

UNIVESIDAD TÉCNICA PARTICULAR DE LOJA

La Universidad Católica de Loja

ÁREA TÉCNICA

TÍTULO DE INGENIERO CIVIL

Análisis de deformaciones verticales de un movimiento de ladera mediante observaciones GPS y nivelación geométrica de alta precisión

TRABAJO DE TITULACIÓN

AUTOR: Celi Celi, Kelvin Daniel

DIRECTOR: González Zúñiga, Julio César, Mgtr.

CODIRECTOR: Zárate Torres, Belizario, Mgtr.

LOJA – ECUADOR

Esta versión digital, ha sido acreditada bajo la licencia Creative Commons 4.0, CC BY-NY-SA: Reconocimiento-No comercial-Compartir igual; la cual permite copiar, distribuir y comunicar públicamente la obra, mientras se reconozca la autoría original, no se utilice con fines comerciales y se permiten obras derivadas, siempre que mantenga la misma licencia al ser divulgada. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

APROBACIÓN DE LA DIRECTOR DEL TRABAJO DE TITULACIÓN

DOCENTE DE LA TITUL ACIÓN
Julio César González Zúñiga
M.Sc.

De mi consideración:

El presente trabajo de titulación: "Análisis de deformaciones verticales de un movimiento de ladera mediante observaciones GPS y nivelación geométrica de alta precisión", realizado por Kelvin Daniel Celi Celi, ha sido orientado y revisado durante su ejecución, por cuanto se aprueba la presentación del mismo.

Loja, febrero de 2017

.....

M.Sc. Julio Cesar González Zúñiga
DIRECTOR DE TRABAJO DE FIN DE TITULACIÓN

DECLARACIÓN DE AUTORÍA Y CESIÓN DE DERECHOS

" Yo, Kelvin Daniel Celi Celi declaro ser autor del presente trabajo de titulación: Análisis de

deformaciones verticales de un movimiento de ladera mediante observaciones GPS y

nivelación geométrica de alta precisión, de la Titulación Ingeniería Civil, siendo el Ingeniero

Julio Cesar González director y el Ingeniero Belizario Amador Zárate co-director del presente

trabajo; y eximo expresamente a la Universidad Técnica Particular de Loja y a sus

representantes legales de posibles reclamos o acciones legales. Además certifico que las

ideas, conceptos, procedimientos y resultados vertidos en el presente trabajo investigativo,

son de mi exclusiva responsabilidad.

Adicionalmente declaro conocer y aceptar la disposición del Art. 88 del Estatuto Orgánico de

la Universidad Técnica Particular de Loja que en su parte pertinente textualmente dice:

"Forman parte del patrimonio de la Universidad la propiedad intelectual de investigaciones,

trabajos científicos o técnicos y tesis de grado o trabajos de titulación que se realicen con el

apoyo financiero, académico o institucional (operativo) de la Universidad"

Kelvin Daniel Celi Celi

CI: 1104379423

iii

DEDICATORIA

La que somos, es el regala de Dios para nosotros. En la que nos convertimos, es el regala de nosotros para Dios (Powell, s.f.).

Con mucho cariño quiero dedicar esta tesis, que representa el sacrificio de toda mi vida universitaria, primero a mis padres Carlos y Martha por ser mi apoyo fundamental para empezar y culminar con éxito mi carrera universitaria, a mis hermanos y sobrinos que cada día me enseña algo nuevo brindándome su cariño y buenos consejos por lo que estoy agradecido, y a Dios por regalarme a la mejor familia del mundo, no existe en este mundo algo de tan gran valor para poder devolver todo lo que he recibido en esta vida ni palabras que puedan explicar el amor que siento hacia a ellos.

Kelvin,

AGRADECIMIENTO

Siempre estaré agradecido con mi Dios y mi Virgencita del Cisne por siempre bendecirme

para poder llegar a culminar este trabajo de fin de titulación y por hacer realidad este sueño

tan anhelado.

A todos los que conforman la UNIVERSIDAD TÉCNICA PARTICULAR DE LOJA por darme

la oportunidad de estudiar y compartir estos años de preparación para llegar a ser un gran

profesional.

Al Magister Belizario Zárate por su esfuerzo y dedicación, quien con sus conocimientos, su

experiencia, su paciencia y su motivación ha logrado en mí que pueda terminar esta

investigación con éxito.

También me gustaría agradecer a mis docentes que durante toda mi carrera profesional, han

aportado con un granito de arena a mi formación con sus consejos, su enseñanza y de manera

especial por su amistad.

De igual manera agradecer al Magister Julio César González por su visión crítica de muchos

aspectos cotidianos de la vida, por su rectitud en su profesión como docente, por sus consejos,

que ayudan a formarte como persona e investigador.

Y por último a Valeria Ruiz quien con su ayuda y motivación mi vida han cambiado por

completo por lo que siempre estaré agradecido con ella.

Son muchas las personas que han formado parte de mi vida profesional a las que me

encantaría agradecer su amistad, consejos, apoyo, ánimo y compania en los momentos más

difíciles de mi vida. Algunas están aquí conmigo y otras en mis recuerdos y en mi corazón, sin

importar en donde estén quiero darles las gracias por formar parte de mí, por todo lo que me

han brindado y por todas sus bendiciones.

Para ellos: Muchas gracias y que Dios los bendiga

٧

ÍNDICE DE CONTENIDOS

CARÁTULA		i
APROBACIÓ	N DEL DIRECTOR DEL TRABAJO DE FIN DE TITULACIÓN	ii
DECLARACI	ÓN DE AUTORÍA Y CESIÓN DE DERECHOS	iii
DEDICATOR	ÍA	iv
AGRADECIM	IIENTO	V
ÍNDICE DE C	CONTENIDOS	vi
ÍNDICE DE T	ABLAS	viii
ÍNDICE DE F	IGURAS	ix
RESUMEN		1
ABSTRACT		2
INTRODUCC	CIÓN	3
OBJETIVOS.		5
CAPÍTULO I.	ESTADO DEL ARTE	6
1.1. Mo	vimientos de ladera	7
1.1.1.	Clasificación de movimientos de laderas	7
1.1.2.	Factores desencadenantes de los deslizamientos	8
1.1.3.	Velocidad del movimiento en laderas inestables y su impacto potencial	9
1.2. Me	todologías utilizadas para el monitoreo de los movimientos de ladera	10
1.2.1.	Métodos geodésicos	10
1.2.2.	Métodos de teledetección	11
1.2.3.	Métodos fotogramétricos	11
CAPÍTULO II	I. MATERIALES Y MÉTODOS	12
2.1. Áre	ea de estudio	13
2.1.1.	Ubicación geográfica	13
2.1.1.	Geología	13
2.1.2.	Clima	14

2.2. Materiales	
2.2.1. Selección e instalación de red de	e monitoreo 15
2.2.2. Monitoreo de la red de control	15
CAPÍTULO III. ANÁLISIS Y DISCUSIÓN DE R	ESULTADOS17
3.1. Periodos de monitoreo y datos obteni	idos18
3.2. Comportamiento en la deformación v	ertical de la red de monitoreo en el talud y comparación
de técnicas de monitoreo utilizadas	
CONCLUSIONES	
RECOMENDACIONES	31
REFERENCIAS BIBLIOGRÁFICAS	32
ANEXOS	35
A.1. Anexo fotográfico	
A.1.1. Diseño de la red de control	
A.1.2. Monitoreo con GPS Timble R6	
A 1.3 Monitoreo con nivel electrónico Geo	omay 7DL 700 38

ÍNDICE DE TABLAS

Tabla 1. Escala de velocidades de los movimientos de ladera	9
Tabla 2. Fechas de monitoreos en la zona de estudio	18
Tabla 3. Datos obtenidos con el GPS	19
Tabla 4. Datos obtenidos con el del nivel electrónico	20
Tabla 5. Periodos de monitoreo del GPS y nivel electrónico	21
Tabla 6. Deformaciones efectivas verticales medidas con el GPS	24
Tabla 7. Deformaciones efectivas verticales medidas con el nivel electrónico	25
Tabla 8. Resultados de desviación estándar para el GPS	28
Tabla 9. Resultados de desviación estándar para el nivel electrónico	29

ÍNDICE DE FIGURAS

Figura1. Ubicación de la ladera en estudio	13
Figura 2. Colocación de mojones in situ	14
Figura 3. Ilustración del equipo GPS (Rover) marca Timble R6	15
Figura 4. Ilustración del equipo de nivelación Geomax ZDL 700	16
Figura 5. Deformaciones efectivas del GPS	26
Figura 6. Deformaciones efectivas del nivel electrónico	27
Figura 7. Ilustración de la zona de estudio	36
Figura 8. Procedimiento para la limpieza de la capa vegetal y excavación	36
Figura 9. Procedimiento de la colocación de la varilla y el ajuste con hormigón	36
Figura 10. Ilustración de la señalización de los puntos de control	37
Figura 11. Procedimiento del levantamiento con el equipo GPS Timble R6	37
Figura 12: Procedimiento del levantamiento con el equipo nivel electrónico Geomax ZDL 700	38

RESUMEN

La presente investigación determina el grado de precisión de deformaciones verticales mediante dos métodos de monitoreo correspondientes a GPS diferencial y Nivel electrónico, realizados simultáneamente y en los mismos periodos de tiempo. Se implantó una red de control en la zona, la cual constó de 36 puntos situados en una ladera ubicada en el Barrio Chontacruz al suroccidente de la ciudad de Loja. Se eligió esta ladera debido a que presentó evidencias de un deslizamiento en estado activo. Para su monitorización se realizó un total de 10 mediciones durante 7 meses calendario, entre los meses junio - diciembre del 2016.

Los resultados de la investigación han permitido comprobar que el método de nivelación de alta precisión es el más recomendado, ya que posee menor dispersión en los datos con un valor de 0.017 ± 0.001 m respecto al procedimiento con GPS de 0.020 ± 0.002 m.

Palabras Clave:

Deformación vertical, GPS, nivel electrónico, precisión, movimiento de laderas.

ABSTRACT

The current research determine the degree of precision of vertical deformations through two methods of monitoring with a differential and electronic level GPS, they were made in a simultaneously way and in the same periods of time. In order to carry out this research, a control network was implanted in the zone which has 36 points placed on hillside in the Chontacruz neighborhood in the southwestern in the Loja city and it was chosen this hillside because it shows clear evidences of slides in active state. For monitoring, 10 measures were made in a period of 7 months calendar between June to December in 2016.

The results of this research have allowed to confirm that the method of leveling of high precision is the most recommendable due to it has minor dispersion in data with a value of 0.017 ± 0.001 m in comparison with the GPS that was 0.020 ± 0.002 m.

Key words:

Vertical deformation, GPS, electronic level, precision, slides movement.

INTRODUCCIÓN

El planeta Tierra es un sistema complejo en el cual están conectados e interrelacionados distintos fenómenos que de una u otra manera se encuentran en cierto equilibrio (Pellini, 2000). Son muchos los estudios donde alertan que los riesgos naturales siguen creciendo en todo el mundo como la inestabilidad de laderas que se encuentra entre los peligros naturales más destructivos, principalmente cuando se produce sismos y en épocas de lluvias los que representan una de las mayores amenazas para la vida y bienes materiales provocando inseguridad en la población (Alcántara, Echavarría, Gutiérrez, Domínguez y Noriega, 2014).

Un deslizamiento natural involucra movimientos verticales y horizontales del suelo, roca o alguna combinación de ambos materiales bajo influencia de la fuerza de gravedad de la Tierra (Alcántara, Echavarría, Gutiérrez, Domínguez, & Noriega, 1996). Para que se produzca dicho movimiento se necesita un conjunto de agentes condicionantes a la inestabilidad, como son los factores "intrínsecos" que corresponden a las características del substrato geológico y la pendiente del terreno, además los factores "externos" como el clima, la densidad de vegetación y los usos del suelo por parte del ser humano, siendo la saturación del substrato geológico la principal causa desencadenante (Llorens y Masquef, 2009; Reyes, 2008).

Solo en América Latina se han registrado cifras elevadas de víctimas y pérdidas materiales por deslizamientos, debido a que la mayor parte de asentamientos humanos se localizan al pie de escarpes montañosos y en laderas desestabilizadas (Tambo, 2011). El 29 de marzo de 1993 en el Ecuador se originó un gran deslizamiento llamado La Josefina, donde aproximadamente 20 millones de metros cúbicos de material se desplomaron provocando pérdidas materiales de alrededor de 147 millones de dólares y 100 vidas humanas (Flores, 2011).

La falta de información existente de los movimientos de laderas en la cuidad de Loja, es uno de los principales problemas que se presentan actualmente ya que no existe información real que pueda demostrar el comportamiento de un suelo en una determinada zona y con ello determinar la velocidad del desplazamiento. Es necesario hacer énfasis en esta problemática para implementar un sistema de monitoreo que permita predecir la dinámica del terreno para evitar posibles desastres por los factores antes mencionados (Zárate, 2011).

En las últimas décadas, para el monitoreo de deslizamientos se utilizaba los distanciómetros láser y las estaciones totales. También dentro de las técnicas se puede mencionar el uso de

extensiómetros y deformímetros que son usados para determinar los desplazamientos superficiales. Con el avance de la tecnología aparecen nuevas técnicas y dispositivos para el monitoreo de laderas, entre los cuales se puede mencionar la Telemetría Láser por Scanner (SLR) y el Sistema de Posicionamiento Global (GPS) (Zárate, 2011).

Una técnica efectiva es el GPS el cual es un sistema de radio-navegación, tiempo y posicionamiento de una amplia gama de aplicaciones, la cual puede obtener la posición de la antena (longitud, latitud y altura). Permite adquirir posiciones relativas de puntos a varios cientos de kilómetros de distancia con una precisión de 2 a 5 mm en planimetría y 5 mm a 10 mm en altimetría (Malet, Déprez, Masson y Ulrich, 2011). El GPS es indispensable para realizar un levantamiento en tres dimensiones, pero la nivelación óptica continúa siendo la opción más precisa y versátil para conocer las alturas de un terreno cualquiera, siempre que se realice en áreas pequeñas hasta dos kilómetros cuadrados aproximadamente (Colesanti, Ferretti, Prati y Rocca, 2001; Desir et al., 2016)

El presente trabajo tiene como objetivo realizar el análisis de deformaciones verticales mediante observaciones GPS y nivelación geométrica de alta precisión en una red de control ubicada en un movimiento de ladera del sector Chontacruz, al Oeste de la ciudad de Loja, donde se realizaron mediciones con GPS doble frecuencia en modo Fast Static (Estático rápido) con un tiempo de medición de 8 minutos por cada punto de la red de control colocada en el terreno. Así mismo se ejecutaron simultáneamente las mediciones con el nivel electrónico de alta precisión para comparar de esta manera los resultados con las cotas obtenidas del GPS, determinando el desplazamiento vertical del talud y la precisión de los equipos.

Este trabajo de investigación consta de tres capítulos, en el primer capítulo se presenta la fundamentación teórica, en el segundo capítulo se mencionan los materiales, zona de estudio y metodología empleada; en el tercer capítulo describe los resultados y su respectivo análisis, seguidamente se exponen las conclusiones y recomendaciones y finalizando con anexos.

OBJETIVOS

Para la realización del presente proyecto se plantearon los siguientes objetivos.

Objetivo General:

• Determinar el grado de precisión de desplazamientos verticales mediante procedimientos GPS y nivelación de precisión.

Objetivos Específicos:

- Medir el grado de desplazamiento de un movimiento de ladera mediante GPS y nivelación de precisión.
- Determinar el grado de precisión entre las dos técnicas para determinar desplazamientos verticales.

CAPÍTULO I. ESTADO DEL ARTE

1.1. Movimientos de ladera

Los movimientos de laderas son procesos físicos considerados fenómenos geodinámicos componentes del geo-sistema natural. Contribuyen significativamente en la morfología del terreno y afectan en la evolución del relieve y paisaje. Estos procesos naturales ocurren en lugares determinados caracterizados por condiciones medioambientales del mismo, encontrándose entre los riesgos más extendidos del mundo (García, 2005).

Muchas laderas se encuentran en condiciones de riesgo e inestabilidad de manera que estos procesos se pueden iniciar con facilidad. Son varios los factores influyentes tales como los materiales de terrenos poco resistentes donde se pueden presentar fallas o fracturas, laderas expuestas a factores externos tales como erosión, precipitaciones excesivas o sismos; los cuales ocasionan un desequilibrio, provocando inestabilidad (Alcántara et al., 2001).

1.1.1. Clasificación de movimientos de laderas

1.1.1.1. Deslizamiento

> Falla Rotacional

Los deslizamientos rotacionales se producen principalmente en materiales homogéneos o en macizos rocosos fracturados, que especialmente en presencia del agua pueden evolucionar significativamente. La rotura se genera a lo largo de una superficie curvilínea y cóncava (Corominas, 2000). La dinámica ocasiona un área superior de hundimiento y otra en la parte inferior provocando flujos de materiales debajo del pie de la ladera (Suárez, 2009).

Falla Traslacional

Estas fallas consisten en movimientos traslacionales que ocurren en el cuerpo del talud, se encuentran sobre superficies generalmente planas, y se muestra en estratos de baja resistencia, localizados a poca profundidad del mismo. La superficie de falla ocurre en forma paralela al estrato débil y termina en los extremos formando grietas. La composición de los estratos son arcillas blandas, arenas finas o limos no plásticos sueltos y la debilidad de las capas están relacionadas a las grandes presiones de poro de agua que ejerce el agua en estratos de arena. De esta manera, también pueden estar ligadas a las temporadas de precipitaciones que se presentan en la zona (Matteis, 2003).

Las fracturas de material en bloque están asociadas a discontinuidades y agrietamiento de los materiales que forman un corte o una ladera natural, por otro lado, las fallas de una franja

superficial son propias de praderas naturales por lo materiales arcillosos debido a la meteorización de las formaciones originales (Matteis, 2003).

1.1.1.2. Flujo

Son masas de material que no presentan cohesión. Estas se muestran como un fluido viscoso al sobrepasar el límite de su estado líquido; se puede formar en cualquier material que se encuentre poco consolidado afectando los niveles superiores de roca alterada o intemperada. Se pueden desplazar grandes distancias (Tambo, 2011).

La falla por flujo se produce perturbación en las partículas de manera relativa dentro de una masa que se mueve sobre una superficie. Las deformaciones relativas que ocurren en el interior son grandes y el flujo puede transformarse de laminar a turbulento. Al incrementarse la densidad y la viscosidad se puede transportar grandes bloques de masa hacia la parte superior (Suárez, 2009).

1.1.1.3. Desprendimiento

Un desprendimiento es una porción de masa de material de un terreno que se desgarra de una vertiente inclinada y cae libremente. La masa desprendida forma fragmentos más pequeños que siguen un recorrido particular (Llorens y Masquef, 2009). En la trayectoria de caída, el material se separa de laderas empinadas en caída libre, de esta manera termina en la base del acantilado donde queda colocado. El movimiento que se produce es de muy rápido a extremadamente rápido (Jiménez, Ángeles, Marín, Sieron y Alarcón, 2015).

1.1.2. Factores desencadenantes de los deslizamientos

Son aquellos que ocasionan la inestabilidad en laderas. Una causa insignificante puede ser suficiente para ocasionar el desequilibrio (Reyes, 2008). Estos factores pueden ser:

1.1.2.1. Precipitación

Es uno de los factores más importantes que intervienen en la estabilidad de laderas. Muchos de los movimientos de tierra ocurren durante o después de las etapas de precipitaciones. Generalmente las superficies en donde se registran mayores valores anuales son aquellas que se encuentran expuestas a mayores problemas de estabilidad, esto se debe a la presencia de flujo subterráneo y materiales meteorizados, las cuales tienen incidencia en las propiedades geomecánicas del terreno. El efecto de este factor depende de la intensidad, duración y distribución de esta sobre el terreno (Cuanalo, Quezada, Aguilar, Olivan y Barona, 2006).

1.1.2.2. Sismos

Los sismos pueden ocasionar deslizamientos de todo tipo de laderas; esto tiene relación con las características de los materiales que componen la misma, la magnitud y distancia al epicentro. Durante movimientos sísmicos se pueden producir desprendimiento en bloques, flujos y avalanchas rocosas. En materiales finos y sueltos, como arenas y limos, pueden producirse etapas de licuefacción afectando a materiales sueltos, saturados o sin cohesión (González, Ferrer, Ortuño y Oteo, 2002).

1.1.2.3. Factores antrópicos

Estos factores se refieren a la deforestación, quemas e incendios forestales, cortes de taludes para construcción de infraestructura civil, el asentamiento humano, la actividad minera, y otros (Reyes, 2008).

1.1.3. Velocidad del movimiento en laderas inestables y su impacto potencial

La velocidad de movimiento de laderas depende del tipo de deslizamiento que se presente: desprendimiento, deslizamiento (falla translacional o rotacional) y flujo; de la pendiente del terreno y de la cantidad de agua.

Los flujos son los agentes más importantes y considerables, involucran una gran cuantía de material presente en superficies extensas de terreno. Mientras mayor pendiente posea la ladera mayor será la velocidad de los materiales desprendidos, del mismo modo sucede con el agua. Es importante y necesario conocer la velocidad del desplazamiento, debido a que permite alertar los posibles riesgos e impactos en zonas que puedan afectar alguna infraestructura, logrando de esta manera causar daños materiales o pérdidas humanas. Para diferencias los grados de riesgos en una ladera, se parte del hecho mientras mayor es la velocidad mayor será el impacto destructivo (Alcántara et al., 2001). En la Tabla 1 se presentan las velocidades más comunes en movimientos de ladera.

Tabla1. Escala de velocidades de los movimientos de ladera

Clase	Descripción	Velocidad (mm/s)	Desplazamiento	Impacto
1	Extremadamente lenta	5E-07		No hay daño en las estructuras construidas con criterios de ingeniería normales.
2	Muy lenta	5E-05	16 mm/año	Estructuras no sufren daños por el movimiento, ocasionan agrietamientos que pueden repararse.

3	Lenta	5E-03	1.6 m/año	Construcciones remediales se pueden realizar durante el movimiento.
4	Moderada	5E-01	1.3 m/mes	Estructuras temporales y poco sensitivas pueden mantenerse temporalmente.
5	Rápida	5E+01	1.8 m/hora	Escape y evacuaciones posibles, equipos y estructuras destruidas.
6	Muy rápida	5E+05	3 m/min	Pedidas de vidas, velocidades altas para desalojar.
7	Extremadamente rápida		5 m/s	Catástrofe de violencia mayor.

Fuente: Cruden, Varnes-1996

Elaboración: El autor

1.2. Metodologías utilizadas para el monitoreo de los movimientos de ladera

1.2.1. Métodos geodésicos

Los métodos geodésicos más utilizados en deformaciones verticales y que se emplean en esta investigación son:

> GPS

El GPS (Global Positioning Systems) es un instrumento de gran utilidad para el análisis de movimientos de tierras, convirtiéndose de esta manera en una herramienta de gran importancia y obligatorio para estudios realizados en campo. Se puede determinar los bordes y perímetros de una superficie de deslizamiento y adicionalmente localizar movimientos de masa de terreno específico para prevención de catástrofes. El GPS es afectado en su posición por la cantidad de satélites presentes y los obstáculos hacia los puntos de observación, especialmente por la vegetación (Suárez, 2009).

Nivelación de alta precisión

El nivel topográfico es una herramienta que tiene como función medir los desniveles entre puntos específicos ubicados en distintas elevaciones o comprobar puntos que se encuentren en la misma altitud. Otro uso del nivel es el traslado de cotas de un punto conocido a otro en el que no se cuenta con la información (Villamandos, 2014).

Los niveles electrónicos tienen el mismo propósito que los niveles ópticos, con la diferencia que el mismo permite realizar lecturas electrónicas con estadales de código de barras, de esta manera permite mediciones más rápidas y prácticas, donde se eliminan errores de apreciación o lectura, ya que estos tienen memoria electrónica para guardar y procesar datos (Gil et al., 2013).

1.2.2. Métodos de teledetección

En este método se reúne todas las técnicas no fotográficas, que permiten el análisis de un medio sin tener contacto físico con él (Olivos, 2014). Se divide en dos grupos: métodos láser y de radar.

1.2.2.1. Láser escáner

El Láser escáner está constituido por un potente láser y dos espejos inclinados. La distancia entre el equipo y el escenario se obtiene midiendo el tiempo que tarda el pulso láser en llegar al suelo y regresar nuevamente al equipo. La posición relativa del punto del escenario radiado se determina a través de la medida de desviación de los espejos. La fuerza con la que regresa la señal, es guardada en el equipo como un atributo de intensidad de cada punto ya que se trata de la reflectividad, por lo tanto, aporta datos sobre las características espectrales del mismo (Olivos, 2014).

1.2.2.2. Radar

La Teledetección Radar ("Radio detecting and ranging") es relativamente moderna. Los radares utilizados son sensores con la capacidad de obtener imágenes de alta resolución de un área de terreno terrestre en una zona a partir de ecos de pulsos de ondas electromagnéticas. Las frecuencias habituales están dentro del rango de las microondas (longitud de onda I, entre 1 mm y 1 m), bandas X, C, L ó P. Generalmente los sensores son colocados en satélites o aviones con ángulos de inclinación entre 23 y 46° (Gili, 2003).

1.2.3. Métodos fotogramétricos

Es una técnica basada en la fotogrametría consiste en proyectar una imagen en tres dimensiones a partir de dos pares de imágenes de la misma zona, pero con distintos ángulos. Existen tres métodos: fotogrametría terrestre donde las fotos son adquiridas a altitudes menores a los 200 m estas cubren superficies específicas y tienen una precisión de 40 mm; en la fotogrametría aérea la plataforma para la obtención de las fotos es ubicada en un avión o helicóptero por lo que llega a cubrir una mayor superficie que en la fotogrametría terrestre, su precisión es de 100 mm. En la fotogrametría con satélites las imágenes son adquiridas a través de una plataforma espacial y la precisión es muy baja. El método permite establecer modelos digitales del terreno (MDT) (Olivos, 2014).

CAPÍTULO II. MATERIALES Y MÉTODOS

2.1. Área de estudio

2.1.1. Ubicación geográfica

El área de estudio se ubicada en el barrio Chontacruz junto a la vía de integración barrial (Lateral de paso) del cantón Loja, en la provincia de Loja, al sur occidente del Ecuador, en los rangos de coordenadas UTM 696579.04 E a 696707.68 E y 9555177.51 N a 9555511.99 N y comprende un área de 15 ha (Figura 1).

Figura 1. Ubicación de la ladera en estudio

Fuente: Google Earth Elaboración: El autor

2.1.1. Geología

La hoya de Loja corresponde a una de las cuencas intermontañosas del sur del país. Se encuentra conformada por una secuencia sedimentaria variada. La zona de estudio pertenece a la formación Quillollaco (MLQ), presente al este y oeste de la cuenca de Loja y sobreyace las formaciones más antiguas con discordancia angular. Está compuesta por conglomerados con clastos metamórficos redondeados, filitas, cuarcitas y esquistos de hasta 50 cm de diámetro, también cuenta con fragmentos de arenisca (Olivos, 2014). La formación alcanza

un espesor de 600 m al sur de la cuenca, 100 m en la parte central y 500 m en la parte este de la misma (Guamán, 2012).

2.1.2. Clima

La cuidad de Loja se encuentra ubicada a una altitud de 2100 m sobre el nivel del mar. Pertenece al área de clima templado andino. Las temperaturas fluctúan entre 16 °C (60 °F) y 21 °C (70 °F), con una temperatura diaria promedio de 17 °C (63 °F). El periodo con menor temperatura media se extiende de junio a septiembre, siendo julio el mes más frio (14.9 °C). Los factores que dan origen al clima de la ciudad de Loja son los mismos factores que afectan a la región andina, especialmente la latitud y el relieve, y en términos más generales, la zona de convergencia intertropical (ZCIT), el efecto de la interacción Océano Pacífico—atmósfera (Fenómeno El Niño Oscilación del Sur y Corriente Fría de Humboldt) y la cubierta vegetal (Paladines et al., 2007).

2.2. Materiales

Mojones de hormigón. - Construidos in situ de aproximadamente de 20 cm de diámetro y 15 cm profundidad. Contienen adicionalmente una varilla de acero corrugado en el centro del mojón cuyo diámetro es de 10 mm y 50 cm de longitud que es anclada a la base de la excavación del mojón (Figura 2). En el extremo visible de la varilla se realizó una perforación de 2 mm de diámetro que sirve de guía para la colocación del bastón de la antena móvil GPS así como apoyo de la estadia del nivel electrónico.

Figura 2. Colocación de mojones in situ Fuente y Elaboración: El autor

Esta investigación se realiza con dos instrumentos topográficos: GPS y nivel electrónico,

<u>GPS</u>.- Marca Trimble R6 doble frecuencia, el cual posee una precisión estática rápida horizontal de 3 mm + 0.5 ppm RMS y precisión vertical de 5 mm + 0.5 ppm en las mediciones de puntos establecidos. Ofrece un almacenamiento de datos cuya memoria interna es de 11 MB. (Trimble, 2013).

<u>Nivel electrónico</u>.- Marca Geomax ZDL 700 que posee una precisión de 0.7 mm en una nivelación doble de 1 km, memoria interna de hasta 2000 puntos con la posibilidad de numerar de forma manual o automática. Para máxima precisión se utiliza una mira de fibra de vidrio de sección única de 3 m con código de barras en el frontal y graduación numérica en el posterior (GeoMax, 2013).

2.2.1. Selección e instalación de red de monitoreo

La red de monitoreo consta de 36 puntos, los cuales se ubicaron en los lugares más críticos de la ladera, donde se evidencia la presencia de grietas que son indicativos de movimiento con la finalidad de obtener resultados representativos sobre el terreno.

2.2.2. Monitoreo de la red de control

2.2.2.1. Monitoreo con GPS doble frecuencia Trimble R6

Para las mediciones de las coordenadas de los puntos distribuidos en la zona de estudio se utilizó la técnica GPS diferencial. Se empleó como base la estación LJEC GNSS del Instituto Geográfico Militar (IGM) ubicada en el campus de la UTPL y como móvil (rover) una antena GPS marca Trimble modelo R6. El modo de registro de los datos de la antena se realizó empleando la función Fast Static o Estático rápido.

El tiempo de permanencia en cada punto de control fue de 8 minutos para garantizar la precisión de las mediciones, evitando puntos flotantes que sobrepasen las tolerancias establecidas para este tipo de medición, adicionalmente se empleó una máscara de elevación de 10° y un tiempo de almacenamiento de 1 s. En la Figura 3 se observa el monitoreo del punto denominado kel6 con el equipo GPS.

Figura 3. Ilustración del equipo GPS (Rover) marca Timble R6

2.2.2.2. Monitoreo con Nivel electrónico Geomax ZDL700

Para el control vertical en la zona de estudio se colocó un BM inicial fijo cuya cota fue establecida mediante procedimiento fast static con el GPS Timble R6. Se inició el levantamiento con vista atrás al BM inicial conocido, seguidamente a los puntos de la red de control establecida. En caso de no existir la visibilidad suficiente, se generan puntos de cambio con vistas adelante y atrás hasta obtener el punto intermedio deseado; se realiza el mismo procedimiento con todos los puntos del terreno hasta finalizar el levantamiento con vista al BM inicial para cerrar la nivelación.

Para obtener el error de cierre en los monitoreo se realizaron nivelaciones cerradas (Desir et al., 2016). Este error se debe encontrar en el rango de 3 mm para ser aceptable, por lo tanto se repite la nivelación hasta que la diferencia entre la cota inicial y la final sea igual o menor. En la Figura 4 se muestra el control superficial de un punto de la red establecida en el terreno.

Figura 4. Ilustración del equipo de nivelación Geomax ZDL 700 Fuente y Elaboración: El autor

CAPÍTULO III. ANÁLISIS Y DISCUSIÓN DE RESULTADOS

3.1. Periodos de monitoreo y datos obtenidos

Las posiciones horizontales y verticales de los puntos de control superficial fueron adquiridas desde el mes de junio a diciembre de 2016. Existen meses en los cuales existen dos medicines por mes y esto se debió principalmente a la presencia de lluvias en las zona de estudio. Periodos en los cuales no existió la presencia de precipitaciones se consideró una sola medición cuyas fechas son las que se indica en la Tabla 2.

Tabla 2. Fechas de monitoreos en la zona de estudio

Campaña de medición	Fecha de monitoreo
1	10 de junio
2	8 de julio
3	5 de agosto
4	22 de agosto
5	6 de septiembre
6	26 de septiembre
7	13 de octubre
8	28 de octubre
9	23 de noviembre
10	7 de diciembre

Fuente y Elaboración: El autor

Luego de concluida la medición con GPS doble frecuencia se realizó la descarga y post proceso de los datos empleando el software Trimble Business Center Versión 2.2 que permitió adquirir las coordenadas de los puntos de la red de control. Los datos de la base GPS correspondió a la información procesada y obtenida de la antena del IGM denominada LJEC que se encuentra ubicada en la UTPL, la cual tiene una longitud promedio de línea base de 4.5 km hasta la zona de estudio. Se han considerado los sistemas de coordenadas UTM, Zona: 17 Sur; transformación de Datum: WGS 1984 y para su aceptación se tomó en cuenta las precisiones y parámetros otorgados por el fabricante. Para el análisis se extrajo únicamente las coordenadas en z (cotas), ya que el objetivo de la investigación se basa sólo en la observación de las deformaciones verticales que se presentan en la Tabla 3.

Simbología de las tablas siguientes:

Tabla 3. Datos obtenidos con el GPS

I abia	Tabla 3. Datos obtenidos con el GPS DATOS OBTENIDOS CON EL GPS TRIMBLE R6									
			DATO	JS OBTENI	DOS CON E	EL GPS TRII	VIBLE R6			
ੁ Fecha	10 de junio	8 de julio	5 de agosto	22 de agosto	6 de septiembre	26 de septiembre	13 de octubre	28 de octubre	23 de noviembre	7 de diciembre
kel0	2321.387	2321.356	2321.402	2321.386	2321.410	2321.424	2321.411	2321.395	2321.401	2321.38
kel1	2319.421	2319.393	2319.429	2319.394	2319.436	2319.435	2319.431	2319.417	2319.434	2319.42
kel2	2318.131	2318.155	2318.159	2318.113	2318.149	2318.130	2318.148	2318.139	2318.115	2318.13
kel3	2316.840	2316.880	2316.886	2316.835	2316.863	2316.852	2316.865	2316.857	2316.849	2316.85
kel4	2316.283	2314.738	2314.786	2314.727	2314.758	2314.749	2314.772	2314.735	2314.769	2314.74
kel5	2313.848	2312.026	2312.078	2312.038	2312.055	2312.039	2312.077	2312.066	2312.054	SIN DATO
kel6	2311.126	2308.947	2308.975	2308.927	2308.955	2308.948	2308.950	2308.970	2308.922	2308.94
kel7	2310.345	2310.342	2310.365	2310.352	2310.352	2310.348	2310.356	2310.332	2311.269	2310.33
kel8	2309.654	2309.672	2309.678	2309.639	2309.656	2309.676	2309.671	2309.635	2309.622	2309.66
kel9	2315.430	2315.461	2315.462	2320.586	2315.431	2321.864	2315.411	2321.345	2315.399	2315.41
kel10	2321.143	2321.176	2321.179	2321.178	2321.160	2321.172	2321.149	2321.130	2321.159	2321.15
kel11	2319.668	2319.707	2319.701	2323.956	2319.655	2325.756	2319.666	2324.409	2319.675	2319.66
kel12	2320.544	2320.587	2320.568	2324.359	2320.526	2320.572	2320.548	2320.551	2320.569	2320.56
kel13	2324.079	2324.123	2324.083	2324.097	2324.067	2324.093	2324.114	2328.563	2324.070	2324.10
kel14	2322.632	2322.647	2322.632	2322.642	2322.629	2322.639	2322.625	2322.627	2322.642	2322.64
kel15	2323.810	2323.829	2323.793	2323.837	2323.819	2323.807	2323.809	2323.773	2323.815	2323.81
kel16	2322.311	2322.340	2322.304	2322.346	2322.324	2322.330	2322.318	2322.272	2322.296	2322.31
kel17	2321.578	2321.592	2321.561	2321.593	2321.585	2321.559	2321.563	2321.503	2321.540	2321.53
kel18	2325.275	2325.288	2325.268	2325.277	2325.242	2325.277	2325.278	2325.191	2325.255	2325.08
kel20	2325.141	2325.178	2325.131	2325.162	2325.157	2325.128	2325.161	2325.119	2325.117	2325.13
kel21	2321.131	2321.165	2321.170	2321.201	2321.093	2321.115	2321.160	2321.130	2321.155	2321.11
kel22	2317.195	2317.237	2317.231	2317.269	2317.155	2317.166	2317.200	2317.178	2317.200	2317.18
kel23	2315.698	2315.701	2315.709	2315.645	2315.692	2315.685	2315.687	2322.773	2315.649	2315.65
kel24	2318.206	2318.211	2318.234	2320.115	2318.185	2318.190	2318.196	2324.518	2318.181	2318.17
kel25	2320.309	2320.306	2320.320	2322.383	2320.261	2320.268	2320.302	2327.225	2320.287	2320.25
kel26	2322.725	2322.708	2322.707	2322.775	2322.711	2322.726	2322.727	2322.671	2322.717	2322.71
kel27	2327.929	2327.920	2327.892	2327.895	2327.917	2327.891	2327.916	2327.879	SIN E	OATO
kel28	2338.236	2338.192	2338.205	2340.089	2338.233	2338.228	2338.226	2338.184	2338.187	2338.21
kel29	2345.159	2345.164	2345.168	2345.158	2345.152	2345.162	2345.155	2345.128	2345.145	2345.16
kel30	2343.756	2343.755	2343.777	2343.774	2343.782	2343.763	2343.759	2343.754	2343.729	2343.82
kel31	SIN DATO	2335.925	2335.892	2335.917	2335.931	2335.901	2335.928	2335.894	2335.906	2335.93
kel32	2330.377	2330.360	2330.369	2330.355	2330.367	2330.364	2334.335	2330.323	2330.315	2330.38
kel33	2343.200	2343.199	2343.221	2343.125	2343.184	2343.193	2343.210	2343.185	2343.201	2343.20
kel34	SIN DATO	2335.350	2335.348	2335.335	2335.379	2335.367	2335.366	2335.313	2335.314	2335.35
kel35	SIN DATO	2350.953	2350.980	2350.902	2350.965	2350.952	2350.960	2350.931	2350.946	2350.97
kel36	SIN DATO	2349.216	2349.246	2349.171	2349.204	2349.207	2349.186	2349.205	2349.180	2349.22

Fuente y Elaboración: El autor

De igual manera se presentan las cotas obtenidas del Nivel Electrónico Geomax ZDL 700, con las que igual se realizó un post proceso para compensar el error de cierre que se obtuvo

en cada medición. Los datos fueron descargados de la unidad empleando el software GeoMax PC Tools. Los resultados de las mediciones realizadas se encuentran en la Tabla 4.

Tabla 4. Datos obtenidos con el nivel electrónico

Tabla	Tabla 4. Datos obtenidos con el nivel electrónico									
	DATOS OBTENIDOS CON EL NIVEL ELECTRONICO GEOMAX ZDL 700									
Бесhа	10 de junio	8 de julio	5 de agosto	22 de agosto	6 de septiembre	26 de septiembre	13 de octubre	28 de octubre	23 de noviembre	7 de diciembre
kel0	SIN DATO	2321.356	2321.409	2321.386	2321.410	2321.424	2321.411	2321.395	2321.401	2321.382
kel1	SIN DATO	2319.383	2319.438	2319.413	2319.437	2319.451	2319.440	2319.421	2319.427	2319.409
kel2	SIN DATO	2318.103	2318.148	2318.130	2318.155	2318.167	2318.157	2318.138	2318.146	2318.120
kel3	SIN DATO	2316.816	2316.867	2316.848	2316.874	2316.890	2316.878	2316.860	2316.864	2316.842
kel4	SIN DATO	2314.707	2314.759	2314.741	2314.765	2314.786	2314.777	2314.758	2314.764	2314.739
kel5	SIN DATO	2312.005	2312.057	2312.038	2312.068	2312.087	2312.076	2312.058	2312.063	SIN DATO
kel6	SIN DATO	2308.910	2308.959	2308.939	2308.963	2308.980	2308.964	2308.946	2308.954	2308.933
kel7	SIN DATO	2310.304	2310.351	2310.331	2310.356	2310.373	2310.355	2310.339	2310.340	2310.320
kel8	SIN DATO	2309.623	2309.670	2309.649	2309.674	2309.690	2309.674	2309.655	2309.662	2309.641
kel9	SIN DATO	2315.415	2315.457	2315.432	2315.451	2315.467	2315.452	2315.427	2315.425	2315.400
kel10	SIN DATO	2321.144	2321.180	2321.160	2321.182	2321.193	2321.193	2321.160	2321.160	2321.142
kel11	SIN DATO	2319.660	2319.698	2319.677	2319.700	2319.712	2319.715	2319.679	2319.681	2319.659
kel12	SIN DATO	2320.539	2320.581	2320.560	2320.584	2320.597	2320.597	2320.565	2320.571	2320.550
kel13	SIN DATO	2324.068	2324.104	2324.086	2324.109	2324.121	2324.124	2324.100	2324.096	2324.076
kel14	SIN DATO	2322.612	2322.650	2322.631	2322.652	2322.668	2322.669	2322.646	2322.641	2322.621
kel15	SIN DATO	2323.793	2323.831	2323.811	2323.840	2323.848	2323.848	2323.818	2323.818	2323.796
kel16	SIN DATO	2322.300	2322.327	2322.308	2322.332	2322.350	2322.350	2322.325	2322.320	2322.299
kel17	SIN DATO	2321.552	2321.575	2321.566	2321.586	2321.597	2321.581	2321.561	2321.557	2321.535
kel18	SIN DATO	2325.253	2325.285	2325.265	2325.287	2325.294	2325.288	2325.266	2325.265	2325.245
kel20	SIN DATO	2325.115	2325.152	2325.134	2325.154	2325.172	2325.170	2325.144	2325.137	2325.116
kel21	SIN DATO	2321.114	2321.150	2321.130	2321.152	2321.165	2321.165	2321.130	2321.130	2321.100
kel22	SIN DATO	2317.180	2317.221	2317.197	2317.216	2317.231	2317.229	2317.192	2317.191	2317.167
kel23	SIN DATO	2315.667	2315.708	2315.681	2315.698	2315.712	2315.708	2315.669	2315.658	2315.631
kel24	SIN DATO	2318.168	2318.209	2318.187	2318.208	2318.220	2318.216	2318.161	2318.183	2318.159
kel25	SIN DATO	2320.273	2320.308	2320.285	2320.305	2320.318	2320.315	2320.280	2320.278	2320.253
kel26	SIN DATO	2322.687	2322.724	2322.706	2322.729	2322.742	2322.741	2322.719	2322.714	2322.695
kel27	SIN DATO	2327.887	2327.923	2327.908	2327.927	2327.942	2327.943	2327.916	SIN E	OATO
kel28	SIN DATO	2338.194	2338.231	2338.212	2338.230	2338.246	2338.239	2338.211	2338.208	2338.182
kel29	SIN DATO	2345.131	2345.172	2345.158	2345.185	2345.200	2345.192	2345.158	2345.164	2345.139
kel30	SIN DATO	2343.735	2343.773	2343.757	2343.783	2343.793	2343.791	2343.766	2343.770	2343.800
kel31	SIN DATO	2335.894	2335.930	2335.892	2335.934	2335.950	2335.950	2335.922	2335.919	2335.897
kel32	SIN DATO	2330.347	2330.382	2330.364	2330.384	2330.392	2330.391	2330.363	2330.367	2330.344
kel33	SIN DATO	2343.167	2343.208	2343.189	2343.213	2343.226	2343.226	2343.194	2343.199	2343.177
kel34	SIN DATO	2335.332	2335.367	2335.347	2335.372	2335.384	2335.384	2335.355	2335.353	2335.330
kel35	SIN DATO	2350.929	2350.969	2350.956	2350.978	2350.987	2350.988	2350.961	2350.967	2350.944
kel36	SIN DATO	2349.179	2349.219	2349.205	2349.211	2349.238	2349.239	2349.212	2349.220	2349.199

Fuente y Elaboración: El autor

En la Tabla 5 se muestra las novedades presentadas al momento realizar el post proceso tanto de mediciones con GPS y con nivel electrónico. De igual forma se exponen los errores de cierre obtenidos en la nivelación diferencial.

Tabla 5. Periodos de monitoreo del GPS y nivel electrónico

	Fecha:	6	Día:	1		
:06		Observaciones:				
tore	GPS	S Diferencial:	Nivel Ele	ectrónico:		
Primer monitoreo:	Datos flotantes los punto monitoreo se vio oportun ke	No realizado el l falla de	evantamio I equipo.	ento por		
	Fecha:	08 de julio del 201	6	Día:	29	
:oə.		Observaciones:				
itor	GPS	S Diferencial:	Nivel Ele	ectrónico:		
Segundo monitoreo:	Datos flotantes los pun Corregidos con poster	Medición realizada con un erro de cierre de 0,003 metros.				
	Fecha:	05 de agosto del 20	D16 Día: 57			
ö		Observaciones:		<u>I</u>	I.	
ore	GPS	Nivel Electrónico:				
Tercer monitoreo:	Monitoreo sin re	gistro de datos flotantes.	Medición realizada con un error de cierre de 0,003 metros.			
	Fecha:	22 de agosto del 20	16	Día:	76	
		Observaciones:		l.	l .	
ore	GPS	Diferencial:	Nivel Ele	ectrónico:		
Cuarto monitoreo:	Datos flotantes los punto y kel28, los cuales por	Medición realiz de cierre de				
	Fecha:	06 de septiembre del 2	2016	Día:	89	
i,		Observaciones:		•		
tore	GPS	S Diferencial:	Nivel Ele	ectrónico:		
Quinto monitoreo:	Datos flotantes los Corregidos con posterior	Medición realiz de cierre de				

	Fecha:	Día:	109				
; ;		Observaciones:		•			
ore	GPS	Nivel Ele	ectrónico:				
Sexto monitoreo:	Datos flotantes los pur disponibilidad del equi	Medición realizada con un error de cierre de 0,001 metros.					
	Fecha:	13 de octubre del 20	<u> </u> 16	Día:	126		
	i cona.	Observaciones:			1.20		
orec	GPS	S Diferencial:	Nivel Ele	ectrónico:			
Séptimo monitoreo:	reducción de tiempo de	unto kel32 el cual se produjo por e medición, debido a la descarga ta del controlador.	Medición realiz de cierre de				
	Fecha:	28 de octubre del 20)16	Día:	141		
:06		Observaciones:					
tore	GPS	S Diferencial:	Nivel Electrónico:				
Octavo monitoreo:		os kel9, kel11, kel13, kel24, kel25 les no fueron corregidos.	Medición realizada con un error de cierre de 0,003 metros.				
	Fecha:	23 de noviembre del 2	2016	Día:	172		
:0		Observaciones:					
tore	GPS	S Diferencial:	Nivel Ele	ectrónico:			
Noveno monitoreo:	Datos flotantes solo el p y pérdida del punto kel2	Medición realiz de cierre de					
	Fecha:	07 de diciembre del 2	2016	Día:	181		
:0a		Observaciones:					
itor	GPS	S Diferencial:	Nivel Electrónico:				
Decimo monitoreo:	Datos flotantes solo el corregido y pérdida del	Medición realiz de cierre de					

Fuente y Elaboración: El Autor

3.2. Comportamiento en la deformación vertical de la red de monitoreo en el talud y comparación de técnicas de monitoreo utilizadas

Para el cálculo de los desplazamientos verticales obtenidos se procedió a realizar las diferencias de las cotas medidas en cada punto de la red de monitoreo tanto las de GPS (Tabla 6) como las nivel electrónico (Tabla 7), para ello se tomaron los datos del segundo monitoreo del 8 de julio y el último monitoreo del 7 de diciembre, el primer monitoreo no se lo consideró por las indicaciones dadas en la Tabla 5.

Se utilizó el método de estimación por intervalos que se realiza mediante la obtención de un intervalo dentro del cual estará el valor del parámetro estimado con una cierta probabilidad, en este caso se utiliza los siguientes parámetros: Limite de confianza (1- α) del 99 %, Nivel de significación (α) del 0.01, y el valor crítico ($Z_{\alpha/2}$) de 2.576.

Con los parámetros antes mencionados se calcula el desplazamiento antes indicado con la siguiente ecuación (1):

$$\Delta_{Max_Z} = Z_{\alpha/2} \sqrt{2 * (E_Z^2)} \tag{1}$$

Donde:

 $\Delta_{Max_{\pi}}$ = Deformación efectiva máxima (mm)

 $Z_{\infty/2}$ = 2.576

 E_Z = Error estándar para la deformación vertical (mm)

El error estándar para la deformación vertical del GPS es considerado como 2 mm (Zárate, 2011), en cambio el valor para el Nivel Electrónico se considera 1 mm (Bannister, Raymond y Baker, 2002). Aplicando la ecuación tanto para el error del GPS como para el Nivel electrónico se puede establecer que Δ_{Max_Z} es de 0.0073 y 0.00364 m respectivamente.

Para verificar si no existe desplazamiento vertical en los puntos de control superficial es necesario verificar la siguiente condición, la condición contraria es un indicativo de un movimiento vertical:

$$\delta_z < \Delta_{\max z} \rightarrow No \ existe \ movimiento$$

Aplicando las condiciones antes establecidas se puede verificar la condición de deformación vertical tanto de mediciones con GPS y nivel electrónico como se lo indica en las Tablas 6 y 7 respectivamente.

Tabla 6. Deformaciones efectivas verticales medidas con el GPS

Periodo		7 de				Análisis de		
ID	8 de julio	diciembre	δ (m)	ΔMax _z	δ Efectiva	deformación		
kel0	2321.3560	2321.3820	0.0260	0.0073	0.0187	Deformación		
kel1	2319.3930	2319.4190	0.0260	0.0073	0.0187	Deformación		
kel2	2318.1550	2318.1300	-0.0250	0.0073	-0.0177	Deformación		
kel3	2316.8800	2316.8510	-0.0290	0.0073	-0.0217	Deformación		
kel4	2314.7380	2314.7430	0.0050	0.0073	-0.0023	No hay deformación		
kel5	2312.0260	No hay dato						
kel6	2308.9470	2308.9390	-0.0080	0.0073	-0.0007	Deformación		
kel7	2310.3420	2310.3320	-0.0100	0.0073	-0.0027	Deformación		
kel8	2309.6720	2309.6560	-0.0160	0.0073	-0.0087	Deformación		
kel9	2315.4610	2315.4120	-0.0490	0.0073	-0.0417	Deformación		
kel10	2321.1760	2321.1510	-0.0250	0.0073	-0.0177	Deformación		
kel11	2319.7070	2319.6640	-0.0430	0.0073	-0.0357	Deformación		
kel12	2320.5870	2320.5630	-0.0240	0.0073	-0.0167	Deformación		
kel13	2324.1230	2324.0960	-0.0270	0.0073	-0.0197	Deformación		
kel14	2322.6470	2322.6400	-0.0070	0.0073	0.0003	No hay deformación		
kel15	2323.8290	2323.8130	-0.0160	0.0073	-0.0087	Deformación		
kel16	2322.3400	2322.3050	-0.0350	0.0073	-0.0277	Deformación		
kel17	2321.5920	2321.5330	-0.0590	0.0073	-0.0517	Deformación		
kel18	2325.2880	No hay dato						
kel20	2325.1780	2325.1310	-0.0470	0.0073	-0.0397	Deformación		
kel21	2321.1650	2321.1070	-0.0580	0.0073	-0.0507	Deformación		
kel22	2317.2370	2317.1760	-0.0610	0.0073	-0.0537	Deformación		
kel23	2315.7010	2315.6490	-0.0520	0.0073	-0.0447	Deformación		
kel24	2318.2110	2318.1690	-0.0420	0.0073	-0.0347	Deformación		
kel25	2320.3060	2320.2480	-0.0580	0.0073	-0.0507	Deformación		
kel26	2322.7080	2322.7070	-0.0010	0.0073	0.0063	No hay deformación		
kel27	2327.9200	No hay dato						
kel28	2338.1920	2338.2060	0.0140	0.0073	0.0067	Deformación		
kel29	2345.1640	2345.1600	-0.0040	0.0073	0.0033	No hay deformación		
kel30	2343.7550	2343.8200	0.0650	0.0073	0.0577	Deformación		
kel31	2335.9250	2335.9250	0.0000	0.0073	-0.0073	No hay deformación		
kel32	2330.3600	2330.3770	0.0170	0.0073	0.0097	Deformación		
kel33	2343.1990	2343.1970	-0.0020	0.0073	0.0053	No hay deformación		
kel34	2335.3500	2335.3540	0.0040	0.0073	-0.0033	No hay deformación		
kel35	2350.9530	2350.9700	0.0170	0.0073	0.0097	Deformación		
kel36	2349.2160	2349.2240	0.0080	0.0073	0.0007	Deformación		

Fuente y elaboración: El autor

Tabla 7. Deformaciones efectivas verticales medidas con el nivel electrónico

Periodo	8 de julio	7 de	δ (m)	ΔMax _z	δ Efectiva	Análisis de deformación		
ID		diciembre						
kel0	2321.35600	2321.38200	0.02600	0.00364	0.02236	Deformación		
kel1	2319.38300	2319.40930	0.02630	0.00364	0.02266	Deformación		
kel2	2318.10283	2318.12060	0.01777	0.00364	0.01412	Deformación		
kel3	2316.81567	2316.84260	0.02693	0.00364	0.02329	Deformación		
kel4	2314.70650	2314.73990	0.03340	0.00364	0.02976	Deformación		
kel5	2312.00533	No hay dato						
kel6	2308.91017	2308.93350	0.02333	0.00364	0.01969	Deformación		
kel7	2310.30417	2310.32050	0.01633	0.00364	0.01269	Deformación		
kel8	2309.62317	2309.64150	0.01833	0.00364	0.01469	Deformación		
kel9	2315.41450	2315.40010	-0.01440	0.00364	-0.01076	Deformación		
kel10	2321.14400	2321.14270	-0.00130	0.00364	-0.00234	No hay deformación		
kel11	2319.66017	2319.65970	-0.00047	0.00364	-0.00318	No hay deformación		
kel12	2320.53917	2320.55070	0.01153	0.00364	0.00789	Deformación		
kel13	2324.06800	2324.07600	0.00800	0.00364	0.00436	Deformación		
kel14	2322.61183	2322.62100	0.00917	0.00364	0.00552	Deformación		
kel15	2323.79283	2323.79600	0.00317	0.00364	-0.00048	No hay deformación		
kel16	2322.30033	2322.29900	-0.00133	0.00364	-0.00231	No hay deformación		
kel17	2321.55217	2321.53500	-0.01717	0.00364	-0.01352	Deformación		
kel18	2325.25250	2325.24540	-0.00710	0.00364	-0.00346	Deformación		
kel20	2325.11483	2325.11600	0.00117	0.00364	-0.00248	No hay deformación		
kel21	2321.11417	2321.10870	-0.00547	0.00364	-0.00182	Deformación		
kel22	2317.17950	2317.16740	-0.01210	0.00364	-0.00846	Deformación		
kel23	2315.66650	2315.63110	-0.03540	0.00364	-0.03176	Deformación		
kel24	2318.16833	2318.15940	-0.00893	0.00364	-0.00529	Deformación		
kel25	2320.27317	2320.25370	-0.01947	0.00364	-0.01582	Deformación		
kel26	2322.68700	2322.69500	0.00800	0.00364	0.00436	Deformación		
kel27	2327.88650	No hay dato						
kel28	2338.19383	2338.18250	-0.01133	0.00364	-0.00769	Deformación		
kel29	2345.13133	2345.13910	0.00777	0.00364	0.00412	Deformación		
kel30	2343.73450	2343.80010	0.06560	0.00364	0.06196	Deformación		
kel31	2335.89400	2335.89720	0.00320	0.00364	-0.00044	No hay deformación		
kel32	2330.34683	2330.34480	-0.00203	0.00364	-0.00161	No hay deformación		
kel33	2343.16650	2343.17710	0.01060	0.00364	0.00696	Deformación		
kel34	2335.33183	2335.33020	-0.00163	0.00364	-0.00201	No hay deformación		
kel35	2350.92900	2350.94470	0.01570	0.00364	0.01206	Deformación		
kel36	2349.17900	2349.19970	0.02070	0.00364	0.01706	Deformación		
	1			1	1	i .		

Fuente y elaboración: El autor

En las Figuras 5 y 6 se puede observar en forma gráfica la variación temporal de las cotas efectivas de cada uno de los puntos de control superficial en los periodos de medición establecidos. Manteniendo la misma escala del eje y, se puede apreciar que la dispersión de los datos con GPS doble frecuencia es mayor que los datos del nivel electrónico. Generalmente las precisiones en z con GPS varían en el orden de 0.02 m a 0.03 m (Peñafiel y Zayas, 2001) a diferencia de una nivelación geométrica cuya cota se mantiene fija a lo largo de todos las mediciones.

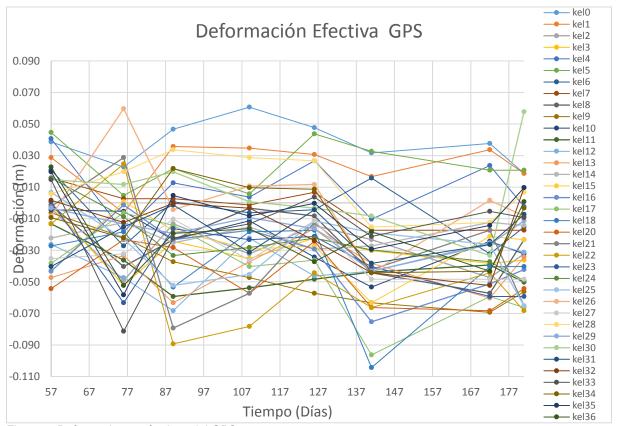


Figura 5. Deformaciones efectivas del GPS

Fuente y elaboración: El autor

Como lo explican muchos autores esto se genera debido a la precisión correspondiente de cada equipo donde el GPS posee una precisión muy baja en altimetría, debido a la dilatación vertical donde se pone de manifiesto que cuanto más elevado en el cielo se encuentre el satélite, mejor será su precisión vertical obtenida, la misma que varía en función de la latitud (Correia, 2000). Es por eso que según estudios la coordenada vertical es entre dos y cinco veces menos precisa que las coordenadas horizontales (Casanova, 2002), efectos causados por degradaciones de múltiples errores como: retardos debidos a la ionósfera y a la tropósfera, multitrayectoria de la señal, errores de sincronización del reloj, número de satélites visibles (Varela, 2003).

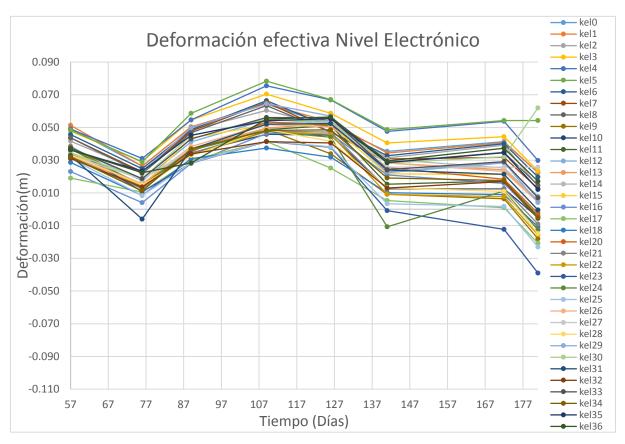


Figura 6. Deformaciones efectivas del Nivel Electrónico Fuente y elaboración: El autor

A fin de establecer el grado de precisión de las mediciones tanto de GPS como de nivel electrónico se realizó un análisis exploratorio de datos mediante métodos estadísticos de las deformaciones efectivas de todos los puntos de control superficial. Con ello se obtuvo que la desviación media estándar con un intervalo de confianza al 95% para el control superficial con GPS (Tabla 8) del presente estudio es de 0.020 ± 0.002 m y de 0.017 ± 0.001 m en nivelación (Tabla 9), por lo tanto, los datos obtenidos mediante una nivelación geométrica con nivel son lo suficientemente precisos para realizar controles verticales de movimientos de ladera cuando su velocidad de desplazamiento horizontal es muy baja.

Tabla 8. Resultados de desviación estándar para el GPS

	. Resultados de desviación estándar para el GPS 5 de 22 de 6 de 26 de 13 de 28 de 23 de 7 de								
ID	ago	ago	sept	sept	oct	oct	nov	dic	σ (m)
kel0	0.039	0.023	0.047	0.061	0.048	0.032	0.038	0.019	0.013
kel1	0.029	-0.006	0.036	0.035	0.031	0.017	0.034	0.019	0.013
kel2	-0.003	-0.049	-0.013	-0.032	-0.014	-0.023	-0.047	-0.032	0.015
kel3	-0.001	-0.052	-0.024	-0.035	-0.022	-0.030	-0.038	-0.036	0.014
kel4	0.041	-0.018	0.013	0.004	0.027	-0.010	0.024	-0.002	0.019
kel5	0.045	0.005	0.022	0.006	0.044	0.033	0.021	0.021	0.014
kel6	0.021	-0.027	0.001	-0.006	-0.004	0.016	-0.032	-0.015	0.018
kel7	0.016	0.003	0.003	-0.001	0.007	-0.017	-0.017	-0.017	0.012
kel8	-0.001	-0.040	-0.023	-0.003	-0.008	-0.044	-0.057	-0.023	0.019
kel9	-0.006	-0.022	-0.037	-0.047	-0.057	-0.063	-0.069	-0.056	0.020
kel10	-0.004	-0.005	-0.023	-0.011	-0.034	-0.053	-0.024	-0.032	0.016
kel11	-0.013	-0.036	-0.059	-0.054	-0.048	-0.044	-0.039	-0.050	0.013
kel12	-0.026	-0.047	-0.068	-0.022	-0.046	-0.043	-0.025	-0.031	0.015
kel13	-0.047	-0.033	-0.063	-0.037	-0.016	-0.038	-0.060	-0.034	0.014
kel14	-0.022	-0.012	-0.025	-0.015	-0.029	-0.027	-0.012	-0.014	0.017
kel15	-0.043	0.001	-0.017	-0.029	-0.027	-0.063	-0.021	-0.023	0.018
kel16	-0.043	-0.001	-0.023	-0.017	-0.029	-0.075	-0.051	-0.042	0.021
kel17	-0.038	-0.006	-0.014	-0.040	-0.036	-0.096	-0.059	-0.066	0.027
kel18	-0.027	-0.018	-0.053	-0.018	-0.017	-0.104	-0.040	-0.040	0.027
kel20	-0.054	-0.023	-0.028	-0.057	-0.024	-0.066	-0.068	-0.054	0.018
kel21	-0.002	0.029	-0.079	-0.057	-0.012	-0.042	-0.017	-0.065	0.034
kel22	-0.013	0.025	-0.089	-0.078	-0.044	-0.066	-0.044	-0.068	0.035
kel23	0.001	-0.063	-0.016	-0.023	-0.021	-0.040	-0.059	-0.059	0.022
kel24	0.016	-0.009	-0.033	-0.028	-0.022	-0.030	-0.037	-0.049	0.019
kel25	0.007	-0.023	-0.052	-0.045	-0.011	-0.019	-0.026	-0.065	0.022
kel26	-0.008	0.060	-0.004	0.011	0.012	-0.044	0.002	-0.008	0.027
kel27	-0.035	-0.032	-0.010	-0.036	-0.011	-0.048	-0.048	-0.048	0.015
kel28	0.006	0.020	0.034	0.029	0.027	-0.015	-0.012	0.007	0.017
kel29	-0.003	-0.013	-0.019	-0.009	-0.016	-0.043	-0.026	-0.011	0.012
kel30	0.015	0.012	0.020	0.001	-0.003	-0.008	-0.033	0.058	0.025
kel31	-0.040	-0.015	-0.001	-0.031	-0.004	-0.038	-0.026	-0.007	0.015
kel32	0.002	-0.012	0.000	-0.003	-0.024	-0.044	-0.052	0.010	0.021
kel33	0.015	-0.081	-0.022	-0.013	0.004	-0.021	-0.005	-0.009	0.027
kel34	-0.009	-0.022	0.022	0.010	0.009	-0.044	-0.043	-0.003	0.023
kel35	0.020	-0.058	0.005	-0.008	0.000	-0.029	-0.014	0.010	0.023
kel36	0.023	-0.052	-0.019	-0.016	-0.037	-0.018	-0.043	0.001	0.023

Fuente y elaboración: El autor

Tabla 9. Resultados de desviación estándar para el nivel electrónico

ID	5 de ago	22 de ago	6 de sept	26 de sept	13 de oct	28 de oct	23 de nov	7 de dic	σ (m)
kel0	0.049	0.026	0.050	0.064	0.051	0.035	0.041	0.022	0.013
kel1	0.051	0.026	0.050	0.064	0.053	0.034	0.041	0.023	0.014
kel2	0.042	0.023	0.048	0.060	0.051	0.031	0.039	0.014	0.014
kel3	0.048	0.029	0.055	0.070	0.059	0.041	0.044	0.023	0.014
kel4	0.049	0.031	0.055	0.075	0.067	0.048	0.054	0.030	0.015
kel5	0.048	0.029	0.059	0.078	0.067	0.049	0.054	0.054	0.014
kel6	0.046	0.025	0.049	0.066	0.050	0.033	0.040	0.020	0.014
kel7	0.044	0.023	0.048	0.065	0.047	0.031	0.032	0.013	0.015
kel8	0.044	0.022	0.047	0.063	0.047	0.029	0.035	0.015	0.015
kel9	0.039	0.014	0.033	0.049	0.034	0.009	0.006	-0.018	0.020
kel10	0.032	0.013	0.034	0.046	0.045	0.013	0.013	-0.050	0.017
kel11	0.034	0.014	0.036	0.049	0.051	0.015	0.017	-0.004	0.018
kel12	0.038	0.018	0.041	0.055	0.054	0.022	0.028	0.008	0.016
kel13	0.032	0.014	0.037	0.050	0.052	0.028	0.024	0.004	0.015
kel14	0.035	0.016	0.036	0.053	0.054	0.031	0.025	0.006	0.016
kel15	0.035	0.015	0.044	0.052	0.052	0.022	0.021	-0.001	0.018
kel16	0.023	0.004	0.028	0.046	0.046	0.021	0.016	-0.005	0.017
kel17	0.019	0.011	0.030	0.042	0.025	0.005	0.001	-0.021	0.018
kel18	0.029	0.008	0.031	0.037	0.032	0.010	0.009	-0.011	0.015
kel20	0.034	0.015	0.035	0.053	0.052	0.026	0.018	-0.003	0.018
kel21	0.032	0.013	0.034	0.048	0.047	0.012	0.013	-0.009	0.019
kel22	0.038	0.013	0.033	0.048	0.046	0.009	0.008	-0.016	0.021
kel23	0.038	0.011	0.028	0.042	0.038	-0.001	-0.012	-0.039	0.027
kel24	0.037	0.015	0.036	0.048	0.044	-0.011	0.011	-0.013	0.022
kel25	0.031	0.009	0.028	0.042	0.038	0.003	0.002	-0.023	0.021
kel26	0.033	0.015	0.038	0.052	0.050	0.028	0.023	0.004	0.015
kel27	0.033	0.018	0.037	0.052	0.053	0.026	0.026	0.026	0.012
kel28	0.033	0.015	0.033	0.049	0.042	0.013	0.011	-0.015	0.019
kel29	0.037	0.023	0.050	0.065	0.057	0.023	0.029	0.004	0.019
kel30	0.035	0.019	0.045	0.055	0.052	0.028	0.032	0.062	0.014
kel31	0.033	-0.006	0.037	0.052	0.053	0.024	0.021	-0.000	0.020
kel32	0.031	0.014	0.034	0.041	0.041	0.013	0.017	-0.006	0.015
kel33	0.038	0.019	0.043	0.056	0.056	0.024	0.029	0.007	0.016
kel34	0.032	0.011	0.037	0.048	0.049	0.019	0.018	-0.005	0.018
kel35	0.036	0.023	0.045	0.054	0.055	0.029	0.035	0.012	0.014
kel36	0.036	0.022	0.028	0.055	0.056	0.030	0.037	0.017	0.013

Fuente y elaboración: El autor

CONCLUSIONES

- El rango de precisión por el método de Nivelación es de 17 ± 1 mm siendo el más exacto ya que oscila en un rango menor al del método del GPS siendo de 20 ± 2 mm.
- Gráficamente los datos del Nivel Electrónico presentan una mayor consistencia y una tendencia regular acercándose más a los valores reales que se encuentra en el terreno a diferencia de los Datos del GPS que muestran una dispersión entre ellos sin ninguna tendencia entre monitoreos.
- De acuerdo a los resultados obtenidos se puede establecer que el método de monitoreo con Nivel Electrónico es el método confiable, rápido y económico para determinar desplazamientos verticales siempre y cuando la zona de monitoreo no sea muy extensa.
- El GPS doble frecuencia cuenta con características muy favorables, pero existen aspectos que obstruyen al momento de tomar las lecturas de una posición, en especial la elevación o cota si se toma en consideración los errores propios del método a los que se está expuesto.
- Al definir la deformación del terreno mediante estos dos métodos se establece que este presenta deformaciones a lo largo del cuerpo de la ladera que son muy bajas, pero son indicativos que existe un movimiento descendente muy bajo respecto al pie de la ladera.

RECOMENDACIONES

- Utilizar para todos los monitoreo el mismo equipo topográfico para evitar el acarreo de errores por calibración o precisión del equipo.
- En la nivelación, al realizar los puntos de cambio es necesario utilizar un soporte fijo desmontable el cual será anclado al terreno el cual servirá como base para la estadía y así evitar errores al pasar la cota a otro punto.
- Para determinar el grado de precisión entre las dos técnicas, es recomendable que se realice en una red de monitoreo fija donde se conozca las cota reales de los puntos de la red de monitoreo.
- Para el monitoreo con GPS, los tiempos de permanencia de la antena móvil en los puntos de la red de control, con el modo Fast Static no debe ser menor a 8 minutos para una línea base de 4.5 km y con ello evitar datos flotantes.
- Para realizar una mejor apreciación de las deformaciones verticales en un movimiento de ladera es necesario realizar la monitorización mensualmente en el periodo más largo que sea posible.
- Se sugiere realizar estudios que verifiquen la precisión vertical con mediciones GPS de doble frecuencia respecto al tiempo de permanencia u ocupación en los puntos de control y en al menos dos condiciones climáticas.

REFERENCIAS BIBLIOGRÁFICAS

- Alcántara, I., Echavarría, A., Gutiérrez, C., Domínguez, L., & Noriega, I. (1996). *Factores que rigen la estabilidad de las laderas naturares. Cenapred* (1st ed., Vol. 11).
- Alcántara, I., Echavarría, A., Gutiérrez, C., Domínguez, L., & Noriega, I. (2001). *Inestabilidad de laderas. Cenapred* (2nd ed.).
- Bannister, A., Raymond, S., & Baker, R. (2003). *Técnicas modernas en Topografía*. *AlfaOMega* (7th ed.).
- Casanova, L. (2002). *Topografia Plana*. *Universidad de los Andes* (1st ed.). Mérida: Taller de publicaciones de Ingenieria, ULA.
- Colesanti, C., Ferretti, A., Prati, C., & Rocca, F. (2001). Comparing GPS, optical leveling and permanent scatterers. *IEEE Xplore*, *6*(C), 7031–7033. http://doi.org/10.1109/IGARSS.2001.978109
- Corominas, J. (2000). Tipos de rotura en laderas y taludes. *No Publicado*, 17.
- Correia, P. (2000). Guia práctica del GPS (1st ed.). Paris: MARCOMBO S.A.
- Cuanalo, O. A., Quezada, P., Aguilar, A., Olivan, A. M., & Barona, E. (2006). Sismos y Iluvias, factores detonantes de deslizamientos de laderas en las regiones montañosas de Puebla, México. *E-Gnosis*, *4*(13), 1–14.
- Desir, G., Guerrero, J., Gutierrez, F., Carbonel, D., Merino, J., Benito, A., ... Linares, R. (2016). Monitorización de dolinas activas en el entorno de Zaragoza mediante nivelación geométrica de alta precisión. *XIV Reunión Nacional de Geomorfología*, 607–613. http://doi.org/10.13140/RG.2.1.2095.7680
- Flores, E. P. (2011). Incidencia de la Josefina en el Cantón Paute: 1993-1995. Universidad de Cuenca.
- García, J. C. (2005). Análisis de la vulnerabilidad por movimientos de ladera: Desarrollo de las metodologías para evaluación y cartografía de la vulnerabilidad. (1st ed.).
- GeoMax. (2013). *User Manual GeoMax ZDL700 Series* (No. 1). Obtenido de www.geomax-positioning.com
- Gil, F., Paez, B., Paús, P., San Martin, J., Aldasoro, R., & Soto, J. (2013). Verificación de un nivel óptico. *Segundas Jornadas de Investigación Y Transferencia*, 185–190.
- Gili, J. A. (2003). Instrumentación Para Control De Movimientos De Ladera: Sistema Gps Y

- Otros. IGME, 236-246.
- González, L. I., Ferrer, M., Ortuño, L., & Oteo, C. (2002). *Ingenieria Geologica. Pearson* (1st ed.).
- Guaman Jaramillo, G. A. (2012). Aplicación de SIG para el manejo de riesgos naturales en el área urbano de la ciudad de Loja. Universidad San Francisco de Quito.
- Jiménez, L., Ángeles, G., Marín, B., Sieron, K., & Alarcón, A. M. (2015). *Inestabilidad de laderas en el Estado de Veracruz: necesidades de investigación y búsqueda de soluciones. INECOL*.
- Llorens, R. C., & Masquef, A. T. (2009). Movimientos de ladera. *Enseñanza de Las Ciencias de La Tierra*, 17(3), 284–294.
- Malet, J. P., Déprez, A., Masson, F., & Ulrich, P. (2011). Continuous monitoring and near-real time processing of GPS observations for landslide analysis: A methodological framework. *Geophysical Research Abstracts*, 13, 201–209. http://doi.org/10.1007/978-3-642-31445-2-26
- Matteis, Á. F. de. (2003). Estabilidad de taludes. Universidad Nacional de Rosario.
- Olivos, K. J. (2014). *Análisis multitemporal en base a fotointerpretación de los movimientos de ladera en la ciudad de Loja*. Universidad Técnica Particular de Loja.
- Paladines, R., Maldonado, N., Coronel, A., Poma, J., García, C., Dávila, P., ... Segarra, G. (2007). *Perspectivas del Medio Ambiente Urbano: GEO Loja* (1st ed.). Naturaleza y Cultura. Obtenido de http://www.naturalezaycultura.org/docs/Geo Loja.pdf
- Pellini, C. (2000). Los desastres naturales. Obtenido de http://historiaybiografias.com/desastres_naturales/
- Peñafiel, J., & Zayas, J. (2001). Fundamentos del sistema gps y aplicaciones en la topografia. Colegio oficial de ingenieros técnicos en topografía.
- Reyes, W. J. W. (2008). Deslizamientos.
- Suárez, J. (2009). *Deslizamientos* (1st ed., Vol. 1). U.I.S. Obtenido de http://www.erosion.com.co/
- Tambo, W. S. (2011). Estudio del peligro de deslizamiento del norte de la ciudad de Loja.
 Universidad de la Habana. Obtenido de http://www.minedu.gob.pe/normatividad/reglamentos/ROFHuascaran.php
- Trimble, R. (2013). User guide Trimble R6.

- Varela, C. F. (2003). Sistemas de posicionamiento y de navergación satelital. *Revista de Tecnología*, 2(2), 9–29.
- Villamandos. (2014). ¿Qué es un nivel de confianza? Obtenido de http://upport.minitab.com/es-mx/minitab/17/topic-library/basic-statistics-and-graphs/introductory-concepts/confidence-interval/confidence-level/
- Zárate, B. (2011). Monitoreo de movimientos de ladera en el sector de San Pedro de Vilcabamba mediante procedimientos GPS. *Maskana*, *2*(2), 17–25.

ANEXOS

A.1. Anexo fotográfico

A.1.1. Diseño de la red de control

Figura 7: Ilustración de la zona de estudio Fuente y Elaboración: El Autor

Figura 8: Procedimiento para la limpieza de la capa vegetal y excavación Fuente y Elaboración: El Autor

Figura 9: Procedimiento de la colocación de la varilla y el ajuste con hormigón Fuente y Elaboración: El Autor

Figura 10: Ilustración de la señalización de los puntos de control Fuente y Elaboración: El Autor

A.1.2. Monitoreo con GPS Timble R6

Figura 11: Procedimiento del levantamiento con el equipo GPS Timble R6 Fuente y Elaboración: El Autor

A.1.3. Monitoreo con nivel electrónico Geomax ZDL 700

Figura 12: Procedimiento del levantamiento con el equipo Nivel Electrónico ZDL 700 Fuente y Elaboración: El Autor