temperature, humidity, atmospheric pressure and 14 different types of gases. It allows the inclusion of 7 gases sensors at the same time, the regulation of their power through a system of solid state switches and the amplification of the output signal of each one of them through a non-inverting amplification stage of a maximum gain of 101 controlled by a digital potentiometer configurable through the Inter-Integrated Circuit Bus, I2C).

The gases which can be monitored are:

- Carbon Monoxide CO
- Carbon Dioxide CO₂
- Molecular Oxygen O,
- Methane CH,
- Molecular Hydrogen H,
- Ammonia NH₁
- Isobutane C.H.,
- Ethanol CH,CH,OH
- Toluene C.H.CH.
- Hydrogen Sulphide H₂S
- Nitrogen Dioxide NO,
- Ozone O,
- Volatile Organic Compounds (VOC's)
- Hydrocarbons

3.2. Specifications

Weight: 20gr

Dimensions: 73.5 x 51 x 1.3 mm Temperature Range: [-20°C, 65°C]

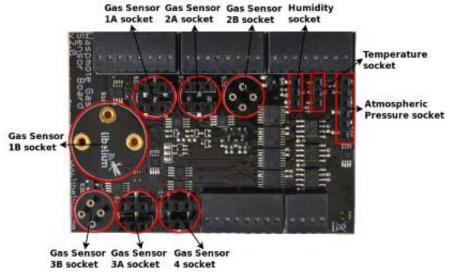


Figure 14: Upper side

-15- v4.1

In the figure below an image of the board with the sockets in it and the correspondence between its inputs and the sensor's pins is shown.

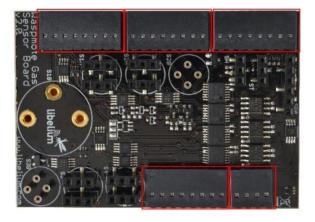


Figure 55: Image of the sockets for casing applications

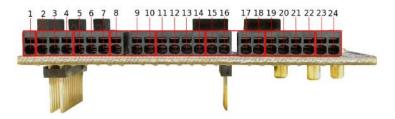


Figure 56: Image of the pin correspondence between the sockets and the sensors

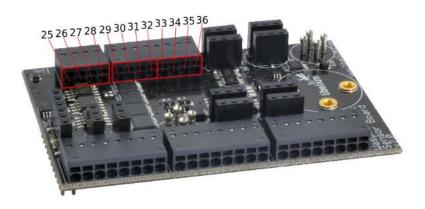


Figure 57: Image of the pin correspondence between the sockets and the sensors

-40- v4.1

TECHNICAL INFORMATION FOR TGS2442

an ISO9001/14001 company

Technical Information for Carbon Monoxide Sensors

The Figaro TGS2442 sensor is a new type thick film metal oxide semiconductor, screen printed sensor which offers miniaturization and utilizes pulse heating for achieving low power consumption. The TGS2442 displays high selectivity to carbon monoxide together with improved humidity dependency and durability.

Basic Information and Specifications	Page
Features	2
Applications	2
Structure	
Basic Measuring Circuit	2
Circuit & Operating Conditions	
Mechanical Strength	
Dimensions	
Operation Principle	4
Typical Sensitivity Characteristics	
Sensitivity to Various Gases	5
Temperature and Humidity Dependency	
Gas Response Pattern	6
Heater Voltage Dependency	
Initial Action	
Influence of Unenergized Storage	7
Reliability	
Interference Gas Test	8
Long-Term Stability	9
Corrosion Test	9
Variable Ambient Temperature Test	9
Humidity Test	10
Stability Tests	
Circuit Examples	
Basic Circuit Including Trouble Detection	11
Calibration and Temperature Compensation	
Marking and Packaging	13
See also Technical Brochure "Technical Information on Usage of	TGS Gas Sensors

IMPORTANT NOTE: OPERATING CONDITIONS IN WHICH FIGARO SENSORS ARE USED WILL VARY WITH EACH CUSTOMER'S SPECIFIC APPLICATIONS. FIGARO STRONGLY RECOMMENDS CONSULTING OUR TECHNICAL STAFF BEFORE DEPLOYING FIGARO SENSORS IN YOUR APPLICATION AND, IN PARTICULAR, WHEN CUSTOMER'S TARGET GASES ARE NOT LISTED HEREIN, FIGARO CANNOT ASSUME ANY RESPONSIBILITY FOR ANY USE OF ITS SENSORS IN A PRODUCT OR APPLICATION FOR WHICH SENSOR HAS NOT BEEN SPECIFICALLY TESTED BY FIGARO.

for Explosive/Toxic Gas Alarming".

TGS2442 is a UL recognized component in accordance with the requirements of UL2034. Please note that component recognition testing has confirmed long term stability in 15ppm of carbon monoxide, other characteristics shown in this brochure have not been confirmed by UL as part of component recognition.

Revised 07/07

TECHNICAL INFORMATION FOR TGS2442

1-5 Circuit & operating conditions

The following conditions should be maintained to ensure stable sensor performance:

Model number		TGS 2442	
Sensing element type		M1	
Standa	rd package		TO-5 metal can
Tang	et gases		Carbon monoxide
Typical de	etection range		30 ~ 1000 ppm
	Heater voltage cycle	VH.	VHH=4.8V±0.2V DC, 14ms VHL=0.0, 986ms
Standard circuit conditions	Circuit voltage cycle	Vc	Vc=0V for 995ms, Vc=5.0V±0.2V DC for 5ms
	Load resistance	FL	variable (≥10kΩ)
Electrical characteristics under standard test conditions	Heater resistance	Ян	$17\pm2.5\Omega$ at room temp.
	Heater current	lin .	approx. 203mA(in case of Vier)
	Heater power consumption	Рн	approx. 14mW (ave.)
	Sensor resistance	Rs	13.3ki2 ~ 133ki2 in 100ppm of carbon monoxide
	Sensitivity (change ratio of Rs)	β	0.13 ~ 0.31
	Test gas conditions		Carbon monoxide in air at 20±2°C, 65±5%RH
Standard test conditions	Circuit conditions		Same as Std. Circuit Condition (above)
	Conditioning period before test		2 days or more

Formula for calculation of sensor resistance:

$$Rs = \frac{Vc \times RL}{Vout} - RL$$

Sensitivity (change ratio of Rs) is calculated with two measured values of Rs as follows:

$$\beta = \frac{Rs (CO,300ppm)}{Rs (CO,100ppm)}$$

1-6 Mechanical Strength

The sensor shall have no abnormal findings in its structure and shall satisfy the above electrical specifications after the following performance tests:

Withstand Force - withstand force of 5kg in each (pin from base) direction

Vibration - frequency--10-500Hz (equiv. to 10G), duration-6 hours, x-y-z

direction

Shock - acceleration-100G, repeat 5

1-7 Dimensions (see Fig. 4)

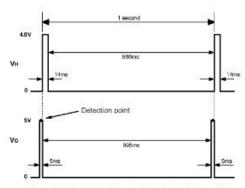
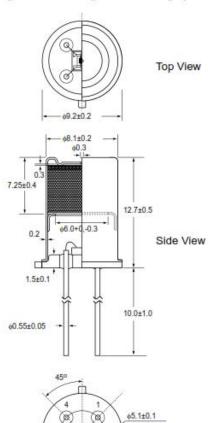



Figure 3 - Circuit voltage and heater voltage cycles

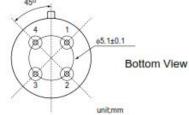


Figure 4 - Dimensions

Revised 07/07 3

TECHNICAL INFORMATION FOR TGS2442

3. Typical Sensitivity Characteristics

3-1 Sensitivity to various gases

Figure 7 shows the sensor's relative sensitivity to various gases. The Y-axis shows the ratio of sensor resistance in various gases (Rs) to the sensor resistance in 100ppm of CO (Ro).

As shown by Figure 7, TGS2442 shows very good sensitivity to CO since the sensitivity curve to CO shows a sharp drop in sensor resistance as CO concentration increases. In comparison, sensitivity to ethanol (C2H5OH) is very low as evidenced by the relatively flat slope of its sensitivity curve and high resistance values.

The amount of CO generated by cigarette smoke is roughly equivalent to 20ppm of CO when 10 cigarettes are smoked in a room of roughly 24 cubic meters in size. As a result, the influence of cigarette smoke itself would not be sufficient to cause the sensor to generate an alarm for residential detectors using TGS2442 which are normally calibrated to alarm at 100ppm of CO.

3-2 Temperature and humidity dependency

Figure 8a shows the temperature dependency of TGS2442. The Y-axis shows the ratio of sensor resistance for various CO concentrations under various temperature conditions (Rs) to the sensor resistance in 100ppm of CO at 50%RH (Ro).

Figure 8b shows the humidity dependency of TGS2442. The Y-axis shows the ratio of sensor resistance for various CO concentrations under various relative humidity conditions (Rs) to the sensor resistance in 100ppm of CO at 20°C.

An inexpensive way to compensate for temperature dependency to a certain extent would be to incorporate a thermistor in the detection circuit (*please refer to Section 5-2*).

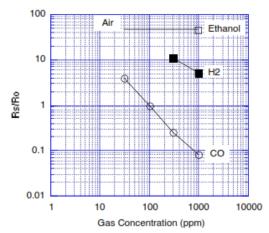


Figure 7 - Sensitivity to various gases (Ro = Rs in 100ppm of CO)

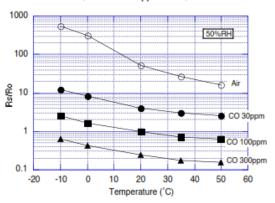


Figure 8a - Temperature dependency at 50%RH (Ro = Rs in 100ppm of CO at 20°C)

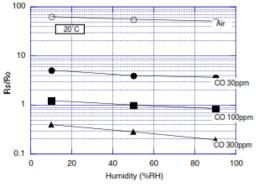


Figure 8b - Humidity dependency at 20°C (Ro = Rs in 100ppm of CO at 50%RH)

Revised 07/07 5

PRODUCT INFORMATION

TGS 4161 - for the detection of Carbon Dioxide

Features:

- * High selectivity to CO2
- * Compact size
- * Low dependency on humidity
- * Long life and low cost
- * Low power consumption

Applications:

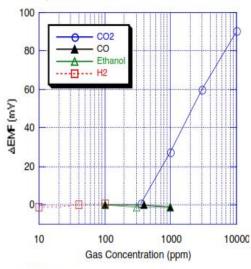
- * Indoor air quality control
- * CO2 monitors

TGS4161 is a new solid electrolyte CO₂ sensor which offers miniaturization and low power consumption. A range of 350~10,000ppm of carbon dioxide can be detected by TGS4161, making it ideal for indoor air control applications.

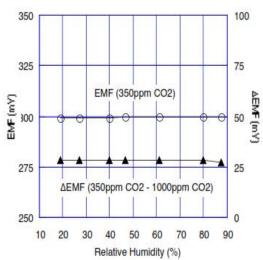
The CO_2 sensitive element consists of a solid electrolyte formed between two electrodes, together with a printed heater (RuO₂) substrate. By monitoring the change in electromotive force (EMF) generated between the two electrodes, it is possible to measure CO_2 gas concentration.

The top of the sensor cap contains adsorbent (zeolite) for the purpose of reducing the influence of interference gases.

TGS4161 exhibits a linear relationship between ∆EMF and CO₂gas concentration on a logarithmic scale. The sensor displays good long term stability and shows excellent durability against the effects of high humidity.


The figure below represents typical sensitivity characteristics of TGS4161. The Y-axis is indicated as Δ EMF which is defined as follows:

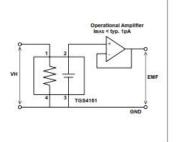
ΔEMF=EMF1 - EMF2 where EMF1=EMF in 350 ppm CO₂ EMF2=EMF in listed gas concentration **1 388416**


The figure below shows typical humidity dependency of TGS4161. Again, the Y-axis is indicated as ΔEMF which is defined as follows:

ΔEMF=EMF1 - EMF2 where EMF1=EMF in 350 ppm CO₂ EMF2=EMF in 1000ppm CO₂

Sensitivity Characteristics:

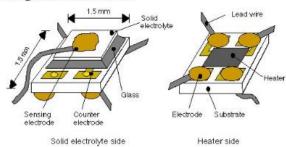
Humidity Dependency:



INPORTANT NOTE: OPERATING CONDITIONS IN WHICH FIGARO SENSORS ARE USED WILL VARY WITH EACH CUSTOMER'S SPECIFIC APPLICATIONS. FIGARO STRONGLY RECOMMENDS CONSULTING OUR TECHNICAL STAFF BEFORE DEPLOYING FIGARO SENSORS IN YOUR APPLICATION AND, IN PARTICULAR, WHEN CUSTOMER'S TARGET GASES ARE NOT LISTED HEREIN, FIGARO CANNOT ASSUME ANY RESPONSIBILITY FOR ANY USE OF ITS SENSORS IN A PRODUCT OR APPLICATION FOR WHICH SENSOR HAS NOT BEEN SPECIFICALLY TESTED BY FIGARO.

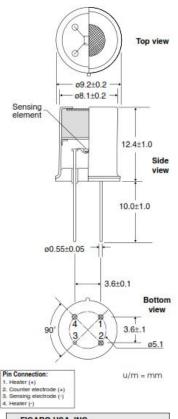
Basic Measuring Circuit:

The TGS4161 sensor requires heater voltage (V_H) input. The heater voltage is applied to the integrated heater in order to maintain the sensing element at a specific temperature which is optimal for sensing. Electromotive force (EMF) of the sensor should be measured using a high impedance (>100 G Ω) operational amplifier with bias current < 1pA (e.g. Texas Instruments' model #TLC271). Since the solid electrolyte type sensor


functions as a kind of battery, the EMF value itself would drift using this basic measuring circuit. However, the change of EMF value (Δ EMF) shows a stable relationship with the change of CO_2 concentration. Therefore, in order to obtain an accurate measurement of CO_2 , a special microprocessor for signal processing should be used with TGS4161. Figaro can provide a special evaluation sensor module (AM-4-4161) for TGS4161.

Specifications:

Model number		TGS 4161		
Sensing element type		Solid electrolyte		
Targ	get gases		Carbon dioxide	
Typical d	etection range		350 ~ 10,000 ppm	
	Heater resistance	Вн	$70 \pm 7\Omega$ at room temp.	
	Heater current	le le	approx. 50mA	
Electrical characteristics	Heater power consumption	Рн	approx. 250mW	
Electrical characteristics	Electromotive force	EMF	220~490mV in 350ppm CO2	
	Sensitivity	ΔEMF	44~72mV	EMF(350ppm CO2)- EMF(3500ppm CO2
	Heater voltage	Vн	5.0 ± 0.2V (DC)	
Sensor characteristics	Response time			ox. 1.5 min. final ΔEMF value)
	Measurement accuracy		approx. ±20% at 1,000ppm CO2	
Operation	ng conditions		-10~50°C, 5~95%RH	
Strorage conditions		-20~60' (store in moisture	C, 5~90%RH proof bag with silica gel)	
Standard test conditions	Test gas condition			02 in air °C, 65±5%RH
	Circuit condition		VH = 5.0±0.05V DC	
	Conditioning period before test		12 hours or longer	


Sensing Element Structure:

For information on warranty, please refer to Standard Terms and Conditions of Sale of Figaro USA Inc.

REV: 12/05

Structure and Dimensions:

FIGARO USA, INC.

121 S. Wilke Rd. Suite 300 Arlington Heights, IL 60005 USA Phone: (1)-847-832-1701 Fax: (1)-847-832-1705 email: figarousa@figarosensor.com

TECHNICAL INFORMATION FOR SK-25F

an ISO9001 company

Technical Information for Figaro Oxygen Sensor SK-25F

The Figaro Oxygen Sensor SK-25F is a unique galvanic cell type oxygen sensor which provides a linear output voltage signal relative to percent oxygen present in a particular atmosphere. The sensor features no position dependency, excellent chemical durability, and it is not influenced by CO₂, making it ideal for oxygen monitoring.

2.4	51
Introduction	2
Basic Information and Specifications	
Features	2
Applications	
Structure and Operating Principle	2
Specifications	2
Absolute Maximum Operating and Storage Conditions	3
Dimensions	3
Typical Sensitivity Characteristics	
Sensitivity to Oxygen	3
Response Speed	
Influence from Various Gases	4
Effects of Pressure Change	4
Humidity Dependency	5
Temperature Dependency	
Reliability	
Influence of Organic Solvents	6
Life Expectancy	6
Relationship of Expected Life and O2 Concentration	6
Relationship of Expected Life and Storage Temperature	
Long Term Stability	7
Handling Instructions	7
Warranty	

Revised II/12

TECHNICAL INFORMATION FOR SK-25F

1. Basic Information and Specifications

1-1 Features

- * Virtually no influence from CO2, CO, H2S, NO, H2
- * Temperature compensation circuit included
- * Good linearity
- * No position dependency
- * Stable output signal
- * No external power supply required for sensor operation
- * No warmup time is required

1-2 Applications

- * Safety Air conditioners, oxygen detectors, fire detectors, fuel cell systems
- * Measurement Oxygen monitors in flue gas
- * Biotechnology Oxygen incubators, anaerobic cultivators
- Food industry Refrigeration, greenhouses

1-3 Structure and operating principle

The SK-25F is a lead-oxygen battery which incorporates a lead anode, an oxygen cathode made of gold, and a weak acid electrolyte. Oxygen molecules enter the electrochemical cell through a non-porous fluorine resin membrane and are reduced at the gold electrode with the acid electrolyte. The current which flows between the electrodes is proportional to the oxygen concentration in the gas mixture being measured. The terminal voltages across the thermistor (for temperature compensation) and resistor are read as a signal, with the change in output voltages representing the change in oxygen concentration.

The following chemical reactions which take place in SK-25F:

Cathodic reaction: O2 + 4H⁺ + 4e⁻ → 2H2O Anodic reaction: 2Pb + 2H2O → 2PbO + 4H+ + 4e-

 $O_2 + 2Pb \rightarrow 2PbO$ Total reaction:

A small volume air bubble is contained inside the sensor body in order to compensate for internal influence from pressure changes. The sensor's electrolyte is primarily composed of acetic acid with a pH of approximately 6. The sensor's body is made of ABS resin.

1-4 Specifications

Table 1 shows the specifications of SK-25F.

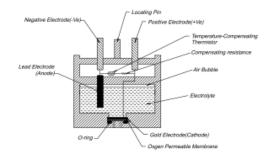


Fig. 1 - Structure of SK-25F

Item		Model	
		SK-25F	
Measurement range		0~30% O2	
Accuracy (Note 1)	±1% full scale	
	Atmospheric pressure	1013hPa ± 20%	
Operating	Temperature	-10°∼50°C	
conditions	Relative humidity	0~99%RH (no condensation)	
Response time (90%) (Note 2)		≤15 seconds	
Initial output voltage under standard test conditions		5.5~8.5mV	
	Atmospheric pressure	1013 ± 5hPa	
Standard test conditions	Temperature	20°±1°C	
	Relative humidity	60±5%RH	
Life expectancy at 20°C in normal air (Note 3)		approx. 3 years	

- 1) When calibrated at both 0% and 30% of O2, accuracy in the range from 0-30% O2 shall be within ±1% of full scale.
- Sensors should be used under conditions where the air exchange is greater than 200~300ml/minute in order to obtain the response speed as specified in Table 1.

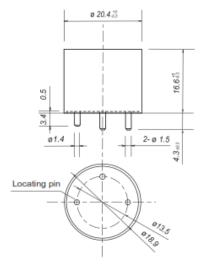
 3) Life expectancy at 20°C in normal air is defined as the period
- until sensor output drops to 60% of original value.

Table 1 - Specifications of SK-25F

Revised 11/12

TECHNICAL INFORMATION FOR SK-25F

1-5 Absolute maximum operating and storage conditions


The accumulated total duration of exposure to the absolute maximum conditions listed in Table 2 should be limited to no more than 24 hours.

Cautions

- Beneath the lower pressure limit, sensor life may become shorter due to excessive evaporation of the liquid electrolyte.
- At pressure in excess of the upper limit, sensor output may become unstable due to excessive air entering through the o-ring.
- 3) In the range -10~-20°C, the electrolyte will freeze and the sensor will not function, but SK-25F would not be damaged by freezing of the electrolyte and will resume functioning after the electrolyte thaws to a liquid state. Below -20°C, the sensor may be damaged by freezing of the electrolyte, resulting in possible leakage of the electrolyte.
- 4) At temperatures in excess of the upper limit, the sensor life may become shorter than the specification due to evaporation of the electrolyte.
- 5) If used for a long period in an extremely dry environment, sensor life may be shortened due to excessive evaporation of the liquid electrolyte.

Item	Lower limit	Upper limit
Pressure	507hPA (Note 1)	1520hPA (Note 2)
Temperature	-20°C (Note 3)	60°C (Note 4)
Relative humidity	0%RH (Note 5)	100%RH

Table 2 - Absolute maximum operating and storage conditions of SK-25F $\,$

u/m: mm If not specified, all tolerances are ±0.2 mm

Figure 2 - Dimensions of SK-25F

2. Typical Sensitivity Characteristics

2-1 Sensitivity to oxygen

Figure 3 shows the sensitivity characteristics of SK-25F. The Y-axis indicates the output voltage of the sensor.

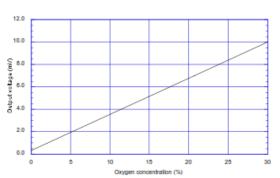


Fig. 3 - SK-25F sensitivity characteristics

Revised 11/12 3

Sencera Co., Ltd.

錫麟企業有限公司

808H5V5 humidity transmitter

808H5V5 module humidity transmitter is designed based capacitive humidity sensor. This product utilize craftwork of SIP, so own a extremely small body. That make it to easy use as component in kinds of humidity measuring and controlling products.

Can supply defined data each products desired by customer.

Feature

Low cost, capacitor polymer sensor

Voltage output linear response relative humidity

High accuracy, long term stability,
interchangeable

colophony enveloped, can work even in bad environm

Application

Meteorological instrumentation, industrial process control, RH measurement instrumentation etc.

Specification

Model	808H5V5	
Measuring range	0~100%RH	
Signal output	0.8~3.9V @25°C	
Accuracy	≤ ± 4%RH (at 25℃, 30~80%RH, when the power supply is 5VDC)	
Electrical current (Ic)	Typical current: 0.8 mA; max current <1.2mA	
Power supply	5V DC ±5%	
Operating		
environment	-40~+85°C	
Storing	-55~+125℃	
environment		
Responding time	<15s	
stability	<1%RH per year	
interface	3 pin 2.54mm between, SIP	
dimension	12.5×8×5 mm	

Standard according:

The accuracy standard from ±2%RH to ±4%RH.

MCP9700/9700A MCP9701/9701A

Low-Power Linear Active ThermistorTM ICs

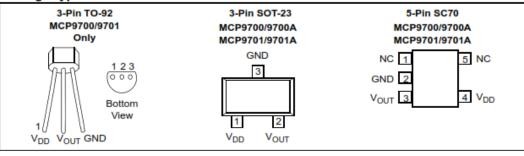
Features

- · Tiny Analog Temperature Sensor
- · Available Packages:
- SC70-5, SOT-23-5, TO-92-3
- · Wide Temperature Measurement Range:
 - -40°C to +125°C (Extended Temperature)
 - 40°C to +150°C (High Temperature) (MCP9700/9700A)
- Accuracy:
 - ±2°C (max.), 0°C to +70°C (MCP9700A/9701A)
 - ±4°C (max.), 0°C to +70°C (MCP9700/9701)
- Optimized for Analog-to-Digital Converters (ADCs):
 - 10.0 mV/°C (typical) MCP9700/9700A
 - 19.5 mV/°C (typical) MCP9701/9701A
- · Wide Operating Voltage Range:
 - V_{DD} = 2.3V to 5.5V MCP9700/9700A
 - V_{DD} = 3.1V to 5.5V MCP9701/9701A
- Low Operating Current: 6 μA (typical)
- · Optimized to Drive Large Capacitive Loads

Typical Applications

- · Hard Disk Drives and Other PC Peripherals
- · Entertainment Systems
- · Home Appliance
- Office Equipment
- · Battery Packs and Portable Equipment
- · General Purpose Temperature Monitoring

Description


The MCP9700/9700A and MCP9701/9701A family of Linear Active Thermistor™ Intergrated Circuit (IC) is an analog temperature sensor that converts temperature to analog voltage. It's a low-cost, low-power sensor with an accuracy of ±2°C from 0°C to +70°C (MCP9700A/9701A) ±4°C from 0°C to +70°C (MCP9700/9701) while consuming 6 μA (typical) of operating current.

Unlike resistive sensors (such as thermistors), the Linear Active Thermistor IC does not require an additional signal-conditioning circuit. Therefore, the biasing circuit development overhead for thermistor solutions can be avoided by implementing this low-cost device. The voltage output pin (V_{OUT}) can be directly connected to the ADC input of a microcontroller. The MCP9700/9700A and MCP9701/9701A temperature coefficients are scaled to provide a 1°C/bit resolution for an 8-bit ADC with a reference voltage of 2.5V and 5V, respectively.

The MCP9700/9700A and MCP9701/9701A provide a low-cost solution for applications that require measurement of a relative change of temperature. When measuring relative change in temperature from +25°C, an accuracy of ±1°C (typical) can be realized from 0°C to +70°C. This accuracy can also be achieved by applying system calibration at +25°C.

In addition, this family is immune to the effects of parasitic capacitance and can drive large capacitive loads. This provides Printed Circuit Board (PCB) layout design flexibility by enabling the device to be remotely located from the microcontroller. Adding some capacitance at the output also helps the output transient response by reducing overshoots or undershoots. However, capacitive load is not required for sensor output stability.

Package Type

© 2009 Microchip Technology Inc.

DS21942E-page 1

MCP9700/9700A and MCP9701/9701A

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

V _{DD} :	0V
Storage temperature:65°C to +150	°C
Ambient Temp. with Power Applied:40°C to +150	°C
Output Current±30 n	nΑ
Junction Temperature (T _J): 150	°C
ESD Protection On All Pins (HBM:MM):(4 kV:200	V)
Latch-Up Current at Each Pin: ±200 n	nΑ

†Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

Electrical Specifications: Unle MCP9700/9700A: V _{DD} = 2.3V MCP9701/9701A: V _{DD} = 3.1V	/ to 5.5V, GND =	Ground, T				
Parameter	Sym	Min	Тур	Max	Unit	Conditions
Power Supply						
Operating Voltage Range	V _{DD} V _{DD}	2.3 3.1	_	5.5 5.5	V V	MCP9700/9700A MCP9701/9701A
Operating Current	I _{DD}	_	6	12	μА	
Power Supply Rejection	Δ °C/ Δ V _{DD}	_	0.1	_	°C/V	
Sensor Accuracy (Notes 1, 2)	_					
T _A = +25°C	T _{ACY}	_	±1	_	°C	
T _A = 0°C to +70°C	T _{ACY}	-2.0	±1	+2.0	°C	MCP9700A/9701A
T _A = -40°C to +125°C	T _{ACY}	-2.0	±1	+4.0	°C	MCP9700A
T _A = -10°C to +125°C	T _{ACY}	-2.0	±1	+4.0	°C	MCP9701A
T _A = 0°C to +70°C	T _{ACY}	-4.0	±2	+4.0	°C	MCP9700/9701
T _A = -40°C to +125°C	T _{ACY}	-4.0	±2	+6.0	°C	MCP9700
T _A = -10°C to +125°C	T _{ACY}	-4.0	±2	+6.0	°C	MCP9701
T _A = -40°C to +150°C	T _{ACY}	-4.0	±2	+6.0	°C	High Temperature, MCP9700 only
Sensor Output	•					•
Output Voltage, T _A = 0°C	V _{0°C}	_	500	_	mV	MCP9700/9700A
Output Voltage, T _A = 0°C	V _{0°C}	_	400	_	mV	MCP9701/9701A
Temperature Coefficient	T _C	_	10.0	_	mV/°C	MCP9700/9700A
	T _C	_	19.5	_	mV/°C	MCP9701/9701A
Output Non-linearity	V _{ONL}	_	±0.5	_	°C	$T_A = 0$ °C to +70°C (Note 2)
Output Current	lout	_	_	100	μА	
Output Impedance	Z _{OUT}	_	20	_	Ω	I _{OUT} = 100 μA, f = 500 Hz
Output Load Regulation	$\Delta V_{OUT} / \Delta I_{OUT}$	_	1	_	Ω	T _A = 0°C to +70°C, I _{OUT} = 100 μA
Turn-on Time	t _{ON}	_	800	_	μs	

Note 1: The MCP9700/9700A family accuracy is tested with V_{DD} = 3.3V, while the MCP9701/9701A accuracy is tested with V_{DD} = 5.0V.

The MCP9700/9700A and MCP9701/9701A family is characterized using the first-order or linear equation, as shown in Equation 4-2. Also refer to Figure 2-16.

SC70-5 package thermal response with 1x1 inch, dual-sided copper clad, TO-92-3 package thermal response without PCB (leaded).

MCP9700/9700A and MCP9701/9701A

Note: Unless otherwise indicated, MCP9700/9700A: V_{DD} = 2.3V to 5.5V; MCP9701/9701A: V_{DD} = 3.1V to 5.5V; GND = Ground, C_{bypass} = 0.1 μ F.

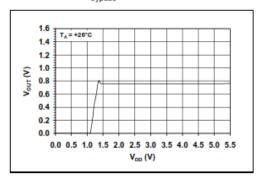


FIGURE 2-13: Output Voltage vs. Power Supply.

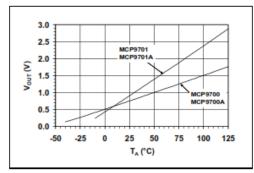
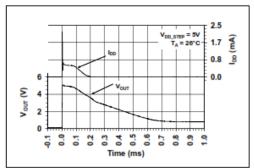
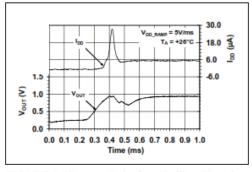




FIGURE 2-16: Output Voltage vs. Ambient Temperature.

FIGURE 2-14: Output vs. Settling Time to step V_{DD} .

FIGURE 2-17: Output vs. Settling Time to Ramp V_{DD} .

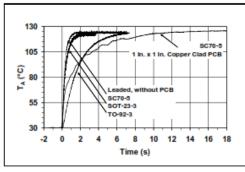


FIGURE 2-15: Thermal Response (Air to Fluid Bath).

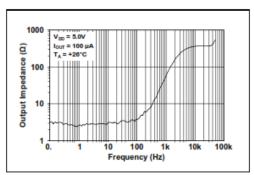


FIGURE 2-18: Output Impedance vs. Frequency.

GP2Y1010AU0F

GP2Y1010AU0F

Compact Optical Dust Sensor

Description

GP2Y1010AU0F is a dust sensor by optical sensing system.

An infrared emitting diode (IRED) and an phototransistor are diagonally arranged into this device. It detects the reflected light of dust in air. Especially, it is effective to detect very fine particle like the cigarette smoke.

In addition it can distinguish smoke from house dust by pulse pattern of output voltage.

■ Compliance

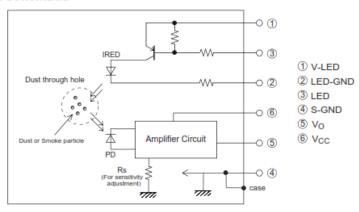
1. Compliant with RoHS directive (2002/95/EC)

Applications

- 1. Detecting of dust in the air.
- 2. Example: Air purifier, Air conditioner, Air monitor

■ Features

- 1. Compact, thin package (46.0 × 30.0 × 17.6 mm)
- 2. Low consumption current (Icc: MAX. 20 mA)
- 3. The presence of dust can be detected by the photometry of only one pulse
- 4. Enable to distinguish smoke from house dust
- 5. Lead-free and RoHS directive compliant


Notice The content of data sheet is subject to change without prior notice.

In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.

Sheet No.: E4-A01501EN Date Dec. 1. 2006 © SHARP Corporation

Internal schematic

■ Outline Dimensions

Sheet No.: E4-A01501EN

Fig. 1 Input Condition for LED Input Terminal

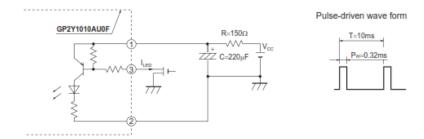


Fig. 2 Sampling Timing of Output Pulse

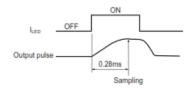
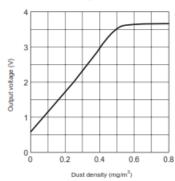



Fig. 3 Output Voltage vs. Dust Density

Remarks: Please be aware that all data in the graph are just for reference and are not for guarantee.

Sheet No.: E4-A01501EN

MÓDULO WASPMOTE GPS

General Considerations

1.3. Hardware

GSM / GPRS / 3G module

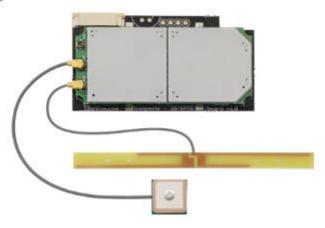


Figure: 3G/GPRS board

Model: SIM5218E (SIMCom)

Tri-Band UMTS 2100/1900/900MHz

Quad-Band GSM/EDGE, 850/900/1800/1900 MHz

HSDPA up to 7.2Mbps

HSUPA up to 5.76Mbps

TX Power:

- UMTS 900/1900/2100 0,25W
- GSM 850MHz/900MHz 2W
- DCS1800MHz/PCS1900MHz 1W

Sensitivity: -106dBm

Antenna connector: UFL External Antenna: OdBi

Consumption in sleep mode: 1mA

Dimensions (3G/GPRS module): 33 x 62 x 12 mm

Dimensions (3G/GPRS module plugged on Waspmote): 73 x 62 x 20 mm

Note for USA users: We have tested the new 3G shield with the AT&T network which supports natively the GSM and 3G protocolos. With other carriers may also work although we haven't tried and thus we can not ensure it. For this reason we recommend to use AT&T SIM cards.

-8- v4.9

Actions:

- Videocall, record video and take pictures available with Video Camera Sensor Board
- Support microSD card up to 32GB
- 64MB of internal storage space
- · Making/Receiving calls
- · Making 'x' tone missed calls
- MS-assisted (A-GPS), MS-based (S-GPS) or Stand-alone GPS positioning
- Sending/Receiving SMS
- Single connection and multiple connections TCP/IP and UDP/IP clients
- TCP/IP server.
- HTTP and HTTPS service
- FTP and FTPS Service (downloading and uploading files)
- · Sending/receiving email (SMTP and POP3)
- OTA feature can be performed now by Waspmote's 3G/GPRS module. Refer to the Over the Air Programming Guide for more information;

http://www.libelium.com/development/waspmote/documentation/over-the-air-programming-guide-otap/

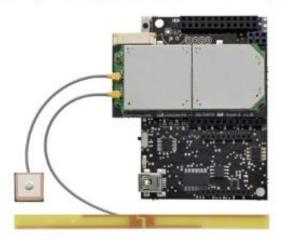


Figure: 3G/GPRS board in Waspmote

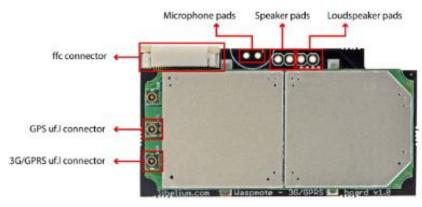


Figure: 3G/GPRS board top

-9- v4,9

1. XBee®/XBee-PRO® RF Modules

The XBee and XBee-PRO RF Modules were engineered to meet IEEE 802.15.4 standards and support the unique needs of low-cost, low-power wireless sensor networks. The modules require minimal power and provide reliable delivery of data between devices.

The modules operate within the ISM 2.4 GHz frequency band and are pin-for-pin compatible with each other.

Key Features

Long Range Data Integrity

XBee

- Indoor/Urban: up to 100' (30 m)
- Outdoor line-of-sight: up to 300' (90 m)
- . Transmit Power: 1 mW (0 dBm)
- · Receiver Sensitivity: -92 dBm

XBee-PRO

- Indoor/Urban: up to 300' (90 m), 200' (60 m) for International variant
- Outdoor line-of-sight: up to 1 mile (1600 m), 2500' (750 m) for International variant
- Transmit Power: 63mW (18dBm), 10mW (10dBm) for International variant
- Receiver Sensitivity: -100 dBm

RF Data Rate: 250,000 bps

Advanced Networking & Security

Retries and Acknowledgements

DSSS (Direct Sequence Spread Spectrum)

Each direct sequence channels has over 65,000 unique network addresses available

Source/Destination Addressing

Unicast & Broadcast Communications

Point-to-point, point-to-multipoint and peer-to-peer topologies supported

Low Power

XBee

- TX Peak Current: 45 mA (@3.3 V)
- RX Current: 50 mA (@3.3 V)
- Power-down Current: < 10 μA

XBee-PRO

- TX Peak Current: 250mA (150mA for international variant)
- TX Peak Current (RPSMA module only): 340mA (180mA for international variant
- RX Current: 55 mA (@3.3 V)
- Power-down Current: < 10 μA

ADC and I/O line support

Analog-to-digital conversion, Digital I/O I/O Line Passing

Easy-to-Use

No configuration necessary for out-of box RF communications

Free X-CTU Software (Testing and configuration software)

AT and API Command Modes for configuring module parameters

Extensive command set

Worldwide Acceptance

FCC Approval (USA) Refer to Appendix A [p64] for FCC Requirements. Systems that contain XBee®/XBee-PRO® RF Modules inherit Digi Certifications.

ISM (Industrial, Scientific & Medical) 2.4 GHz frequency band

Manufactured under ISO 9001:2000 registered standards

XBee®/XBee-PRO® RF Modules are optimized for use in the United States, Canada, Australia, Japan, and Europe. Contact Digi for complete list of government agency approvals.

© 2009 Digi International Inc.

4

Electrical Characteristics

Table 1-03. DC Characteristics (VCC = 2.8 - 3.4 VDC)

Symbol	Characteristic	Condition	Condition Min Typical		Max	Unit
V _{IL}	Input Low Voltage	All Digital Inputs				V
V _{IH}	Input High Voltage	All Digital Inputs	0.7 * VCC	0.7 * VCC -		V
V _{OL}	Output Low Voltage	I _{OL} = 2 mA, VCC >= 2.7 V	-	-	0.5	V
V _{OH}	Output High Voltage	I _{OH} = -2 mA, VCC >= 2.7 V	VCC - 0.5	-	-	V
II _{IN}	Input Leakage Current	V _{IN} = VCC or GND, all inputs, per pin	-	0.025	1	μΑ
ll _{oz}	High Impedance Leakage Current	V _{IN} = VCC or GND, all I/O High-Z, per pin	-	0.025	1	μΑ
TX	Transmit Current	VCC = 3.3 V	-	45 (XBee) 215, 140 (PRO, Int)	-	mA
RX	Receive Current	VCC = 3.3 V		50 55 (XBee) (PRO)	-	mA
PWR-DWN	Power-down Current	SM parameter = 1	-	< 10	-	μA

Table 1-04. ADC Characteristics (Operating)

Symbol	Characteristic	Condition	Min	Typical	Max	Unit
V_{REFH}	VREF - Analog-to-Digital converter reference range		2.08		V _{DDAD*}	٧
L VPEE Poforo	VREF - Reference Supply Current	Enabled	-	200	-	μA
REF	VILLY - Reference Supply Current	Disabled or Sleep Mode	-	< 0.01	0.02	μA
V _{INDC}	Analog Input Voltage ¹		V _{SSAD} - 0.3	-	V _{DDAD} + 0.3	V

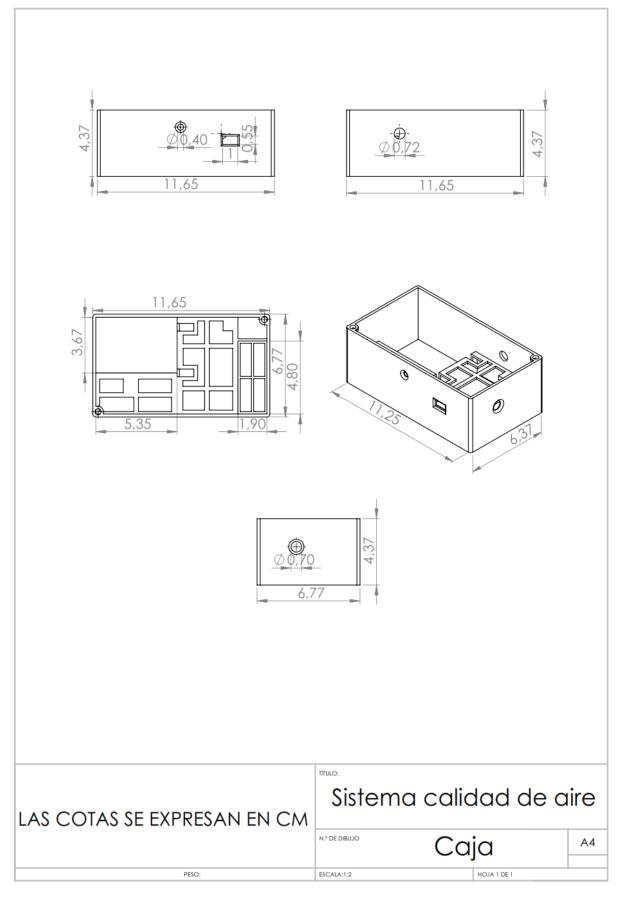
Maximum electrical operating range, not valid conversion range.

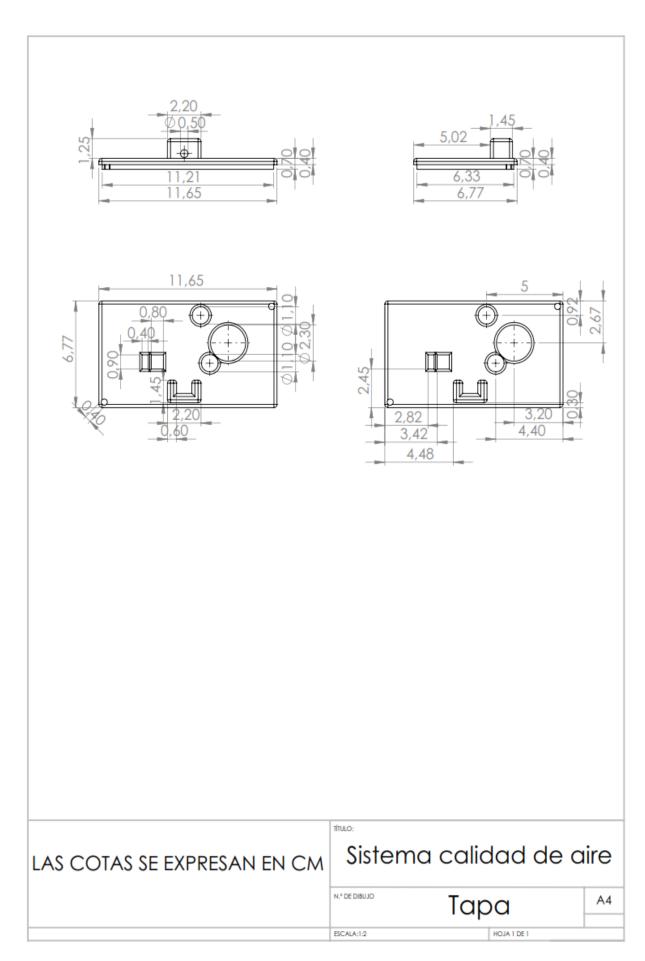
Table 1-05. ADC Timing/Performance Characteristics1

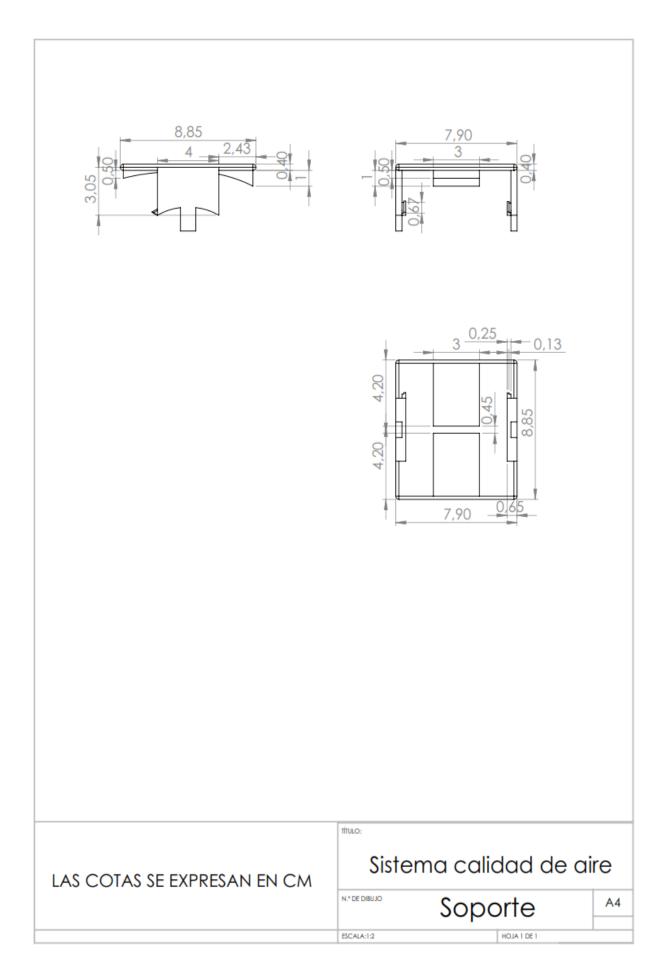
Symbol	Characteristic	Condition	Min	Typical	Max	Unit
R _{AS}	Source Impedance at Input ²		-	-	10	kΩ
V _{AIN}	Analog Input Voltage ³		V _{REFL}		V _{REFH}	V
RES	Ideal Resolution (1 LSB) ⁴	2.08V ≤ V _{DDAD} ≤ 3.6V	2.031	-	3.516	mV
DNL	Differential Non-linearity ⁵		-	±0.5	±1.0	LSB
INL	Integral Non-linearity ⁶		-	±0.5	±1.0	LSB
Ezs	Zero-scale Error ⁷		-	±0.4	±1.0	LSB
F _{FS}	Full-scale Error ⁸		-	±0.4	±1.0	LSB
E _{IL}	Input Leakage Error ⁹		-	±0.05	±5.0	LSB
E _{TU}	Total Unadjusted Error ¹⁰		-	±1.1	±2.5	LSB

1. All ACCURACY numbers are based on processor and system being in WAIT state (very little activity and no IO switching) and that adequate low-pass filtering is present on analog input pins (filter with $0.01~\mu F$ to $0.1~\mu F$ capacitor between analog input and VREFL). Failure to observe these guidelines may result in system or microcontroller noise causing accuracy errors which will vary based on board layout and the type and magnitude of the activity.

Data transmission and reception during data conversion may cause some degradation of these specifications, depending on the number and timing of packets. It is advisable to test the ADCs in your installation if best accuracy is required


- 2. RAS is the real portion of the impedance of the network driving the analog input pin. Values greater than this amount may not fully charge the input circuitry of the ATD resulting in accuracy error.
- 3. Analog input must be between V_{REFL} and V_{REFH} for valid conversion. Values greater than V_{REFH} will convert to \$3FF.


 4. The resolution is the ideal step size or 1LSB = (V_{REFH}-V_{REFL})/1024
- 5. Differential non-linearity is the difference between the current code width and the ideal code width (1LSB). The current code width is the difference in the transition voltages to and from the current code.
- 6. Integral non-linearity is the difference between the transition voltage to the current code and the adjusted ideal transition $voltage \ for \ the \ current \ code. \ The \ adjusted \ ideal \ transition \ voltage \ is \ (Current \ Code-1/2)^*(1/((V_{REFH}+E_{FS})-(V_{REFL}+E_{ZS}))).$
- 7. Zero-scale error is the difference between the transition to the first valid code and the ideal transition to that code. The Ideal transition voltage to a given code is (Code-1/2)* $(1/(V_{REFH}-V_{REFL}))$.
- 8. Full-scale error is the difference between the transition to the last valid code and the ideal transition to that code. The ideal transition voltage to a given code is $(Code-1/2)^*(1/(V_{REFH}-V_{REFL}))$.
- 9. Input leakage error is error due to input leakage across the real portion of the impedance of the network driving the analog pin. Reducing the impedance of the network reduces this error.


© 2009 Digi Internatonal, Inc.

V_{DDAD} is connected to VCC.

DISEÑO DE LA ESTRUCTURA DEL SISTEMA DE CALIDAD DE AIRE.

ANEXO D: TABLAS DE MEDICIONES

PRUEBAS 24 HORAS (Resumen)

N°	DD/MM/AA	Hora	Bat (%)	Temp (°C)	Hum (%HR)	O (%)	CO2 (ppm)	CO (ppm)	Polvo (mg/m3)	Longitud (°)	Latitud (°)	Altura (m)
1	23/01/2016	00:30:30	84	17,3	92	20,5	380	55,4	0,027	-3,999572	-79,206	1845
2	23/01/2016	01:00:30	84	17,5	92	20,5	382	54,6	0,033	-3,999572	-79,206	1845
3	23/01/2016	01:30:30	84	17,1	92	20,5	380	54,8	0,037	-3,999572	-79,206	1845
4	23/01/2016	02:00:30	84	17	92	20,5	384	54,5	0,045	-3,999572	-79,206	1845
5	23/01/2016	02:30:30	84	17	93	20,5	388	53,7	0,047	-3,999572	-79,206	1845
6	23/01/2016	03:00:30	84	17,1	93	20,7	388	54,1	0,049	-3,999572	-79,206	1845
7	23/01/2016	03:30:30	84	17	93	20,7	390	51,2	0,049	-3,999572	-79,206	1845
8	23/01/2016	04:00:30	84	16,9	93	20,7	388	45,2	0,05	-3,999572	-79,206	1845
9	23/01/2016	04:30:30	84	16,7	93	20,7	391	42,3	0,035	-3,999572	-79,206	1845
10	23/01/2016	05:00:30	84	16,7	94	20,7	393	42,3	0,035	-3,999572	-79,206	1845
11	23/01/2016	05:30:30	84	17,3	94	20,6	394	45,3	0,173	-3,999572	-79,206	1845
12	23/01/2016	06:00:30	84	17,5	94	20,7	395	42,8	0,026	-3,999572	-79,206	1845
13	23/01/2016	06:30:30	84	17,6	95	20,7	395	48,9	0,156	-3,999572	-79,206	1845
14	23/01/2016	07:00:30	84	17,2	95	20,6	393	54,7	0,156	-3,999572	-79,206	1845
15	23/01/2016	07:30:30	84	17,2	92	20,6	393	54,6	0,156	-3,999572	-79,206	1845
16	23/01/2016	08:00:30	84	17,1	89	20,6	405	54,8	0,156	-3,999572	-79,206	1845
17	23/01/2016	08:30:30	84	17,1	83	20,6	392	54,5	0,05	-3,999572	-79,206	1845
18	23/01/2016	09:00:30	85	16,9	81	20,6	394	53,7	0,05	-3,999572	-79,206	1845
19	23/01/2016	09:30:30	85	16,9	78	20,6	396	53,7	0,052	-3,999572	-79,206	1845
20	23/01/2016	10:00:30	85	16,5	75	20,6	397	48,3	0,052	-3,999572	-79,206	1845
21	23/01/2016	10:30:30	85	16,4	74	20,6	395	47,3	0,052	-3,999572	-79,206	1845
22	23/01/2016	11:00:30	85	16,6	71	20,6	410	47,3	0,049	-3,999572	-79,206	1845
23	23/01/2016	11:30:30	85	16,6	69	20,4	398	48,7	0,047	-3,999572	-79,206	1845
24	23/01/2016	12:00:30	85	16,5	69	20,4	400	45,2	0,047	-3,999572	-79,206	1845
25	23/01/2016	12:30:30	85	18,3	68	20,4	409	53,1	0,047	-3,999572	-79,206	1845
26	23/01/2016	13:00:30	85	18,8	68	20,4	400	55,4	0,032	-3,999572	-79,206	1845
27	23/01/2016	13:30:30	85	19,7	67	20,4	397	54,6	0,032	-3,999572	-79,206	1845
28	23/01/2016	14:00:30	85	21,2	64	20,4	400	54,8	0,031	-3,999572	-79,206	1845
29	23/01/2016	14:30:30	85	22,1	63	20,4	405	54,5	0,028	-3,999572	-79,206	1845
30	23/01/2016	15:00:30	85	21,8	62	20,3	398	53,7	0,143	-3,999572	-79,206	1845
31	23/01/2016	15:30:30	86	21,3	59	20,3	385	54,1	0,143	-3,999572	-79,206	1845
32	23/01/2016	16:00:30	86	22	61	20,3	380	50,1	0,143	-3,999572	-79,206	1845
33	23/01/2016	16:30:30	86	22,1	64	20,3	405	45,2	0,045	-3,999572	-79,206	1845
34	23/01/2016	17:00:30	86	22	67	20,3	397	40,6	0,045	-3,999572	-79,206	1845
35	23/01/2016	17:30:30	86	22,3	71	20,4	396	39,7	0,049	-3,999572	-79,206	1845
36	23/01/2016	18:00:30	86	21,6	72	20,4	394	42,8	0,056	-3,999572	-79,206	1845
37	23/01/2016	18:30:30	86	21,5	78	20,4	389	35,6	0,054	-3,999572	-79,206	1845
38	23/01/2016	19:00:30	86	21,5	79	20,3	382	37,8	0,054	-3,999572	-79,206	1845
39	23/01/2016	19:30:30	86	21,6	82	20,3	382	55,4	0,042	-3,999572	-79,206	1845
40	23/01/2016	20:00:30	86	21	83	20,3	380	54,6	0,042	-3,999572	-79,206	1845
41	23/01/2016	20:30:30	86	20,9	85	20,3	385	54,8	0,036	-3,999572	-79,206	1845

42	23/01/2016	21:00:30	86	20,1	87	20,3	379	54,5	0,036	-3,999572	-79,206	1845
43	23/01/2016	21:30:30	86	21,2	87	20,3	382	53,7	0,036	-3,999572	-79,206	1845
44	23/01/2016	22:00:30	86	21,4	88	20,5	384	54,1	0,036	-3,999572	-79,206	1845
45	23/01/2016	22:30:30	86	20	91	20,5	382	48,3	0,026	-3,999572	-79,206	1845
46	23/01/2016	23:00:30	86	19,6	89	20,5	387	47,3	0,127	-3,999572	-79,206	1845
47	23/01/2016	23:30:30	86	19	90	20,5	392	47,3	0,127	-3,999572	-79,206	1845
48	23/01/2016	00:00:30	86	18,6	90	20,6	385	48,7	0,024	-3,999572	-79,206	1845

PRUEBAS CON VANT

N°	DD/MM/AA	Hora	Bat (%)	Temp con VANT (°C)	Hum con VANT (%HR)	O con VANT (%)	CO2 con VANT (ppm)	CO con VANT (ppm)	Polvo con VANT (mg/m3)	Longitud (°)	Latitud (°)	Altura (m)
1	25/03/2016	17:45:30	69	18,5	75	19,1	370	43,4	0,102	-3,984647	-79,19889	1863
2	25/03/2016	17:46:30	69	18,5	75	19,1	369	43,4	0,111	-3,984647	-79,19889	1863
3	25/03/2016	17:47:30	69	18,5	75	19,1	370	43,4	0,101	-3,984647	-79,19889	1863
4	25/03/2016	17:48:30	69	18,5	75	19,1	370	43,7	0,101	-3,984647	-79,19889	1863
5	25/03/2016	17:49:30	69	18,5	75	19	371	43,7	0,100	-3,984647	-79,19889	1863
6	25/03/2016	17:50:30	69	18,5	75	19	371	43,7	0,101	-3,984647	-79,19889	1863
7	25/03/2016	17:51:30	69	18,5	75	19	371	43,6	0,101	-3,984647	-79,19889	1863
8	25/03/2016	17:52:30	69	18,5	75	19	371	43,6	0,100	-3,984647	-79,19889	1863
9	25/03/2016	17:53:30	69	18,5	75	19,1	371	43,4	0,089	-3,984647	-79,19889	1863
10	25/03/2016	17:54:30	69	18,5	75	19,1	371	43,3	0,090	-3,984647	-79,19889	1863
11	25/03/2016	17:55:30	69	18,5	75	19	371	43,1	0,090	-3,984647	-79,19889	1863
12	25/03/2016	17:56:30	69	18,5	75	19,2	371	43	0,072	-3,984647	-79,19889	1863
13	25/03/2016	17:57:30	69	18,6	75	19,1	372	42,6	0,070	-3,984647	-79,19889	1863
14	25/03/2016	17:58:30	69	18,6	75	19,1	372	42,4	0,070	-3,984647	-79,19889	1863
15	25/03/2016	17:59:30	69	18,6	75	19,1	372	42,1	0,070	-3,984647	-79,19889	1863
16	25/03/2016	18:00:30	69	18,6	74	19,1	372	41,9	0,050	-3,984647	-79,19889	1863
17	25/03/2016	18:01:30	69	18,6	74	19,1	372	41,6	0,050	-3,984647	-79,19889	1863
18	25/03/2016	18:02:30	68	18,6	74	19,1	372	41,6	0,050	-3,984647	-79,19889	1863
19	25/03/2016	18:03:30	68	18,5	74	19,2	372	41,6	0,050	-3,984647	-79,19889	1863
20	25/03/2016	18:04:30	68	18,5	74	19,2	372	41,6	0,050	-3,984647	-79,19889	1863
21	25/03/2016	18:05:30	68	18,5	74	19,2	372	41,6	0,050	-3,984647	-79,19889	1863
22	25/03/2016	18:06:30	68	18,5	74	19	372	41,6	0,079	-3,984647	-79,19889	1863
23	25/03/2016	18:07:30	68	18,5	74	19	371	41,6	0,078	-3,984647	-79,19889	1863
24	25/03/2016	18:08:30	68	18,4	74	19,2	371	41,6	0,079	-3,984647	-79,19889	1863
25	25/03/2016	18:09:30	68	18,4	73	19,2	371	41,6	0,076	-3,984647	-79,19889	1863
26	25/03/2016	18:10:30	68	18,4	73	19,1	371	41,6	0,049	-3,984647	-79,19889	1863
27	25/03/2016	18:11:30	68	18,4	73	19,1	371	41,6	0,065	-3,984647	-79,19889	1863
28	25/03/2016	18:12:30	68	18,4	73	19,3	371	41,6	0,100	-3,984647	-79,19889	1863
29	25/03/2016	18:13:30	68	18,4	73	19,2	371	41,6	0,111	-3,984647	-79,19889	1863
30	25/03/2016	18:14:30	68	18,4	73	19,2	371	41,6	0,101	-3,984647	-79,19889	1863

PRUEBAS SIN VANT

N°	DD/MM/AA	Hora	Bat (%)	Temp sin VANT (°C)	Humd sin VANT (%HR)	O sin VANT (%)	CO2 sin VANT (ppm)	CO sin VANT (ppm)	Polvo sin VANT (mg/m3)	Longitud (°)	Latitud (°)	Altura (m)
1	25/03/2016	16:02:30	72	18,8	74	19,2	369	43,6	0,100	-3,984647	-79,19889	1863
2	25/03/2016	16:03:30	72	18,8	74	19,2	368	43,7	0,110	-3,984647	-79,19889	1863
3	25/03/2016	16:04:30	72	18,7	74	19,2	369	44,2	0,100	-3,984647	-79,19889	1863
4	25/03/2016	16:05:30	72	18,7	74	19,2	368	44,2	0,100	-3,984647	-79,19889	1863
5	25/03/2016	16:06:30	72	18,7	74	19,2	369	44,2	0,100	-3,984647	-79,19889	1863
6	25/03/2016	16:07:30	72	18,7	74	19,2	369	44,2	0,100	-3,984647	-79,19889	1863
7	25/03/2016	16:08:30	72	18,7	74	19,2	368	44,2	0,100	-3,984647	-79,19889	1863
8	25/03/2016	16:09:30	72	18,7	74	19,2	369	42,6	0,100	-3,984647	-79,19889	1863
9	25/03/2016	16:10:30	72	18,7	74	19,2	369	42,6	0,090	-3,984647	-79,19889	1863
10	25/03/2016	16:11:30	72	18,7	74	19,2	369	43,5	0,090	-3,984647	-79,19889	1863
11	25/03/2016	16:12:30	72	18,7	74	19,2	369	43,6	0,090	-3,984647	-79,19889	1863
12	25/03/2016	16:13:30	72	18,7	74	19,2	368	43,7	0,070	-3,984647	-79,19889	1863
13	25/03/2016	16:14:30	72	18,6	74	19,2	368	42,6	0,070	-3,984647	-79,19889	1863
14	25/03/2016	16:15:30	72	18,6	74	19,2	368	42,6	0,070	-3,984647	-79,19889	1863
15	25/03/2016	16:16:30	72	18,6	74	19,2	369	42,6	0,070	-3,984647	-79,19889	1863
16	25/03/2016	16:17:30	72	18,6	74	19,2	368	41,4	0,050	-3,984647	-79,19889	1863
17	25/03/2016	16:18:30	72	18,6	74	19,2	369	41,4	0,050	-3,984647	-79,19889	1863
18	25/03/2016	16:19:30	72	18,6	74	19,1	368	41,4	0,050	-3,984647	-79,19889	1863
19	25/03/2016	16:20:30	71	18,6	74	19,1	369	41,4	0,050	-3,984647	-79,19889	1863
20	25/03/2016	16:21:30	71	18,6	74	19,1	369	41,8	0,050	-3,984647	-79,19889	1863
21	25/03/2016	16:22:30	71	18,6	74	19,1	369	41,8	0,050	-3,984647	-79,19889	1863
22	25/03/2016	16:23:30	71	18,6	73	19,1	369	41,8	0,080	-3,984647	-79,19889	1863
23	25/03/2016	16:24:30	71	18,6	73	19,1	368	41,4	0,080	-3,984647	-79,19889	1863
24	25/03/2016	16:25:30	71	18,5	73	19,1	368	41,4	0,080	-3,984647	-79,19889	1863
25	25/03/2016	16:26:30	71	18,5	73	19,1	368	41,4	0,075	-3,984647	-79,19889	1863
26	25/03/2016	16:27:30	71	18,5	73	19,1	368	41,4	0,050	-3,984647	-79,19889	1863
27	25/03/2016	16:28:30	71	18,5	73	19,3	368	41,8	0,065	-3,984647	-79,19889	1863
28	25/03/2016	16:29:30	71	18,6	73	19,3	368	41,8	0,100	-3,984647	-79,19889	1863
29	25/03/2016	16:30:30	71	18,6	73	19,3	368	41,8	0,110	-3,984647	-79,19889	1863
30	25/03/2016	16:31:30	71	18,6	73	19,3	369	39,7	0,100	-3,984647	-79,19889	1863

PRUEBAS ESTACIÓN METEOROLÓGICA

N°	DD/MM/AA	Hora	Bat (%)	Tem (°C)	Hum (%HR)	O (%)	CO2 (ppm)	CO (ppm)	Polvo (mg/m3)	Longitud (°)	Latitud (°)	Altura (m)
1	23/01/2016	12:00:30	85	16,5	70	20,4	400	45,2	0,047	-3,999572	-79,206	1845
2	23/01/2016	12:01:30	85	16,5	70	20,4	400	45,2	0,046	-3,999572	-79,206	1845
3	23/01/2016	12:02:30	85	16,7	70	20,4	402	45,2	0,046	-3,999572	-79,206	1845
4	23/01/2016	12:03:30	85	16,7	70	20,4	403	45,2	0,045	-3,999572	-79,206	1845
5	23/01/2016	12:04:30	85	16,7	68	20,4	403	45,2	0,045	-3,999572	-79,206	1845
6	23/01/2016	12:05:30	85	16,7	68	20,4	403	45,2	0,045	-3,999572	-79,206	1845

	-	-	_					_	-	_	-	
7	23/01/2016	12:06:30	85	16,7	68	20,4	404	45,2	0,043	-3,999572	-79,206	1845
8	23/01/2016	12:07:30	85	16,7	68	20,4	404	45,8	0,043	-3,999572	-79,206	1845
9	23/01/2016	12:08:30	85	16,7	68	20,4	404	45,8	0,042	-3,999572	-79,206	1845
10	23/01/2016	12:09:30	85	16,7	68	20,4	404	45,8	0,042	-3,999572	-79,206	1845
11	23/01/2016	12:10:30	85	17	68	20,2	405	45,8	0,042	-3,999572	-79,206	1845
12	23/01/2016	12:11:30	85	17	68	20,2	406	45,8	0,042	-3,999572	-79,206	1845
13	23/01/2016	12:12:30	85	17	68	20,2	406	45,8	0,042	-3,999572	-79,206	1845
14	23/01/2016	12:13:30	85	17,2	68	20,2	406	45,8	0,042	-3,999572	-79,206	1845
15	23/01/2016	12:14:30	85	17,2	68	20,2	406	45,8	0,042	-3,999572	-79,206	1845
16	23/01/2016	12:15:30	85	17,4	68	20,2	406	45,8	0,042	-3,999572	-79,206	1845
17	23/01/2016	12:16:30	85	17,4	68	20,2	406	45,8	0,043	-3,999572	-79,206	1845
18	23/01/2016	12:17:30	85	17,4	68	20,2	409	45,8	0,043	-3,999572	-79,206	1845
19	23/01/2016	12:18:30	85	17,6	68	20,2	409	45,8	0,043	-3,999572	-79,206	1845
20	23/01/2016	12:19:30	85	17,6	68	20,2	409	45,8	0,043	-3,999572	-79,206	1845
21	23/01/2016	12:20:30	85	17,6	68	20,2	409	45,8	0,043	-3,999572	-79,206	1845
22	23/01/2016	12:21:30	85	17,6	68	20,2	409	45,8	0,043	-3,999572	-79,206	1845
23	23/01/2016	12:22:30	85	17,7	68	20,3	409	45,8	0,044	-3,999572	-79,206	1845
24	23/01/2016	12:23:30	85	17,7	68	20,3	409	45,8	0,044	-3,999572	-79,206	1845
25	23/01/2016	12:24:30	85	17,7	68	20,3	409	45,8	0,044	-3,999572	-79,206	1845
26	23/01/2016	12:25:30	85	17,7	67	20,3	409	47,9	0,045	-3,999572	-79,206	1845
27	23/01/2016	12:26:30	85	17,8	67	20,3	409	47,9	0,045	-3,999572	-79,206	1845
28	23/01/2016	12:27:30	85	18	67	20,3	409	53,1	0,046	-3,999572	-79,206	1845
29	23/01/2016	12:28:30	85	18	67	20,4	409	53,1	0,047	-3,999572	-79,206	1845
30	23/01/2016	12:29:30	85	18	67	20,4	409	53,1	0,047	-3,999572	-79,206	1845
31	23/01/2016	12:30:30	85	18,3	67	20,4	409	53,1	0,047	-3,999572	-79,206	1845
32	23/01/2016	12:31:30	85	18,3	67	20,4	409	53,1	0,047	-3,999572	-79,206	1845
33	23/01/2016	12:32:30	85	18,4	67	20,4	405	53,1	0,047	-3,999572	-79,206	1845
34	23/01/2016	12:33:30	85	18,5	67	20,4	405	53,1	0,047	-3,999572	-79,206	1845
35	23/01/2016	12:34:30	85	18,5	67	20,4	405	54,7	0,047	-3,999572	-79,206	1845
36	23/01/2016	12:35:30	85	18,5	67	20,4	405	54,7	0,047	-3,999572	-79,206	1845
37	23/01/2016	12:36:30	85	18,7	67	20,4	405	54,7	0,047	-3,999572	-79,206	1845
38	23/01/2016	12:37:30	85	18,7	67	20,4	405	54,7	0,047	-3,999572	-79,206	1845
39	23/01/2016	12:38:30	85	18,7	68	20,4	405	54,7	0,047	-3,999572	-79,206	1845
40	23/01/2016	12:39:30	85	18,7	68	20,4	402	54,7	0,047	-3,999572	-79,206	1845
41	23/01/2016	12:40:30	85	18,6	68	20,4	402	54,7	0,047	-3,999572	-79,206	1845
42	23/01/2016	12:41:30	85	18,6	68	20,4	402	54,7	0,047	-3,999572	-79,206	1845
43	23/01/2016	12:42:30	85	18,6	68	20,4	402	54,7	0,047	-3,999572	-79,206	1845
44	23/01/2016	12:43:30	85	18,6	68	20,4	402	54,7	0,047	-3,999572	-79,206	1845
45	23/01/2016	12:44:30	85	18,5	68	20,4	402	54,7	0,047	-3,999572	-79,206	1845
46	23/01/2016	12:45:30	85	18,5	68	20,4	402	54,7	0,046	-3,999572	-79,206	1845
47	23/01/2016	12:46:30	85	18,5	68	20,4	402	54,7	0,047	-3,999572	-79,206	1845
48	23/01/2016	12:47:30	85	18,5	68	20,4	402	54,7	0,047	-3,999572	-79,206	1845
49	23/01/2016	12:48:30	85	18,5	68	20,4	402	54,7	0,047	-3,999572	-79,206	1845
50	23/01/2016	12:49:30	85	18,6	68	20,4	402	54,7	0,047	-3,999572	-79,206	1845
51	23/01/2016	12:50:30	85	18,6	68	20,4	400	54,7	0,047	-3,999572	-79,206	1845
52	23/01/2016	12:51:30	85	18,7	68	20,4	400	54,7	0,047	-3,999572	-79,206	1845

53	23/01/2016	12:52:30	85	18,7	68	20,4	400	55,4	0,032	-3,999572	-79,206	1845
54	23/01/2016	12:53:30	85	18,7	68	20,4	400	55,4	0,032	-3,999572	-79,206	1845
55	23/01/2016	12:54:30	85	19	68	20,4	400	55,4	0,032	-3,999572	-79,206	1845
56	23/01/2016	12:55:30	85	19	68	20,4	400	55,4	0,032	-3,999572	-79,206	1845
57	23/01/2016	12:56:30	85	19	68	20,4	400	55,4	0,032	-3,999572	-79,206	1845
58	23/01/2016	12:57:30	85	19	68	20,4	400	55,4	0,032	-3,999572	-79,206	1845
59	23/01/2016	12:58:30	85	18,8	68	20,4	400	55,4	0,032	-3,999572	-79,206	1845
60	23/01/2016	12:59:30	85	18,8	68	20,4	400	55,4	0,032	-3,999572	-79,206	1845
61	23/01/2016	13:00:30	85	18,8	68	20,4	400	55,4	0,032	-3,999572	-79,206	1845
62	23/01/2016	13:01:30	85	18,8	68	20,4	400	55,4	0,032	-3,999572	-79,206	1845
63	23/01/2016	13:02:30	85	18,8	68	20,4	400	55,1	0,032	-3,999572	-79,206	1845
64	23/01/2016	13:03:30	85	19,1	68	20,4	400	55,1	0,032	-3,999572	-79,206	1845
65	23/01/2016	13:04:30	85	19,1	68	20,4	400	55,1	0,032	-3,999572	-79,206	1845
66	23/01/2016	13:05:30	85	19,3	68	20,4	395	55,1	0,032	-3,999572	-79,206	1845
67	23/01/2016	13:06:30	85	19,3	68	20,4	395	55,1	0,032	-3,999572	-79,206	1845
68	23/01/2016	13:07:30	85	19,3	68	20,4	395	55,1	0,032	-3,999572	-79,206	1845
69	23/01/2016	13:08:30	85	19,3	68	20,4	395	55,1	0,032	-3,999572	-79,206	1845
70	23/01/2016	13:09:30	85	19,3	68	20,4	395	55,1	0,032	-3,999572	-79,206	1845
71	23/01/2016	13:10:30	85	19,3	68	20,4	395	55,1	0,032	-3,999572	-79,206	1845
72	23/01/2016	13:11:30	85	19,6	68	20,4	395	55,1	0,032	-3,999572	-79,206	1845
73	23/01/2016	13:12:30	85	19,6	68	20,4	395	55,1	0,032	-3,999572	-79,206	1845
74	23/01/2016	13:13:30	85	19,6	68	20,4	395	55,1	0,032	-3,999572	-79,206	1845
75	23/01/2016	13:14:30	85	19,6	68	20,4	395	55,1	0,032	-3,999572	-79,206	1845
76	23/01/2016	13:15:30	85	19,6	68	20,4	395	54,6	0,032	-3,999572	-79,206	1845
77	23/01/2016	13:16:30	85	19,6	68	20,4	395	54,6	0,032	-3,999572	-79,206	1845
78	23/01/2016	13:17:30	85	19,6	68	20,4	395	54,6	0,032	-3,999572	-79,206	1845
79	23/01/2016	13:18:30	85	19,6	68	20,4	395	54,6	0,032	-3,999572	-79,206	1845
80	23/01/2016	13:19:30	85	19,6	68	20,4	395	54,6	0,032	-3,999572	-79,206	1845
81	23/01/2016	13:20:30	85	19,6	68	20,4	395	54,6	0,032	-3,999572	-79,206	1845
82	23/01/2016	13:21:30	85	19,5	68	20,4	395	54,6	0,032	-3,999572	-79,206	1845
83	23/01/2016	13:22:30	85	19,5	68	20,4	395	54,6	0,032	-3,999572	-79,206	1845
84	23/01/2016	13:23:30	85	19,5	68	20,4	395	54,6	0,032	-3,999572	-79,206	1845
85	23/01/2016	13:24:30	85	19,5	67	20,4	395	54,6	0,032	-3,999572	-79,206	1845
86	23/01/2016	13:25:30	85	19,5	67	20,4	395	54,6	0,032	-3,999572	-79,206	1845
87	23/01/2016	13:26:30	85	19,7	67	20,4	397	54,6	0,032	-3,999572	-79,206	1845
88	23/01/2016	13:27:30	85	19,7	67	20,4	397	54,6	0,032	-3,999572	-79,206	1845
89	23/01/2016	13:28:30	85	19,7	67	20,4	397	54,6	0,032	-3,999572	-79,206	1845
90	23/01/2016	13:29:30	85	19,7	67	20,4	397	54,6	0,032	-3,999572	-79,206	1845
91	23/01/2016	13:30:30	85	19,7	67	20,4	397	54,6	0,032	-3,999572	-79,206	1845
92	23/01/2016	13:31:30	85	19,7	67	20,4	397	54,6	0,032	-3,999572	-79,206	1845
93	23/01/2016	13:32:30	85	19,8	67	20,4	397	54,6	0,032	-3,999572	-79,206	1845
94	23/01/2016	13:33:30	85	19,8	67	20,4	397	54,8	0,032	-3,999572	-79,206	1845
95	23/01/2016	13:34:30	85	19,8	67	20,4	397	54,8	0,032	-3,999572	-79,206	1845
96	23/01/2016	13:35:30	85	19,8	67	20,4	397	54,8	0,032	-3,999572	-79,206 70,206	1845
97	23/01/2016	13:36:30	85	19,8	67	20,4	397	54,8	0,032	-3,999572	-79,206 70,206	1845
98	23/01/2016	13:37:30	85	19,8	67	20,4	397	54,8	0,032	-3,999572	-79,206	1845

99	23/01/2016	13:38:30	85	19,8	67	20,4	396	54,8	0,032	-3,999572	-79,206	1845
100	23/01/2016	13:39:30	85	20	67	20,4	396	54,8	0,032	-3,999572	-79,206	1845
101	23/01/2016	13:40:30	85	20	67	20,4	396	54,8	0,032	-3,999572	-79,206	1845
102	23/01/2016	13:41:30	85	20	67	20,4	396	54,8	0,032	-3,999572	-79,206	1845
103	23/01/2016	13:42:30	85	20	67	20,4	396	54,8	0,032	-3,999572	-79,206	1845
104	23/01/2016	13:43:30	85	20	67	20,4	396	54,8	0,032	-3,999572	-79,206	1845
105	23/01/2016	13:44:30	85	20,2	67	20,4	396	54,8	0,032	-3,999572	-79,206	1845
106	23/01/2016	13:45:30	85	20,2	67	20,4	396	54,8	0,032	-3,999572	-79,206	1845
107	23/01/2016	13:46:30	85	20,2	67	20,4	396	54,8	0,032	-3,999572	-79,206	1845
108	23/01/2016	13:47:30	85	20,2	67	20,4	396	54,8	0,032	-3,999572	-79,206	1845
109	23/01/2016	13:48:30	85	20,2	67	20,4	396	54,8	0,032	-3,999572	-79,206	1845
110	23/01/2016	13:49:30	85	20,3	67	20,4	396	54,8	0,032	-3,999572	-79,206	1845
111	23/01/2016	13:50:30	85	20,3	67	20,4	400	54,8	0,032	-3,999572	-79,206	1845
112	23/01/2016	13:51:30	85	20,3	67	20,4	400	54,8	0,032	-3,999572	-79,206	1845
113	23/01/2016	13:52:30	85	20,3	67	20,4	400	54,8	0,031	-3,999572	-79,206	1845
114	23/01/2016	13:53:30	85	21	67	20,4	400	54,8	0,031	-3,999572	-79,206	1845
115	23/01/2016	13:54:30	85	21	67	20,4	400	54,8	0,031	-3,999572	-79,206	1845
116	23/01/2016	13:55:30	85	21	67	20,4	400	54,8	0,031	-3,999572	-79,206	1845
117	23/01/2016	13:56:30	85	21	64	20,4	400	54,8	0,031	-3,999572	-79,206	1845
118	23/01/2016	13:57:30	85	21	64	20,4	400	54,8	0,031	-3,999572	-79,206	1845
119	23/01/2016	13:58:30	85	21,2	64	20,4	400	54,8	0,031	-3,999572	-79,206	1845
120	23/01/2016	13:59:30	85	21,2	64	20,4	400	54,8	0,031	-3,999572	-79,206	1845
121	23/01/2016	14:00:30	85	21,2	64	20,4	400	54,8	0,031	-3,999572	-79,206	1845
122	23/01/2016	14:01:30	85	21,2	64	20,4	400	54,5	0,031	-3,999572	-79,206	1845
123	23/01/2016	14:02:30	85	21,2	64	20,4	400	54,5	0,031	-3,999572	-79,206	1845
124	23/01/2016	14:03:30	85	21,5	64	20,4	402	54,5	0,031	-3,999572	-79,206	1845
125	23/01/2016	14:04:30	85	21,5	64	20,4	402	54,5	0,031	-3,999572	-79,206	1845
126	23/01/2016	14:05:30	85	21,5	64	20,4	402	54,5	0,031	-3,999572	-79,206	1845
127	23/01/2016	14:06:30	85	21,5	64	20,4	402	54,5	0,031	-3,999572	-79,206	1845
128	23/01/2016	14:07:30	85	21,5	64	20,4	402	54,5	0,031	-3,999572	-79,206	1845
129	23/01/2016	14:08:30	85	21,5	64	20,4	402	54,5	0,031	-3,999572	-79,206	1845
130	23/01/2016	14:09:30	85	21,5	64	20,4	402	54,5	0,028	-3,999572	-79,206	1845
131	23/01/2016	14:10:30	85	21,5	64	20,4	402	54,5	0,028	-3,999572	-79,206	1845
132	23/01/2016	14:11:30	85	21,5	64	20,4	402	54,5	0,028	-3,999572	-79,206	1845
133	23/01/2016	14:12:30	85	21,5	64	20,4	402	54,5	0,028	-3,999572	-79,206	1845
134	23/01/2016	14:13:30	85	21,5	64	20,4	402	54,5	0,028	-3,999572	-79,206	1845
135	23/01/2016	14:14:30	85	21,5	64	20,4	402	54,5	0,028	-3,999572	-79,206	1845
136	23/01/2016	14:15:30	85	21,7	63	20,4	402	54,5	0,028	-3,999572	-79,206	1845
137	23/01/2016	14:16:30	85	21,7	63	20,4	405	54,5	0,028	-3,999572	-79,206	1845
138	23/01/2016	14:17:30	85	21,7	63	20,4	405	54,5	0,028	-3,999572	-79,206	1845
139	23/01/2016	14:18:30	85	21,7	63	20,4	405	54,5	0,028	-3,999572	-79,206	1845
140	23/01/2016	14:19:30	85	21,7	63	20,4	405	54,5	0,028	-3,999572	-79,206	1845
141	23/01/2016	14:20:30	85	21,7	63	20,4	405	54,5	0,028	-3,999572	-79,206	1845
142	23/01/2016	14:21:30	85	21,7	63	20,4	405	54,5	0,028	-3,999572	-79,206	1845
143	23/01/2016	14:22:30	85	21,7	63	20,4	405	54,5	0,028	-3,999572	-79,206	1845
144	23/01/2016	14:23:30	85	21,7	63	20,4	405	54,5	0,028	-3,999572	-79,206	1845

145	23/01/2016	14:24:30	85	21,7	63	20,4	405	54,5	0,028	-3,999572	-79,206	1845
146	23/01/2016	14:25:30	85	21,7	63	20,4	405	54,5	0,028	-3,999572	-79,206	1845
147	23/01/2016	14:26:30	85	22	63	20,4	405	54,5	0,028	-3,999572	-79,206	1845
148	23/01/2016	14:27:30	85	22,1	63	20,4	405	54,5	0,028	-3,999572	-79,206	1845
149	23/01/2016	14:28:30	85	22,1	63	20,4	405	54,5	0,028	-3,999572	-79,206	1845
150	23/01/2016	14:29:30	85	22,1	63	20,4	405	54,5	0,028	-3,999572	-79,206	1845
151	23/01/2016	14:30:30	85	22,1	63	20,4	405	54,5	0,028	-3,999572	-79,206	1845
152	23/01/2016	14:31:30	85	22,1	63	20,4	405	54,5	0,143	-3,999572	-79,206	1845
153	23/01/2016	14:32:30	85	22,1	63	20,4	396	54,5	0,143	-3,999572	-79,206	1845
154	23/01/2016	14:33:30	85	22,1	63	20,4	396	54,5	0,143	-3,999572	-79,206	1845
155	23/01/2016	14:34:30	85	22,1	63	20,4	396	54,5	0,143	-3,999572	-79,206	1845
156	23/01/2016	14:35:30	85	22,1	63	20,4	396	54,5	0,143	-3,999572	-79,206	1845
157	23/01/2016	14:36:30	85	22,1	63	20,4	396	54,5	0,143	-3,999572	-79,206	1845
158	23/01/2016	14:37:30	85	22,2	63	20,4	396	54,5	0,143	-3,999572	-79,206	1845
159	23/01/2016	14:38:30	85	22,2	63	20,4	396	54,5	0,143	-3,999572	-79,206	1845
160	23/01/2016	14:39:30	85	22,2	63	20,4	396	54,5	0,143	-3,999572	-79,206	1845
161	23/01/2016	14:40:30	85	22,2	63	20,4	396	53,7	0,143	-3,999572	-79,206	1845
162	23/01/2016	14:41:30	85	22,2	63	20,4	396	53,7	0,143	-3,999572	-79,206	1845
163	23/01/2016	14:42:30	85	22,2	62	20,4	396	53,7	0,143	-3,999572	-79,206	1845
164	23/01/2016	14:43:30	85	22,2	62	20,4	396	53,7	0,143	-3,999572	-79,206	1845
165	23/01/2016	14:44:30	85	22,2	62	20,4	396	53,7	0,143	-3,999572	-79,206	1845
166	23/01/2016	14:45:30	85	22,2	62	20,4	396	53,7	0,143	-3,999572	-79,206	1845
167	23/01/2016	14:46:30	85	22,2	62	20,4	397	53,7	0,143	-3,999572	-79,206	1845
168	23/01/2016	14:47:30	85	22,2	62	20,4	397	53,7	0,143	-3,999572	-79,206	1845
169	23/01/2016	14:48:30	85	22,3	62	20,4	397	53,7	0,143	-3,999572	-79,206	1845
170	23/01/2016	14:49:30	85	22,3	62	20,4	397	53,7	0,143	-3,999572	-79,206	1845
171	23/01/2016	14:50:30	85	22,3	62	20,4	397	53,7	0,143	-3,999572	-79,206	1845
172	23/01/2016	14:51:30	85	22,3	62	20,4	397	53,7	0,143	-3,999572	-79,206	1845
173	23/01/2016	14:52:30	85	22,3	62	20,4	397	53,7	0,143	-3,999572	-79,206	1845
174	23/01/2016	14:53:30	85	22,1	62	20,4	397	53,7	0,143	-3,999572	-79,206	1845
175	23/01/2016	14:54:30	85	22,1	62	20,4	397	53,7	0,143	-3,999572	-79,206	1845
176	23/01/2016	14:55:30	85	22,1	62	20,4	397	53,7	0,143	-3,999572	-79,206	1845
177	23/01/2016	14:56:30	85	22,1	62	20,4	397	53,7	0,143	-3,999572	-79,206	1845
178	23/01/2016	14:57:30	85	22,1	62	20,4	398	53,7	0,143	-3,999572	-79,206	1845
179	23/01/2016	14:58:30	85	22,1	62	20,3	398	53,7	0,143	-3,999572	-79,206	1845
180	23/01/2016	14:59:30	85	21,8	62	20,3	398	53,7	0,143	-3,999572	-79,206	1845
181	23/01/2016	15:00:30	85	21,8	62	20,3	398	53,7	0,123	-3,999572	-79,206	1845
182	23/01/2016	15:01:30	85	21,8	62	20,3	398	53,7	0,123	-3,999572	-79,206	1845
183	23/01/2016	15:02:30	85	21,8	62	20,3	398	53,7	0,123	-3,999572	-79,206 70,206	1845
184 185	23/01/2016 23/01/2016	15:03:30 15:04:30	85 85	21,8 21,8	59 59	20,3	398 398	53,7 53,7	0,143 0,143	-3,999572 -3,999572	-79,206 -79,206	1845 1845
186	23/01/2016	15:04:30	85	21,6	59	20,3	398	53,7	0,143	-3,999572	-79,206	1845
187	23/01/2016	15:06:30	85	21,6	59	20,3	398	53,7	0,143	-3,999572	-79,206	1845
188	23/01/2016	15:07:30	85	21,6	59	20,3	398	53,7	0,143	-3,999572	-79,206	1845
189	23/01/2016	15:08:30	85	21,6	59	20,3	398	53,7	0,143	-3,999572	-79,206	1845
190	23/01/2016	15:09:30	85	21,7	59	20,3	398	53,7	0,143	-3,999572	-79,206	1845
.50	20/01/2010	10.00.00	00	£1,1	55	20,0	000	55,7	0,170	-,	,=00	10-10

191	23/01/2016	15:10:30	85	21,7	59	20,3	398	53,7	0,143	-3,999572	-79,206	1845
192	23/01/2016	15:11:30	85	21,7	59	20,3	390	53,7	0,143	-3,999572	-79,206	1845
193	23/01/2016	15:12:30	85	21,7	59	20,3	390	53,7	0,143	-3,999572	-79,206	1845
194	23/01/2016	15:13:30	85	21,7	59	20,3	390	53,7	0,143	-3,999572	-79,206	1845
195	23/01/2016	15:14:30	85	21,7	59	20,3	390	53,7	0,143	-3,999572	-79,206	1845
196	23/01/2016	15:15:30	85	21,5	59	20,3	390	53,7	0,143	-3,999572	-79,206	1845
197	23/01/2016	15:16:30	85	21,5	59	20,3	390	53,7	0,143	-3,999572	-79,206	1845
198	23/01/2016	15:17:30	85	21,5	59	20,3	390	53,7	0,143	-3,999572	-79,206	1845
199	23/01/2016	15:18:30	85	21,5	59	20,3	390	53,7	0,143	-3,999572	-79,206	1845
200	23/01/2016	15:19:30	85	21,5	59	20,3	390	54,1	0,143	-3,999572	-79,206	1845
201	23/01/2016	15:20:30	85	21,5	59	20,3	390	54,1	0,143	-3,999572	-79,206	1845
202	23/01/2016	15:21:30	85	21,5	59	20,3	390	54,1	0,143	-3,999572	-79,206	1845
203	23/01/2016	15:22:30	85	21,5	59	20,3	390	54,1	0,143	-3,999572	-79,206	1845
204	23/01/2016	15:23:30	85	21,5	59	20,3	385	54,1	0,143	-3,999572	-79,206	1845
205	23/01/2016	15:24:30	85	21,5	59	20,3	385	54,1	0,143	-3,999572	-79,206	1845
206	23/01/2016	15:25:30	85	21,5	59	20,3	385	54,1	0,143	-3,999572	-79,206	1845
207	23/01/2016	15:26:30	86	21,5	59	20,3	385	54,1	0,143	-3,999572	-79,206	1845
208	23/01/2016	15:27:30	86	21,5	59	20,3	385	54,1	0,143	-3,999572	-79,206	1845
209	23/01/2016	15:28:30	86	21,3	59	20,3	385	54,1	0,143	-3,999572	-79,206	1845
210	23/01/2016	15:29:30	86	21,3	59	20,3	385	54,1	0,143	-3,999572	-79,206	1845
211	23/01/2016	15:30:30	86	21,3	59	20,3	385	54,1	0,097	-3,999572	-79,206	1845
212	23/01/2016	15:31:30	86	21,3	59	20,3	385	54,1	0,143	-3,999572	-79,206	1845
213	23/01/2016	15:32:30	86	21,3	59	20,3	385	54,1	0,143	-3,999572	-79,206	1845
214	23/01/2016	15:33:30	86	21,3	59	20,3	385	54,1	0,143	-3,999572	-79,206	1845
215	23/01/2016	15:34:30	86	21,3	60	20,3	385	54,1	0,143	-3,999572	-79,206	1845
216	23/01/2016	15:35:30	86	21,3	60	20,3	385	51,2	0,143	-3,999572	-79,206	1845
217	23/01/2016	15:36:30	86	21,4	60	20,3	385	51,2	0,143	-3,999572	-79,206	1845
218	23/01/2016	15:37:30	86	21,4	60	20,3	384	51,2	0,143	-3,999572	-79,206	1845
219	23/01/2016	15:38:30	86	21,4	60	20,3	384	51,2	0,143	-3,999572	-79,206	1845
220	23/01/2016	15:39:30	86	21,4	60	20,3	384	51,2	0,143	-3,999572	-79,206	1845
221	23/01/2016	15:40:30	86	21,4	60	20,3	384	51,2	0,143	-3,999572	-79,206	1845
222	23/01/2016	15:41:30	86	21,4	60	20,3	384	51,2	0,143	-3,999572	-79,206	1845
223	23/01/2016	15:42:30	86	21,4	60	20,3	384	51,2	0,143	-3,999572	-79,206	1845
224	23/01/2016	15:43:30	86	21,4	60	20,3	384	51,2	0,143	-3,999572	-79,206	1845
225	23/01/2016	15:44:30	86	21,4	61	20,3	382	51,2	0,143	-3,999572	-79,206	1845
226	23/01/2016	15:45:30	86	21,4	61	20,3	382	51,2	0,093	-3,999572	-79,206	1845
227	23/01/2016	15:46:30	86	21,4	61	20,3	382	51,2	0,143	-3,999572	-79,206	1845
228	23/01/2016	15:47:30	86	21,6	61	20,3	382	51,2	0,143	-3,999572	-79,206	1845
229	23/01/2016	15:48:30	86	21,6	61	20,3	382	51,2	0,143	-3,999572	-79,206	1845
230	23/01/2016	15:49:30	86	21,6	61	20,3	382	51,2	0,143	-3,999572	-79,206	1845
231	23/01/2016	15:50:30	86	21,6	61	20,3	382	51,2	0,143	-3,999572	-79,206	1845
232	23/01/2016	15:51:30	86	21,6	61	20,3	382	51,2	0,143	-3,999572	-79,206	1845
233	23/01/2016	15:52:30	86	22	61	20,3	382	51,2	0,143	-3,999572	-79,206	1845
234	23/01/2016	15:53:30	86	22	61	20,3	382	51,2	0,143	-3,999572	-79,206	1845
235	23/01/2016	15:54:30	86	22	61	20,3	382	51,2	0,143	-3,999572	-79,206	1845
236	23/01/2016	15:55:30	86	21,8	61	20,3	380	51,2	0,143	-3,999572	-79,206	1845

237	23/01/2016	15:56:30	86	21,8	61	20,3	380	51,2	0,143	-3,999572	-79,206	1845
238	23/01/2016	15:57:30	86	21,8	61	20,3	380	50,1	0,143	-3,999572	-79,206	1845
239	23/01/2016	15:58:30	86	21,8	61	20,3	380	50,1	0,143	-3,999572	-79,206	1845
240	23/01/2016	15:59:30	86	22	61	20,3	380	50,1	0,143	-3,999572	-79,206	1845
241	23/01/2016	16:00:30	86	22	61	20,3	380	50,1	0,143	-3,999572	-79,206	1845
242	23/01/2016	16:01:30	86	22	61	20,3	380	50,1	0,143	-3,999572	-79,206	1845
243	23/01/2016	16:02:30	86	22	61	20,3	384	50,1	0,143	-3,999572	-79,206	1845
244	23/01/2016	16:03:30	86	22	61	20,3	384	50,1	0,143	-3,999572	-79,206	1845
245	23/01/2016	16:04:30	86	22	61	20,3	384	50,1	0,029	-3,999572	-79,206	1845
246	23/01/2016	16:05:30	86	22,3	63	20,3	384	50,1	0,029	-3,999572	-79,206	1845
247	23/01/2016	16:06:30	86	22,3	63	20,3	384	50,1	0,029	-3,999572	-79,206	1845
248	23/01/2016	16:07:30	86	22,3	63	20,3	384	50,1	0,029	-3,999572	-79,206	1845
249	23/01/2016	16:08:30	86	22,3	63	20,3	384	50,1	0,029	-3,999572	-79,206	1845
250	23/01/2016	16:09:30	86	22,3	63	20,3	384	50,1	0,029	-3,999572	-79,206	1845
251	23/01/2016	16:10:30	86	22,5	63	20,3	384	50,1	0,029	-3,999572	-79,206	1845
252	23/01/2016	16:11:30	86	22,5	63	20,3	384	50,1	0,029	-3,999572	-79,206	1845
253	23/01/2016	16:12:30	86	22,5	63	20,3	384	50,1	0,029	-3,999572	-79,206	1845
254	23/01/2016	16:13:30	86	22,5	63	20,3	384	50,1	0,029	-3,999572	-79,206	1845
255	23/01/2016	16:14:30	86	22,5	63	20,3	384	50,1	0,029	-3,999572	-79,206	1845
256	23/01/2016	16:15:30	86	22,5	64	20,3	384	50,1	0,029	-3,999572	-79,206	1845
257	23/01/2016	16:16:30	86	22,5	64	20,3	384	50,1	0,045	-3,999572	-79,206	1845
258	23/01/2016	16:17:30	86	22,5	64	20,3	386	45,2	0,045	-3,999572	-79,206	1845
259	23/01/2016	16:18:30	86	22,5	64	20,3	386	45,2	0,045	-3,999572	-79,206	1845
260	23/01/2016	16:19:30	86	22,2	64	20,3	386	45,2	0,045	-3,999572	-79,206	1845
261	23/01/2016	16:20:30	86	22,2	64	20,3	386	45,2	0,045	-3,999572	-79,206	1845
262	23/01/2016	16:21:30	86	22,2	64	20,3	386	45,2	0,045	-3,999572	-79,206	1845
263	23/01/2016	16:22:30	86	22,2	64	20,3	386	45,2	0,045	-3,999572	-79,206	1845
264	23/01/2016	16:23:30	86	22,2	64	20,3	386	45,2	0,045	-3,999572	-79,206	1845
265	23/01/2016	16:24:30	86	22,2	64	20,3	386	45,2	0,045	-3,999572	-79,206	1845
266	23/01/2016	16:25:30	86	22,2	64	20,3	386	45,2	0,045	-3,999572	-79,206	1845
267	23/01/2016	16:26:30	86	22,2	64	20,3	386	45,2	0,045	-3,999572	-79,206	1845
268	23/01/2016	16:27:30	86	22,1	64	20,3	405	45,2	0,045	-3,999572	-79,206	1845
269	23/01/2016	16:28:30	86	22,1	64	20,3	405	45,2	0,045	-3,999572	-79,206	1845
270	23/01/2016	16:29:30	86	22,1	64	20,3	405	45,2	0,045	-3,999572	-79,206	1845
271	23/01/2016	16:30:30	86	22,1	64	20,3	405	45,2	0,045	-3,999572	-79,206	1845
272	23/01/2016	16:31:30	86	22,1	64	20,3	405	45,2	0,045	-3,999572	-79,206	1845
273	23/01/2016	16:32:30	86	22,6	66	20,3	405	45,2	0,045	-3,999572	-79,206	1845
274	23/01/2016	16:33:30	86	22,6	66	20,3	405	45,2	0,045	-3,999572	-79,206	1845
275 276	23/01/2016	16:34:30	86	22,6	66	20,3	405	42,3	0,045 0,045	-3,999572 -3,999572	-79,206 -79,206	1845 1845
276	23/01/2016 23/01/2016	16:35:30 16:36:30	86 86	22,6 22,6	66 66	20,3	405 405	42,3 42,3	0,045	-3,999572	-79,206	1845
278	23/01/2016	16:37:30	86	22,6	66	20,3	405	42,3	0,045	-3,999572	-79,206	1845
279	23/01/2016	16:38:30	86	22,7	66	20,3	395	42,3	0,045	-3,999572	-79,206	1845
280	23/01/2016	16:39:30	86	22,7	66	20,3	395	42,3	0,045	-3,999572	-79,206	1845
281	23/01/2016	16:40:30	86	22,7	66	20,3	395	42,3	0,045	-3,999572	-79,206	1845
282	23/01/2016	16:41:30	86	22,7	66	20,3	395	42,3	0,045	-3,999572	-79,206	1845
202	20/01/2010	10.41.30	50	££, I	00	۷,5	333	→∠, ∪	0,040	5,000012	. 5,250	1040

283	23/01/2016	16:42:30	86	22,8	66	20,3	395	42,3	0,045	-3,999572	-79,206	1845
284	23/01/2016	16:43:30	86	22,8	66	20,3	395	42,3	0,045	-3,999572	-79,206	1845
285	23/01/2016	16:44:30	86	22,8	66	20,3	395	42,3	0,045	-3,999572	-79,206	1845
286	23/01/2016	16:45:30	86	22,8	66	20,3	395	42,3	0,045	-3,999572	-79,206	1845
287	23/01/2016	16:46:30	86	22,8	66	20,3	395	42,3	0,045	-3,999572	-79,206	1845
288	23/01/2016	16:47:30	86	23,1	66	20,3	395	42,3	0,045	-3,999572	-79,206	1845
289	23/01/2016	16:48:30	86	23,1	66	20,3	395	42,3	0,045	-3,999572	-79,206	1845
290	23/01/2016	16:49:30	86	23,1	66	20,3	395	42,3	0,045	-3,999572	-79,206	1845
291	23/01/2016	16:50:30	86	23,1	66	20,3	395	42,3	0,045	-3,999572	-79,206	1845
292	23/01/2016	16:51:30	86	23,1	66	20,3	395	42,3	0,045	-3,999572	-79,206	1845
293	23/01/2016	16:52:30	86	23,2	66	20,3	395	42,3	0,045	-3,999572	-79,206	1845
294	23/01/2016	16:53:30	86	23,2	66	20,3	397	42,3	0,045	-3,999572	-79,206	1845
295	23/01/2016	16:54:30	86	23,2	66	20,3	397	42,3	0,045	-3,999572	-79,206	1845
296	23/01/2016	16:55:30	86	23,2	66	20,3	397	42,3	0,045	-3,999572	-79,206	1845
297	23/01/2016	16:56:30	86	23,2	66	20,3	397	40,6	0,045	-3,999572	-79,206	1845
298	23/01/2016	16:57:30	86	23,2	67	20,3	397	40,6	0,045	-3,999572	-79,206	1845
299	23/01/2016	16:58:30	86	23	67	20,3	397	40,6	0,045	-3,999572	-79,206	1845
300	23/01/2016	16:59:30	86	23	67	20,3	397	40,6	0,045	-3,999572	-79,206	1845
301	23/01/2016	17:00:30	86	23	67	20,3	397	40,6	0,045	-3,999572	-79,206	1845
302	23/01/2016	17:01:30	86	23	67	20,3	397	40,6	0,045	-3,999572	-79,206	1845
303	23/01/2016	17:02:30	86	23	67	20,4	397	40,6	0,045	-3,999572	-79,206	1845
304	23/01/2016	17:03:30	86	23	67	20,4	397	40,6	0,045	-3,999572	-79,206	1845
305	23/01/2016	17:04:30	86	23	67	20,4	397	40,6	0,045	-3,999572	-79,206	1845
306	23/01/2016	17:05:30	86	23	67	20,4	397	40,6	0,045	-3,999572	-79,206	1845
307	23/01/2016	17:06:30	86	23	67	20,4	397	40,6	0,045	-3,999572	-79,206	1845
308	23/01/2016	17:07:30	86	23,1	67	20,4	397	40,6	0,045	-3,999572	-79,206	1845
309	23/01/2016	17:08:30	86	23,1	67	20,4	400	40,6	0,045	-3,999572	-79,206	1845
310	23/01/2016	17:09:30	86	23,1	67	20,4	400	40,6	0,045	-3,999572	-79,206	1845
311	23/01/2016	17:10:30	86	23,1	67	20,4	400	39,7	0,045	-3,999572	-79,206	1845
312	23/01/2016	17:11:30	86	23,1	67	20,4	400	39,7	0,045	-3,999572	-79,206	1845
313	23/01/2016	17:12:30	86	23,1	67	20,4	400	39,7	0,045	-3,999572	-79,206	1845
314	23/01/2016	17:13:30	86	22,5	67	20,4	400	39,7	0,045	-3,999572	-79,206	1845
315	23/01/2016	17:14:30	86	22,5	67	20,4	400	39,7	0,045	-3,999572	-79,206	1845
316	23/01/2016	17:15:30	86	22,5	67	20,4	400	39,7	0,045	-3,999572	-79,206	1845
317	23/01/2016	17:16:30	86	22,5	69	20,4	400	39,7	0,045	-3,999572	-79,206	1845
318	23/01/2016	17:17:30	86	22,5	69	20,4	400	39,7	0,045	-3,999572	-79,206	1845
319 320	23/01/2016	17:18:30	86	22,5	69	20,4	400	39,7	0,045 0,045	-3,999572 -3,999572	-79,206 -79,206	1845 1845
321	23/01/2016	17:19:30	86	22,4	69	20,4	400	39,7	0,045	-3,999572	-79,206	
322	23/01/2016	17:20:30	86	22,4	69			39,7 39,7	0,049	-3,999572	-79,206	1845 1845
323	23/01/2016 23/01/2016	17:21:30 17:22:30	86 86	22,4	69 69	20,4	400	39,7	0,049	-3,999572	-79,206	1845
324	23/01/2016	17:22:30	86	22,4	69	20,4	400	39,7	0,049	-3,999572	-79,206	1845
325	23/01/2016	17:23:30	86	22,4	69	20,4	400	39,7	0,049	-3,999572	-79,206	1845
326	23/01/2016	17:24:30	86	22,4	69	20,4	400	39,7	0,049	-3,999572	-79,206	1845
327	23/01/2016	17:26:30	86	22,3	69	20,4	396	39,7	0,049	-3,999572	-79,206	1845
328	23/01/2016	17:27:30	86	22,3	71	20,4	396	39,7	0,049	-3,999572	-79,206	1845
0_0	20/01/2010	11.21.00	50	22,0	, ,	20,7	000	00,1	0,040	-,	,=00	10-10

329	23/01/2016	17:28:30	86	22,3	71	20,4	396	39,7	0,049	-3,999572	-79,206	1845
330	23/01/2016	17:29:30	86	22,3	71	20,4	396	39,7	0,049	-3,999572	-79,206	1845
331	23/01/2016	17:30:30	86	22,3	71	20,4	396	39,7	0,049	-3,999572	-79,206	1845
332	23/01/2016	17:31:30	86	22,3	71	20,4	396	39,7	0,049	-3,999572	-79,206	1845
333	23/01/2016	17:32:30	86	22,3	71	20,4	396	40,5	0,049	-3,999572	-79,206	1845
334	23/01/2016	17:33:30	86	21,8	71	20,4	396	40,5	0,049	-3,999572	-79,206	1845
335	23/01/2016	17:34:30	86	21,8	71	20,4	396	40,5	0,049	-3,999572	-79,206	1845
336	23/01/2016	17:35:30	86	21,8	71	20,4	396	40,5	0,049	-3,999572	-79,206	1845
337	23/01/2016	17:36:30	86	21,8	71	20,4	396	40,5	0,049	-3,999572	-79,206	1845
338	23/01/2016	17:37:30	86	21,8	71	20,4	396	40,5	0,049	-3,999572	-79,206	1845
339	23/01/2016	17:38:30	86	21,8	71	20,4	396	40,5	0,049	-3,999572	-79,206	1845
340	23/01/2016	17:39:30	86	21,8	71	20,4	396	40,5	0,049	-3,999572	-79,206	1845
341	23/01/2016	17:40:30	86	21,6	71	20,4	394	40,5	0,049	-3,999572	-79,206	1845
342	23/01/2016	17:41:30	86	21,6	71	20,4	394	40,5	0,049	-3,999572	-79,206	1845
343	23/01/2016	17:42:30	86	21,6	71	20,4	394	40,5	0,049	-3,999572	-79,206	1845
344	23/01/2016	17:43:30	86	21,6	71	20,4	394	40,5	0,049	-3,999572	-79,206	1845
345	23/01/2016	17:44:30	86	21,6	71	20,4	394	40,5	0,049	-3,999572	-79,206	1845
346	23/01/2016	17:45:30	86	21,6	71	20,4	394	40,5	0,049	-3,999572	-79,206	1845
347	23/01/2016	17:46:30	86	21,6	71	20,4	394	40,5	0,049	-3,999572	-79,206	1845
348	23/01/2016	17:47:30	86	21,5	71	20,4	394	40,5	0,056	-3,999572	-79,206	1845
349	23/01/2016	17:48:30	86	21,5	71	20,4	394	40,5	0,056	-3,999572	-79,206	1845
350	23/01/2016	17:49:30	86	21,5	71	20,4	394	40,5	0,056	-3,999572	-79,206	1845
351	23/01/2016	17:50:30	86	21,5	71	20,4	394	40,5	0,056	-3,999572	-79,206	1845
352	23/01/2016	17:51:30	86	21,5	71	20,4	394	42,8	0,056	-3,999572	-79,206	1845
353	23/01/2016	17:52:30	86	21,5	71	20,4	394	42,8	0,056	-3,999572	-79,206	1845
354	23/01/2016	17:53:30	86	21,5	71	20,4	394	42,8	0,056	-3,999572	-79,206	1845
355	23/01/2016	17:54:30	86	21,5	71	20,4	394	42,8	0,056	-3,999572	-79,206	1845
356	23/01/2016	17:55:30	86	21,6	71	20,4	394	42,8	0,056	-3,999572	-79,206	1845
357	23/01/2016	17:56:30	86	21,6	72	20,4	394	42,8	0,056	-3,999572	-79,206	1845
358	23/01/2016	17:57:30	86	21,6	72	20,4	394	42,8	0,056	-3,999572	-79,206	1845
359	23/01/2016	17:58:30	86	21,6	72	20,4	394	42,8	0,056	-3,999572	-79,206	1845
360	23/01/2016	17:59:30	86	21,6	72	20,4	394	42,8	0,056	-3,999572	-79,206	1845
361	23/01/2016	18:00:30	86	21,6	72	20,4	394	42,8	0,056	-3,999572	-79,206	1845
362	23/01/2016	18:01:30	86	21,6	72	20,4	394	42,8	0,056	-3,999572	-79,206	1845
363	23/01/2016	18:02:30	86	21,6	72	20,4	394	42,8	0,056	-3,999572	-79,206	1845
364	23/01/2016	18:03:30	86	21,7	72	20,4	394	42,8	0,056	-3,999572	-79,206	1845
365 366	23/01/2016	18:04:30	86	21,7	72	20,4	394 394	42,8	0,056 0,056	-3,999572 -3,999572	-79,206 -79,206	1845 1845
367	23/01/2016	18:05:30	86	21,7	72	20,4	394	42,8		-3,999572	-79,206	
368	23/01/2016	18:06:30	86	21,7	72			42,8	0,056	-3,999572	-79,206	1845 1845
369	23/01/2016 23/01/2016	18:07:30 18:08:30	86 86	21,7	72 72	20,4	394 394	42,8 42,8	0,056 0,056	-3,999572	-79,206	1845
370	23/01/2016	18:09:30	86	21,7	72	20,4	394	42,8	0,056	-3,999572	-79,206	1845
371	23/01/2016	18:10:30	86	21,7	72	20,4	392	42,8	0,056	-3,999572	-79,206	1845
372	23/01/2016	18:11:30	86	21,7	72	20,4	392	42,8	0,056	-3,999572	-79,206	1845
373	23/01/2016	18:12:30	86	21,7	75	20,4	392	42,8	0,056	-3,999572	-79,206	1845
374	23/01/2016	18:13:30	86	21,7	75	20,4	392	42,8	0,056	-3,999572	-79,206	1845
- U	_0/01/2010	10.10.00	00	£1,1	, ,	20,7	002	¬∠,∪	0,000	-,	,=00	10-10

375	23/01/2016	18:14:30	86	21,7	75	20,4	392	42,8	0,056	-3,999572	-79,206	1845
376	23/01/2016	18:15:30	86	21,6	75	20,4	392	42,8	0,054	-3,999572	-79,206	1845
377	23/01/2016	18:16:30	86	21,6	75	20,4	392	42,8	0,054	-3,999572	-79,206	1845
378	23/01/2016	18:17:30	86	21,6	75	20,4	392	42,8	0,054	-3,999572	-79,206	1845
379	23/01/2016	18:18:30	86	21,6	75	20,4	392	42,8	0,054	-3,999572	-79,206	1845
380	23/01/2016	18:19:30	86	21,6	75	20,4	392	42,8	0,054	-3,999572	-79,206	1845
381	23/01/2016	18:20:30	86	21,6	75	20,4	392	42,8	0,054	-3,999572	-79,206	1845
382	23/01/2016	18:21:30	86	21,6	75	20,4	392	42,8	0,054	-3,999572	-79,206	1845
383	23/01/2016	18:22:30	86	21,6	75	20,4	392	42,8	0,054	-3,999572	-79,206	1845
384	23/01/2016	18:23:30	86	21,6	75	20,4	392	42,8	0,054	-3,999572	-79,206	1845
385	23/01/2016	18:24:30	86	21,5	75	20,4	389	42,8	0,054	-3,999572	-79,206	1845
386	23/01/2016	18:25:30	86	21,5	75	20,4	389	42,8	0,054	-3,999572	-79,206	1845
387	23/01/2016	18:26:30	86	21,5	78	20,4	389	42,8	0,054	-3,999572	-79,206	1845
388	23/01/2016	18:27:30	86	21,5	78	20,4	389	35,6	0,054	-3,999572	-79,206	1845
389	23/01/2016	18:28:30	86	21,5	78	20,4	389	35,6	0,054	-3,999572	-79,206	1845
390	23/01/2016	18:29:30	86	21,5	78	20,4	389	35,6	0,054	-3,999572	-79,206	1845
391	23/01/2016	18:30:30	86	21,5	78	20,4	389	35,6	0,054	-3,999572	-79,206	1845