

UNIVERSIDAD TÉCNICA PARTICULAR DE LOJA

ESCUELA DE INGENIERÍA QUÍMICA ESCUELA DE INGENIERÍA EN INDUSTRIAS AGROPECUARIAS

"DISEÑO PRELIMINAR DE UNA PLANTA DE PRODUCCIÓN DE BIODIESEL A PARTIR DE *JATROPHA CURCAS* EN LA REGIÓN SUR DEL ECUADOR"

> Tesis previa a la obtención del Título de Ingeniero Químico e Ingeniero en Industrias Agropecuarias

AUTORES:

Pablo Xavier Elizal<mark>de Jiménez</mark> Bayron Lennin Rod<mark>riguez Abad</mark>

DIRECTOR:

Ing. Miguel Meneses

LOJA – ECUADOR 2009

DECLAR ACIÓN Y CESIÓN DE DERECHO

Nosotros, Pablo Xavier Elizalde Jiménez y Bayron Lennin Rodriguez Abad, declaramos ser autores del presente trabajo y eximimos expresamente a la Universidad Técnica Particular de Loja y a sus representantes legales de posibles reclamos o acciones legales.

Adicionalmente declaro conocer y aceptar la disposición del Art. 67 del Estatuto Orgánico de la Universidad Técnica Particular de Loja que en su parte pertinente textualmente dice: "Forman parte del patrimonio de la Universidad la propiedad intelectual de investigaciones, trabajos científicos o técnicos y tesis de grado que se realicen a través, o con el apoyo financiero, académico institucional (operativo) de la universidad".

Pablo Xavier Elizalde Jiménez

Bayron Lennin Rodriguez Abad

CERTIFICACIÓN

Ing. Miguel Meneses, catedrático de la Universidad Técnica Particular de Loja

Certifico:

Haber dirigido la investigación y elaboración de la presente tesis, la misma que reúne los requisitos que exige los reglamentos de la Escuela, por lo que autorizo su presentación.

Ing. Miguel Meneses DIRECTOR DE TESIS

AGR ADECIMIENTO

Hemos avanzado en una etapa más de estudio y al concluirla estamos en el deber ineludible de presentar nuestros agradecimientos: A la "Universidad Técnica Particular de Loja" institución educativa que nos acogió para formarnos como futuros profesionales, a nuestros profesores y compañeros de las escuelas de Ingeniería Química e Industrias Agropecuarias, con quienes compartimos nuestros años de estudio.

A la Ing. Ruth Martínez, Directora del CETTIA, por su apoyo en el desarrollo de nuestro proyecto.

Al Ing. Omar Malagón, Director de la escuela de "Ingeniería Química", por la comprensión brindada ante los inconvenientes suscitados en el presente trabajo de investigación.

Al Ing. Néstor Balcázar, docente de la escuela de Ingeniería Química por su colaboración.

A nuestros tutores de tesis: Ingenieros Miguel Meneses e Iván Burneo, quienes han sido nuestra guía para la elaboración del presente trabajo de fin de carrera.

Los Autores

DEDICATORIA

A la mujer buena, amorosa, sacrificada. A la mujer que sin límite de tiempo ni espacio ha sido mi sustento, mi fuerza, la razón que tengo para seguir creciendo como ser humano. A ella que es mi orgullo le dedico este triunfo al culminar esta etapa de estudio, para usted mamita Mercy. A Romelia y Feresa que con el amor y la ternura de una madre siempre han estado junto a mi, para complementar mi vida y hacer de ella algo mágico. A mi familia por su cariño, apoyo y sus sabios consejos que me han permiido ser cada día una mejor persona.

A la mujer pura, que conceptualiza el amor y que es el complemento de mi vida. Lea.

A mis amigos con quienes he compartido mis inquietudes y aciertos

Pablo Xavier

Crecer cada día más con el apoyo incondicional de las personas que más amas es de gran satisfacción, es por eso, agradeciéndoles, dedico el presente trabajo a mis padres, hermanos, amigos, profesores y compañeros. Con ustedes este proyecto pudo hacerse realidad.

Gracias

Byron

CONTENIDO

Declaración y cesión de derechos	i
Certificación	ii
Agradecimientos	iii
Dedicatorias	iv
Contenido	v
Artículo	xiii
1. Capítulo I.	
1.1. Justificación.	1

1.1. Justificación.	1
1.2. Fin del proyecto.	2
1.3. Propósito del proyecto.	2
1.4. Componentes del proyecto.	2

2. Capítulo II. Revisión bibliográfica.

2.1. Biocombustibles.	4
2.2. Biodiesel.	4
2.3. Escenario geográfico de la provincia de Loja.	5
2.3.1. Uso actual del suelo.	5
2.3.2. Situación agrológica.	7
2.3.3. Red vial.	8
2.4. Jatropha curcas L. (Piñón).	9
2.4.1. Taxonomía.	9
2.4.2. Distribución y requerimientos ecológicos de producción.	10
2.5. Extracción de aceite de Jatropha curcas.	10
2.5.1. Refinamiento del aceite.	12
2.6. Propiedades físico químicas del aceite de Jatropha curcas.	13
2.7. Pasta resultante.	14
2.8. Reacciones.	14

Pág.

2.8.1.	Reacción de esterificación.	14
2.8.2.	Mecanismo de la saponificación.	18
2.8.3.	Reacción de transesterificación.	19

3. Capítulo III. Resultados y discusión.

3.1. Proc	lucción de biodiesel a partir de <i>Jatropha curcas</i> en el Ecuador	23
3.2. Dete	erminación del área de cultivo.	23
3.2.1	. Disponibilidad de agua.	23
3.2.2	. Tipo de suelo.	24
3.2.3	. Vías y uso actual del terreno.	24
3.3. Estir	mación de la base de cálculo.	25
3.4. Prop	biedades físicas.	28
3.5. Sim	ulación.	30
3.5.1	. Descripción del proceso	32
3.5.2	. Determinación de las condiciones de reacción.	32
3.5.3	. Catalizador.	33
3.5.4	. Relación molar entre el alcohol y el aceite.	33
3.5.5	. Tiempo y velocidad de agitación.	34
3.5.6	. Intercambiador de calor.	35
3.5.7	. Determinación de las especificaciones de las columnas de	
	Destilación	35
3.5.8	. Análisis del comportamiento de las columnas de destilación	
	por etapa del proceso.	36
3.5.9	. Efecto de la corriente de reciclo de aceite sobre las	
	columnas MEOHREC1 y GLYCERPU.	38
3.5.1	0. Relación de reflujo de las columnas de destilación.	40
3.5.1	1. Presión de operación de la columna DESTIL.	41
3.5.1	2. Temperatura de condensación de la columna DESTILL.	42
3.5.1	3. Operación de la columna de extracción líquida WASHCOL.	43
3.6. Res	ultados.	44
3.6.1	. Alcohol, catalizador y ácido sulfúrico.	46
3.6.2	. Biodiesel.	47
3.6.3	. Glicerina.	47
3.6.4	. Sólidos.	47
3.6.5	. Salida de agua.	47

3.7. Diagrama de P&I.	48
3.7.1. Selección de válvulas y tuberías.	49
3.7.2. Selección de bombas.	50
3.7.3. Equipos.	50
3.8. Ubicación de la planta de producción de	e biodiesel. 57
3.8.1. Materia prima disponible.	58
3.8.2. Cercanía de mercado.	58
3.8.3. Costo de insumos.	58
3.8.4. Clima.	58
3.8.5. Mano de obra disponible.	58
3.8.6. Servicios públicos.	59
3.8.7. Factores ambientales.	59
3.9. Diagrama Layout del proceso.	59
3.10. Costo del proyecto.	59
3.10.1. Estimación de costos.	59
3.10.2. Análisis de sensibilidad	60

4. Capítulo IV. Conclusiones y recomendaciones.

4.1. Conclusiones.	62
4.2. Recomendaciones.	63
Bibliografía.	64

Anexos.	
---------	--

vii

68

ÍNDICE DE TABLAS

Tabla		Pág.
2.1	Requisitos del biodiesel.	5
2.2	Uso actual.	6
2.3	Longitud de vías de la provincia de Loja.	9
2.4	Rendimientos de la extracción.	11
2.5	Propiedades del aceite de Jatropha curcas.	13
2.6	Ácidos grasos del aceite de piñón.	13
3.1	Estimación del área de explotación.	26
3.2	Base de cálculo.	27
3.3	Resultados de la Tripalmitina, Trioleina y Metil palmitato.	29
3.4	Especificaciones estimadas a partir de columnas DSTWU.	36
3.5	Análisis de la razón de reflujo sobre la energía requerida	
	en el hervidor y condensador de las columnas.	40
3.6	Relación de reflujo de operación de las columnas.	41
3.7	Especificaciones de la columna WASHCOL.	43
3.8	Pérdidas de glicerol y metanol a diferentes flujos de agua.	43
3.9	Composición de la producción de biodiesel y glicerina a partir del aceite	
	de Jatropha curcas.	47
3.10	Composición de la corriente PURGE, SOLIDS Y WATEROUT.	48
3.11	Potencia teórica de las bombas.	50
3.12	Dimensiones de tanques, mezcladores y reactores.	51
3.13	Potencia requerida de los agitadores.	52
3.14	Especificaciones principales del EXCHANG2.	53
3.15	Especificaciones de tubos del EXCHANG2.	53
3.16	Especificaciones de la coraza del EXCHANG2	53
3.17	Especificaciones de los deflectores del EXCHANG2	53
3.18	Especificaciones de equipo	53
3.19	Especificaciones de corrientes a los hervidores.	53
3.20	Especificaciones de los tubos de los hervidores.	54
3.21	Especificaciones de la coraza de los hervidores	54
3.22	Especificaciones principales de los hervidores	54
3.23	Especificaciones de las corrientes de los condensadores	54
3.24	Especificaciones de tubos de los condensadores	55

3.25	Especificaciones de coraza de los condensadores	55
3.26	Especificaciones principales de los condensadores	55
3.27	Resultados de las columnas de destilación.	56
3.28	Dimensiones de la columna de extracción líquida.	56
3.29	Factores de localización.	57
3.30	Costos requeridos del proyecto.	60
3.31	Indicadores financieros del proyecto.	60
3.32	Efecto del precio de la semilla sobre los indicadores financieros.	61
3.33	Efecto del precio del biodiesel sobre los indicadores financieros.	61

ÍNDICE DE GRÁFICOS

Мара		F	Pág.
1 2 3 4 5	Estado actual del suelo de la provincia de Loja. Situación agrológica de la provincia de Loja. Red vial de la provincia de Loja. Áreas de cultivo. Principales vías de la provincia de Loja.	6 7 8 2 2	6 7 3 24 25
Histo	grama		
1	Clases agrológicas de la provincia de Loja.	8	3
Figura	a		
2.1	Planta y semilla de Jatropha curcas (Recolectadas en el cantón		
	Catamayo-Loja).	ç	9
2.2	Proceso de refinamiento del aceite.	1	12
2.3	Esquema de reacciones.	1	14
2.4	Mecanismo de esterificación de Fischer.	1	15
2.5	Mecanismo del proceso de saponificación de ésteres.	1	18
2.6	Reacción de transesterificación de triglicéridos (TG)		
	mediante metanol en medio básico.	1	19
2.7	Secuencia de reacciones reversibles en la transesterificación		
	de triglicéridos.	2	20
3.1	Diagrama de flujo.	3	31
3.2	Efecto de la temperatura sobre la transesterificación		
	del aceite de Jatropha curcas.	3	33
3.3	Efecto del exceso de metanol sobre la transesterificación		
	del aceite de Jatropha curcas.	3	34
3.4	Efecto del tiempo de residencia en la transesterificación.	3	34
3.5	Efecto de la temperatura de enfriamiento sobre el arrastre		
	de impurezas en el refinado.	3	35
3.6	Efecto de la tasa de destilado del MEOHREC1 sobre		
	la temperatura de su hervidor.	3	36

3.7 Efecto de la tasa de destilado del GLYCERPU sobre la

	temperatura de su hervidor.	37
3.8	Efecto de la salida de fondos del DESTILL sobre	
	la temperatura de su hervidor.	37
3.9	Efecto de la salida de fondos del DESTILL sobre	
	el arrastre de biodiesel en el reciclo de aceite.	38
3.10	Efecto de la tasa de destilado del MEOHREC1 sobre	
	la temperatura de su hervidor.	39
3.11	Efecto de la tasa de destilado del GLYCERPU sobre la	
	temperatura de su hervidor.	39
3.12	Tasa de destilado sobre pureza de la glicerina.	40
3.13	Efecto del vacío sobre el hervidor de la columna DESTILL.	41
3.14	Efecto de la condensación en el DESTILL sobre pérdidas de biodiesel.	42
3.15	Arrastres de glicerol y metanol en el refinado.	44
3.16	Diagrama de flujo simulado.	45
3.17	Cumplimiento de la relación molar alcohol: aceite.	46

ÍNDICE DE ANEXOS

ANE	xo	Pág.
1	Análisis experimental de la materia prima.	68
2	Cálculo de propiedades físicas.	69
3	Composición de la corriente de aceite.	77
4	Factor preexponencial.	79
5	Especificaciones de la simulación.	83
6	Determinación de las especificaciones de una columna RADFRAC.	94
7	Custom streams results.	97
8	Diagrama P&I.	99
9	Procedimientos de cálculos.	100
10	Diagrama Layout del proceso.	137
11	Costo del proyecto.	138
12	Tutoriales.	158
13	Propiedades físicas.	184

PRELIMINARY DESIGN OF A BIODIES EL PRODUCTION PLANT OF JATROPHA CURCAS IN THE SOUTH REGION OF ECUADOR

Elizal de Pablo¹; Rodriguez Bayron²; Meneses Miguel³

School of Chemical Engineering Universidad Técnica Particular de Loja.

The continued increase in energy demand in Ecuador and the need to reforest eroded soils, leads us to forge a coherent development of the production and the use of biofuels in the country from raw materials that do not have an alimentary destination. This will involve the design of a biodiesel plant production by alkaline transesterification of Jatropha curcas oil, to achieve this goal, first the crop area used was estimated to establish the basis of calculation (oil) used in a simulation through Aspen Plus 2006.5 version 21.

Keywords: Simulation, biodiesel, Jatropha curcas, project cost.

1. School of Chemical Engineering; xavierl_17@hotmail.com

2. School of Agroindustry Engineering.

3. CETTI - UTPL

1. INTRODUCTION

In 2008, Ecuador had a demand of Diesel Oil of 35 million BEP (barrels of oil equivalent) in the transport sector and 10 million BEP in the industrial sector, which 49.4% compensate the local production and 50.6% is imported [1]. The need to counteract the desertification of dry forest and agricultural soil erosion process in Ecuador, especially in the province of Loja which has about 274,502.55 hectare [2], lead us to promote alternative solutions through the cultivation of *Jatropha curcas* and its use through the conversion of seed oil into biodiesel. This will promote a coherent development of the production and use of biofuels from raw materials that do not have a food destination.

There are two reactions to obtain biodiesel, they are esterification and transesterification. Choosing the most appropriate reaction for a process is a function that depends on the raw material, this means the type and characteristics of the oil which we will work with, talking about the number of features of free fatty acids is a determining factor in deciding the type of reaction used. When there is a high percentage of free fatty acids is necessary to work with esterification to avoid saponification; when you have less than 3% of free fatty acids in the oil [3], the transesterification is the appropriate mechanism for this type of raw materials.

2. MATERIALS AND METHODS

2.1 Determination of crop area.

In the province of Loja there are 274,502.55 hectares in erosion process and 340000 hectares of dried forests belonging to the cantons of Macará and Zapotillo [2]. Based on these values and data provided by the Honorable Consejo Provincial de Loja (Plan of Land Management, Bureau of Planning) identified an area (Arc View GIS 3.2) of 13000 hectares (yellow areas in Figure 1) delimited according to the following factors: water availability, soil type, routes and current land use.

2.2 Estimation of the calculation basis.

The cultivation area is bounded by 13,000 hectares, which 30% is considered to operate during the last year of the project, giving as a result of an exploitable area 3900 hectares.

Tabla 1. Area	of exploitation	estimation

Zapotill		
Usable area [hectare]		
1 1000,0	1400-1800	
Macará		
Usable area [hectare]		
2000 1000-1400		
Total usable approxima	13000	
Fraction of exp	0,3	
Exploitable area	3900,0	

With an inflation rate of 5.41% * we projected our 3900 hectares for a 10 year period of useful life of the project. The distances in the field of planting *Jatropha curcas*, Frequently range from 2 x 2, 2.5 x 2.5 and 3 x 3m, with 2500, 1600 and 1111 plants per hectare, respectively [4], hence our calculations to take into consideration the 1600 plants per hectare, each plant *Jatropha curcas* produces about 5 kg of seed with a mechanical extraction oil yields 35% [5]. In order to give greater reliability to the project we considered that can reach it 10% of the daily production of oil for our theoretical design, thereby our calculation base is 3203.2 kg/h of *Jatropha curcas* oil.

2.3 Determination of reaction conditions.

Our process has only the transesterification reaction to obtain biodiesel, because the *Jatropha curcas* oil of the southern region of Ecuador has only 1.26% of free fatty acids.

Temperature.

The transesterification can occur even at a temperature of 25° C and is favored by an increase in temperature to below the boiling point of methanol (64.6 °C) to avoid evaporation [6]. For this our reaction temperature is 60° C.

Pressure.

The transesterification does not require high operating pressures to achieve high yields, just working at atmospheric pressure to obtain excellent conversions.

Catalyst.

The transesterification reaction with a concentration of 0.6% NaOH as catalyst obtained a conversion of 98.38%, while a concentration of 1.1% KOH as catalyst reach a conversion of 87.6% [7]. Hence, to obtain similar levels of conversion is required to use larger amounts of KOH. For this reason we selected sodium hydroxide at a concentration 0.6% as the catalyst, besides being the cheapest and most widely used industrially.

Type of alcohol.

Alcohol use in our process is the methanol due to its polarity and short-chain structure, which offers advantages in terms of economy, efficiency and reaction speeds [6].

Molar ratio between alcohol and oil.

While the stoichiometry of the transesterification reaction requires three moles of alcohol per mole of oil (3:1), in practice relations major increases to move the balance towards an increased formation of methyl esters, with the care that a higher proportion of alcohol hinder the subsequent separation of glycerol due to increased solubility. That is why we work with a molar ratio of 9:1, to ensure high conversion of our limiting reagent (oil).

2.3.5 Time and stirring on reaction.

The reaction time depends on several variables, mainly temperature, which is why it is analyzed on the basis of this variable and less than the best reaction time is 1 hour [8], but in order to ensure high conversions of residence time in the CSTR is 90 minutes.

Because the reagents are a heterogeneous system requires an efficient and constant agitation, and seeing the necessity of using a continuous stirred tank reactor (CSTR) to be maintained at 360 rp m [8].

2.4 Simulation.

We considered the two greatest percentages of triglycerides in the *Jatropha curcas* oil in southern Ecuador: tripalmitin and triolein [9]. Table 2 shows the composition worked in the simulation, ignoring the percentages of other triglycerides that are less amount in the oil.

Table 2. Jatropha	cur	cas	oil	composi	tion for	the
	•	1	. •			

<u>simu lation</u>		
Component	Fraction	
Tripalmitina	0,51	
Trio leina	0,49	

^{*} Banco Central del Ecuador. 2009.

The biodiesel obtained was a mixture of methyl esters for each triglyceride: methyl palmitate and methyl o leate.

Most of the compounds are in the database of Aspen Plus 2006.5 version 21. Properties for compounds not available such as Methyl palmitate and Tripalmitin, were estimated using the tool Property Estimation of this software package.

The methanol and NaOH were considered as pure raw materials because the process requires anhydrous conditions; the sulfuric acid was specified as an aqueous solution 98% wt.

The simulation was worked under the NRTL (nonrandom two liquids) and Uniface methods (Universal Functional Group Activity Coefficient) identified through the Assistant - Property selection method of Aspen Plus.

The pre-exponential factor and activation energy of the Arrhenius equation are given by k: 15807.2312, E: 39255.209 kJ / kmol, which is determined from the kinetic studies carried out by AK Gupta.

The various mixers (MIXER1, MIXER2 and MIXER3) shown in Figure 6 working on atmospheric conditions.

The EXCHANG2 cools the flow ESTERES to 50°C because it contains glycerin whose solidification point is 38°C *, hence, have flows that contain glycerin below this temperature would have solidified glycerine and serious operating problems in the management of the glycerine. Besides to that temperature the dragging of water and glycerin in refining is decreased.

specifications of the Operating columns RADFRAC as: phases number, condensation type, distillation rate, reflux ratio, input current stage and pressure; were determined through a column DSTWU. All columns operate at atmospheric pressure and total condensation except column DESTILL that operate at 100Pa and 40°C of condensation temperature for to remove small amounts of water, and avoid thermal

* The Complete Book on Jatropha (Bio-Diesel) with Ashwagandha, Stevia, Brahmi & Jatamansi Herbs (Cultivation, Processing & Uses).

decomposition of biodiesel at temperatures above 250°C*.

All input current of the simulation were calculated using the tool Calculator in Flowsheeting Options with the objectives to automate and especially to meet the reactions conditions, except the current OIL which is determined by the calculation basis that is 3203.2 kg/h, to 25°C and 1atm.

The input current of methanol at the MIXER 1 is at 25°C and 1 atm. Its mass flow is determined by the following mathematical model where is defined as exported variable to molar flow of the stream MEOH and imported variable to molar flow of the components Tripalmitin and Triolein of the stream OIL2, to molar flow of methanol of the stream MEOH1:

$$OIL = TRIOLE + TRIPAL$$

 $MEOH = (OIL \times 9) - REFLUX$

Where:

Where:

TRIOLE \rightarrow imported variable. TRIPAL \rightarrow imported variable. REFULX \rightarrow imported variable. MEOH \rightarrow exported variable.

The input current of sodium hydroxide at the MIXER 1 is at 25°C and 1 atm. Its mass flow is determined by the following mathematical model where is defined as exported variable to mass flow of the stream NAOH and imported variable to mass flow of the components Tripalmitin and Triolein of the stream OIL2, to mass flow of sodium hydroxide of the stream MEOH1:

oil = *TRIPAL* + *TRIOLE* $NAOH = (0.006 \times oil) - NAOHIN$ TRIOLE \rightarrow imported variable. TRIPAL \rightarrow imported variable.

NAOHIN \rightarrow imported variable. NAOH \rightarrow exported variable.

The input current of sulfuric acid (H2SO4) at the neutralization reactor of the catalyst NaOH (NEUTRA) is a solution 98% sulfuric acid at 25°C and 1 atm. Its mass flow is determined by the following mathematical model where is defined as exported variable to mass flow of the stream H2SO4 and imported variable to molar flow of component NAOH of the stream AQU1:

$$H2SO4 = \frac{NAOH}{2}$$

Where: NAOH \rightarrow imported variable. H2SO4 \rightarrow exported variable.

Fig. 1. P&I diagram.

2.5 Cost project.

The costs of the equipment were estimated with the factorial method of agreement to figures them 6,3 to 6,7 and the tables 6,2, 6,4 and 6,5 (Coulson, 2005) to obtained prices for the year 2004, next it was proceeded to update the present year, using the annual rate of inflation of Chemical Engineering (August 2009) magazine, with the exception of the centrifugal filter and oil extractor their prices were market values.

3 CONCLUSIONS.

In this process with an input of: 2553.2 kg/h of oil, 650 kg/h of reflux oil, 297.577kg/h of methanol and 19.219 kg/h of NaOH there was a production of biodiesel of 1566.168kg/h with 99.62% purity and 281.700kg/h of glycerine with a concentration of 98.7%.

Biodiesel was obtained with a composition shown in Table 3, it indicates that met with the principal quality standards required by the NTE INEN 2 482:2009:

 Table 3. Composition of the production of biodiesel from

 Jatropha curcas oil.

Component	Mass Flow	Mass	INEN 2
	[Kg/h]	Frac	482:2009
Tripalmitin	0.004	2 PPM	
Triolein	0.010	4 PPM	-
Methyl	1308.611	0.510	
palmitate			>96.5%
Methyl oleate	1256.754	0.490	
Glycerol	0.567	221PPM	<0,25%
Methanol	0.118	46 PPM	<0,20%
Water	0.104	40 PPM	<500PPM
NAOH	-	-	-
NA3PO4	-	-	-
H3PO4	-	-	-

The most feasible location for installing a biodiesel production plant from *Jatropha curcas* oil in southern Ecuador is Zapotillo - Loja.

To created a P&I diagram of biodiesel production from *Jatropha curcas* oil with 82.7% yield; with an investment of \$ 11.164.720 ($\pm 25\%$) you can install a biodiesel production plant in southern Ecuador.

ACKNOW LEDGMENTS

Honorable Consejo Provincial de Loja. Dirección de Planificación area. In order to give us information about "Plan de Ordenamiento territorial de la Provincia de Loja".

Universidad Nacional de Loja. For to give information about *Jatropha curcas* plant

REFERENCES

- 1. Rodríguez A.; Ministerio de Electricidad y Energía Renovable del Ecuador; Matriz Energética al 2020; Memoria.
- Solórzano V.; Estrategia de manejo para los bosques secos como alternativa de lucha contra la desertificación en el suroccidente de la provincia de Loja. Experiencia del Proyecto del Bosque Seco. Memoria.
- García C., et, Al; CEIM; Biocarburantes líquidos: biodiésel y bioetanol, Madrid España, 2005
- 4. Dagmar R.; PIÑÓN (Jatropha curcas); Agroenfoque Junio 2007. N° 155; Pág. 24-25 [cited; available from: www.minem.gob.pe/archivos/ogp/GVEP/Roet tgerda.pdf].
- 5. FSIMCP-ESPOL Perspectivas de Oleaginosas no Comestibles en generación de Biodiesel; Equipo multidisciplinario de investigadores ESPOL, Á rea Biocombustibles. Memoria.
- Torossi F.; Revista ANALES de la Real Sociedad Española de Química; Julio Septiembre. 2006, págs. 43-49.
- Benjumea P., et. Al.. Estudio experimental de las variables que afectan la reacción de transesterificación del aceite crudo de palma para la producción de biodiesel. Scientia of Technica, No 24, Mayo 2004.
- 8. Gupta A., Sastry S. Developing the rate equation for biodiesel production reaction. Department of Chemical Engineering, Indian Institute of Technology.
- 9. Proaño O. Análisis de aceite de piñón para la elaboración de biodiesel. Memoria.
- 10. The Complete Book on Jatropha (Bio-Diesel) with Ashwagandha, Stevia, Brahmi & Jatamansi Herbs (Cultivation, Processing & Uses); Asia Pacific Business Pres Inc. Kamla Nagar, delhi – 110007 INDIA.
- 11. Coulson R.; Chemical Engineering Design; Person Educación; Cuarta edición.2005
- 12. Food Drug Administration. Bosques y Energía, Organización de las Naciones Unidas

para la Agricultura y la Alimentación, Roma 2007.

- 13. Ramesh D., Samapathrajan A., Venkatachalam P. Production of Biodiesel from Jatropha curcas oil by using pilot Biodiesel Plant. Tamil Nadu Agricultural University Coimbatore, Tamil Nadu, India 2004 [revisado en: www.jatropha.de/Journal/Pilot_Plant_for_Biodieselleaflet1.pdf]. Febrero 2008
- 14. Cultivo de Jatropha Curcas y Construcción de una Planta de Biodiesel en San Esteban, Olancho; Inversiones San Martín, Olancho, Honduras, 2006 [revisado en: www.sica.int/busqueda/busqueda_archivo.aspx?Archi vo=odoc_9537_1_22062006.pdf]. Febrero 2008.
- 15. Cultivos Energéticos SRL & Cooperativa El Rosario Ltda. Ficha Técnica de la Jatropha curcas [revisado en:

http://www.elsitioagricola.com/articulos/cultivosEner geticos/JatrophaCurcas_FichaTecnica.pdf] Febrero 2008

- 16. Cruz V., M.T., Contreras T., Anaya I. Aceite de la (Jatropha Curcas), análisis de su composición. Instituto Politécnico Nacional. Mexico [revisado en: www.respyn.uanl.mx/especiales/2006/ee-14-2006/documentos/Art81.pdf] Febrero 2008
- 17. Knothe G., Dunn R., Bagby M.. Biodiesel: The Use of Vegetable Oils and Their Derivatives as Alternative Diesel Fuels. National Center for Agricultural Utilization Research, Peoria, USA, 2004
- De La Vega J. Jatropha Curcas L. Agro-Energía. Agro-Proyectos y Agro-Energía. México 2006
- Plan de Ordenamiento territorial del Honorable Consejo Provincial de Loja; Dirección de Planificación; Loja Ecuador 2007.
- 20. Pisarello M., Querin C.. Esterificación con etanol para la producción de biodiesel a partir de materias primas de alta acidez. Instituto de Investigaciones en Catálisis y Petroquímica Facultad de Ingeniería Química. Universidad Nacional del litoral. Santa Fe.
- 21. Química Orgánica. Ácidos carboxílicos y derivados. [revisado en: http://www.sinorg.uji.es/Docencia/QO/tema11QO.pdf]
 Febrero 2008.
- A merican Society for Testing and Materiasl, Standard Specification D 6751-03a for Biodiesel Fuel (B100).2003
- 23. Sapag N., Sapag R. Preparación y Evaluación de Proyectos. Cuarta edición. Impreso en Chile.
- 24. FIMCP-ESPOL Perspectivas de Oleaginosas no Comestibles en generación de Biodiesel. Equipo multidisciplinario de investigadores ESPOL, Área Biocombustibles. Memoria de Biocombustibles y Ambiente II expo-conference, Guayaquil 23-25 de junio de 2008.

- Nielsen S. Análisis de los alimentos. Manual de Laboratorio. Editorial Acribia, S.A. Zaragoza España 2003.
- 26. Petrocomercial. Proyecto piloto de biocombustibles en Guayaquil.
- 27. Knight S. Fundamentos de FÍSICO QUÍMICA. Segunda Edición. México.
- Crockford H., Knight B.; Fundamentos de FÍSICO QUÍMICA; Segunda Edición; México, pp 361-376.
- 29. Generación de Combustibles Renovables Provenientes del Aceite Producido en Plantas Jatropha curcas L.
- 30. Análisis Integrado de las Tecnologías, El Ciclo de Vida y la Sustentabilidad de las Opciones y Escenarios para el Aprovechamiento de la Bioenergía en México. Reporte final. pág. 44-46.
- SENER-IDB-GTZ, 2006. Potenciales y Viabilidad del Uso de Bioetanol y Biodiesel para el Transporte en México (Proyectos ME-T1007 – ATN/DO-9375-ME y PN 04.2148.7-001.00).Noviembre 2006.
- 32. Rutz D., Janssen R., 2007 Biofuel Technology Handbook, WIP Renewables Energies,
- Mittelbach M., Remschmidt C.; Biodiesel The comprehensive handbook, Institut for Chemistrz Universitz Gray. 2004.
- Treybal R.; OPERACIONES DE TRANSFERENCIA DE MASA; Segunda edición. México 2007.
- 35. Zachary F., Líquid-Liquid Extraction. Senior Design CHE 396.

- ZHANG, Y. et al. Biodiesel production from waste cooking oil: 1. Process design and technological assessment. En: Bioresource technology. New York. N°89 (2003); p. 1-16.
- Zapata C. Producción de biodiesel a partir de aceite crudo de palma: Diseño y simulación de dos procesos continuos. Colombia 2006.
- Petters S., Timmerhaus D. Plant Design and Economics for Chemicals Edición. Francia 1991.
 Engineers. Cuarta
- Senley E., Seader J., Operaciones de Separación por etapas de equilibrio en Ingeniería Química. Mexico 2000
- McCabe W., Smith C., Harriot P. Operaciones Unitarias en Ingeniería Química. Cuarta Edición. España (1998); p. 633
- 41. Kern D. Procesos de Transferencia de Calor. Primera Edición.México (1999); p. 167.
- 42. Inec. VI Censo de Población y V de Vivienda. 25 de noviembre del 2001.
- 43. Integración regional de América del Sur (IIRSA). Ministerio de Obras Públicas y Comunicaciones. Sistema de carreteras, red vial nacional [revisado en: http://www.iirsa.org/BancoMedios/Documentos%20P DF/anr_lima01_presentacionecuadortransporte.pdf] Julio 2009
- 44. Biodiesel, Requisitos. Primera edición. Instituto Ecuatoriano de Normalización. Norma Técnica Ecuatoriana NTE INEN 2 482:2009.
- 45. Welded Steel Tanks for Oil Storage. API STANDARD 650. Onceava edición, Junio 2007.

CAPÍTULO I

1.1 JUSTIFICACIÓN.

El continuo aumento e inestabilidad del precio de los combustibles fósiles y la preocupación mundial por su agotamiento, ha originado la búsqueda de energías renovables más limpias para el ambiente que satisfagan el continuo aumento del consumo energético mundial, máximo estimado en una tasa anual de crecimiento del 2,6% hasta el año 2030 en los países en desarrollo [1].

Siendo necesario que las políticas y programas gubernamentales contribuyan a aumentar la competitividad de las fuentes renovables de energía identificadas en estos países. Sin embargo, a pesar de los esfuerzos nacionales e internacionales la participación de la energía renovable a nivel mundial será del 8% de la energía total del consumo en el año 2030 [1].

Ecuador en el año 2008 tuvo una demanda de diesel oil de 35 millones de BEP (barriles equivalentes de petróleo) en el sector de transporte y de 10 millones de BEP en el sector industrial, de los cuales el 49,4% está cubierto por producción local y el 50,6% por importación. Con las reservas actuales de petróleo que posee, se ha calculado que aproximadamente para el año 2020 nuestro país se verá obligado a importar crudo de petróleo para satisfacer su alta demanda de combustibles fósiles, puesto que para aquel año se tendrá un consumo de diesel por el transporte público, autobuses, de 27500 BEP y de 25000 BEP por los camiones [27].

Como se puede notar, la alta demanda de diesel oil es una de las razones por las cuales se requiere un desarrollo coherente de la producción y uso de biocombustibles en el país, que promueva la búsqueda de alternativas de energía a partir de materias primas que no tengan destino alimenticio; as í como evitar el uso de suelo agrícola en el cultivo de especies para producción de biocombustibles.

La necesidad de contrarrestar la desertificación de bosques secos y suelos agrícolas en proceso de erosión del Ecuador, en especial para la provincia de Loja que posee aproximadamente 274502,55 ha correspondientes al 50% de los bosques secos del país [2]; constituyen un espacio propicio para llevar a cabo programas de reforestación a través del cultivo de especies nativas, adaptadas al ambiente de estos suelos. La alternativa para contrarrestar los problemas de desertificación y fuentes para biodiesel es el cultivo de *Jatropha curcas* especie que se adapta al ambiente y de la cual se tiene bien establecido el proceso de elaboración de biodiesel a partir de la semilla.

Es necesario indicar que el biodiesel obtenido a partir del aceite de la semilla de piñón (*Jatropha curcas*) tiene propiedades similares a las del diesel convencional y se ha demostrado que opera en motores de compresión de ignición tal como el combustible fósil, de esta forma no requiere modificaciones esenciales, por consiguiente no implica gastos en adecuaciones de tecnología para los consumidores [3].

1.2 FIN DEL PROYECTO.

Contribuir al desarrollo social, económico y ecológico de la región sur generando alternativas de impulso productivo, mediante el planteamiento de un proceso industrial moderno.

1.3 PROPÓSITO DEL PROYECTO.

Realizar el diseño preliminar de una planta de producción de biodiesel a partir de *Jatropha Curcas* para la región sur del Ecuador.

1.4 COMPONENTES DEL PROYECTO.

- Analizar la situación actual de la producción de biodiesel a partir de *Jatropha curcas*.
- Documentar una base de datos de las propiedades físicas y algoritmos de cálculo.

- Determinar el diagrama de flujo óptimo para la obtención de biodiesel a partir de *Jatropha curcas.*
- Determinar las características necesarias para la selección de equipos y sistemas de la planta de producción de biodiesel.
- Desarrollar los diagramas de tuberías e instrumentación.
- Realizar la distribución espacial e interna de la planta de producción.
- Determinar la ubicación de la planta de producción de biodiesel.
- Realizar una evaluación económica del diseño de proceso para evaluar su factibilidad y formas de financiamiento.

CAPÍTULO II

2.1 BIOCOMBUSTIBLES

Los biocombustibles son carburantes producidos a partir de biomasa (materia prima renovable), se pueden presentar en forma sólida como residuos vegetales, líquida como bioalcoholes, biodiesel y gaseosa como biogás. Actualmente apuntan hacia un gran desarrollo dos tipos de biocombustibles: el biodiesel, obtenido a partir de la transesterificación de aceites vegetales y grasas animales con un alcohol ligero; y el bioetanol, obtenido de materias primas ricas en azúcares mediante fermentación [4].

2.2 BIODIESEL.

El biodiesel es un biocarburante líquido producido a partir de los aceites vegetales y grasas animales, sus propiedades son similares a las del gasóleo de automoción en cuanto a densidad y número de cetano; además, presenta un punto de inflamación superior. El biodiesel puede mezclarse con el gasoleo para su uso en motores e incluso sustituirlo totalmente si se adaptan éstos convenientemente [1].

La definición de biodiesel por la ASTM (American Society for Testing and Material Standard) lo describe como mezcla de ésteres monoalquílicos de ácidos grasos de cadena larga derivados de lípidos renovables tales como aceites vegetales o grasas de animales, que se emplean en motores de ignición de compresión.

Los ésteres más utilizados son los de metanol y etanol (obtenidos a partir de la transesterificación de cualquier tipo de aceites vegetales o grasas animales o de la esterificación de los ácidos grasos) debido a su bajo costo y sus ventajas químicas y físicas [4].

En Ecuador para que el biodiesel pueda ser usado como combustible en motores de ciclo diesel, debe cumplir con los requisitos establecidos por la norma técnica ecuatoriana NTE INEN 2 482:2009.

REQUISITOS	UNIDAD	Mínimo	Máximo	Métodos de Ensayo	
Densidad a 15° C	kg/m ³	860	900	ASTM D 1298	
Punto de Inflamación	°C	120		ASTM D 93	
Punto de Turbidez	°C	Rep	Reportar ¹		
φAgua y sedimento	%		0,05	ASTM D 1796	
Contenido de Agua	mg/kg		500	ASTM D 95	
Viscosidad Cinemática a 40° C	mm²/S	3,5	5	ASTM D 445	
Cenizas Sulfatadas	% (m/m)		0,02	ASTM D 874	
Contenido de Azufre	mg/kg		10	ASTM D 1552	
W Carbón Residual	%		0,05	ASTM D 4530	
Corrosión lámina de cobre	Clasificación		3	ASTM D 130	
Número de cetano	-	49		ASTM D 613	
Temperatura de destilación al 90% recuperado	°C		360	ASTM D 1160	
WGlicerina libre	%		0,02	ASTM D 6584	
WGlicerina total	%		0,25	ASTM D 6584	
WContenido de ésteres	%	96,5		EN 14103	
Indice de yodo	g yodo/100 g		120	EN 14111	
WContenido de metanol	%		0,20	ASTM D 4815 EN 14110	
Contenido de fósforo	mg/kg		10	ASTM D 4951	
Contenido de metales alcalinos (Na + K)	mg/kg		5	EN 14108	
Contenido de metales alcalinos (Ca + Mg)	mg/kg		5	prEN 14538	
Número de acidez	mg KOH/g		0,5	ASTM D 664	
 ¹ El punto de turbidez del biodiesel generalmente es mayor que el diesel de origen fósil y debe ser tomado en consideración para los procesos de mezcla ² Debe ser determinado en el100% de la muestra 					

Tabla 2.1: Requisitos del biodiesel.

Fuente: NORMA TECNICA ECUATORIANA NTE INEN 2 482:2009

2.3 ESCENARIO GEOGRÁFICO DE LA PROVINCIA DE LOJA

La provincia de Loja presenta zonas propicias para el cultivo de *Jatropha curcas*, la situación de sus suelos se presenta en una base de datos desarrollada en el software ArcView Gis por el Honorable Consejo Provincial de Loja (Ordenamiento Territorial, Dirección de Planificación, período 2005 - 2009), la cual se detalla a continuación.

2.3.1 Uso actual del suelo.

El uso actual del suelo de la provincia ha sido identificado a través de la interpretación satelital combinada con mapas nacionales [10]. Cuyos resultados se muestran en el *Mapa* N° 1 y en la *Tabla 2.2*.

Tabla 2.2. Uso actual.

Descripción Uso de Suelo	Áreas has.	%
Pastos	190286.94	17.63
Bosque seco	141796.57	13.14
Silvopasturas	131173.98	12.15
Areas erosionadas matorral	131170.88	12.15
Matorral	111867.00	10.36
Bosque natural intervenido	66125.67	6.13
Cultivo anual en suelos erosionados	58014.79	5.38
Bosque natural de altura	56884.33	5.27
Paramo	35787.30	3.32
Cultivo anual sin erosion	34814.15	3.23
Cafe arbolado	29896.56	2.77
Pasto cultivado	28913.12	2.68
Agrosilvicultura	27877.77	2.58
Cultivo de maiz	26213.06	2.43
Zona de exclusion	10280.54	0.95
Plantación de pino	5820.63	0.54
Caña de azúcar	3986.47	0.37
Bosque de tagua	3772.67	0.35
BOSQUE	3658.78	0.34
Área Urbana	3254.73	0.30
Cultivo de arroz	2726.15	0.25
Plantación de eucalipto	1419.85	0.13
Bosques y silvopasturas	915.71	0.08
Lagunas	205.00	0.02

Fuente: HCPL.

Elaborado: HCPL.

Mapa N^o 1: Estado actual del suelo de la provincia de Loja Fuente: Plan de Ordenamiento Territorial del HCPL, período 2005 - 2009 Elaboración: HCPL

El área más viable para el cultivo de *Jatropha curcas* se centra en los sectores cubiertos por el bosque seco, específicamente en los cantones de Zapotillo y Macará, que son localidades que poseen menor altitud sobre el nivel del mar.

2.3.2 Situación agrológica.

El *Mapa Nº 2* representa las unidades de clasificación taxonómica del USDA * (8 clases), los suelos están clasificados por clases agrológicas en dependencia de su aptitud para los usos agro-productivos. La primera lectura del mapa permite apreciar que la mayor superficie de la provincia no tiene una aptitud para fines agroproductivos, las clases que mayor área ocupan son VII, VIII, y VI; las condiciones físicas de estos suelos son deficientes en cuanto a fertilidad y profundidad [10].

Aproximadamente el 17% de la superficie (clases II y III) presenta características adecuadas para instalación de cultivos alimenticios [10].

Mapa Nº 2: Situación agrológica de la provincia de Loja *Fuente:* Plan de Ordenamiento Territorial del HCPL, período 2005 - 2009 *Elab oración:* HCPL

^{*} USDA: United States Department of Agriculture.

Histograma 1: Clases agrológicas de la provincia de Loja. *Fuente:* Plan de Ordenamiento Territorial del HCPL, período 2005 - 2009 *Elab oración:* HCPL

Como se observa en el *Mapa N°2* la región norte del cantón Zapotillo está predominada por la clase VI, lo que indica que es un sector no apropiado para cultivos alimenticios.

2.3.3 Red vial.

Mapa N° 3: Red vial de la provincia de Loja *Fuente:* Plan de Ordenamiento Territorial del HCPL, período 2005 – 2009 *Elab oración:* HCPL

LONGITUD DE VÍAS					
	Capa de rodadura	Tipo	Long Km		
Red primaria	Asfalto	Dos Vías	825.132		
Red primaria	Asfalto	Angosta	49,35		
Red secundaria	Lastre	Dos Vías	203,104		
Red Terciaria	Lastre	Angosta	994.76		
Red vecinal	Tierra	Camino de verano	1.681.190		
Total			3753.84		

Tabla 2.3. Longitud de vías de la provincia de Loja.

Fuente: HCPL.

Elaborado: HCPL.

El cantón Macará posee tres carreteras asfaltadas de dos vías lo que brinda mejor servicio de transporte ya sea para materia prima o servicios de una Industria con respecto al cantón Zapotillo.

2.4 JATROPHA CURCAS L. (PIÑÓN).

La planta *Jatropha curcas L.* puede implementarse como una especie vegetal productivamente rápida en situaciones adversas, tierras degradadas, clima seco, tierras marginales y al mismo tiempo ser parte de un sistema agronómico [5].

Dependiendo de las condiciones de propagación y lluvia, la producción de semilla ocurre en el primer año y puede producir durante 50 años [16].

Foto 2.1: Planta y semilla de Jatropha curcas (Recolectadas en el cantón Catamayo-Loja) Fuente: Los autores.

2.4.1 Taxonomía.
Reino: Plantae
Filo/división: Magnoliophyta
Clase: Magnoliopsida (Dic.)
Orden: Euphorbiales

Familia: Euphorbiaceae

Nombre científico: Jatropha curcas L.

Nombre común: Coquito, Capate, Tempate, Piñón, Piñoncito, Piñol, Higos del duende, Barbasco, Piñones purgativos, Periyanasi (piro); Piñón joshó (amahuaca); Wapa-wapa oshe (ese eja); Josho pionis y Huiso pionis (shipibo-conibo), Peaó Branco (portugués); Higo de infierno (Bolivia); Purga de fraile (Colombia), Tua tua (Ven- ezuela); Sket'noto (Surinam) [5].

2.4.2 Distribución y requerimientos ecológicos de producción.

Altura y temperatura. La planta crece en alturas de 0 a 1500 msnm *, pero la mejor altura para la producción intensiva es de 0 a 500 msnm. Es resistente al calor (temperatura promedio anual de más de 20 °C) y tolera periodos cortos de bajas temperaturas, leves heladas [28].

Agua. Crece en un rango de 250 a 2000 mm de precipitación anual y puede resistir largos periodos de sequía. Para una producción intensiva se requiere 800 a 1200 mm de agua distribuida durante todo el año, para irrigar esta planta es recomendable instalar un sistema de riego por goteo [28].

Requisitos ecológicos. La *Jatropha curcas* puede crecer en tierras cascajosas, arenosas y salinas, inclusive en las hendeduras de piedras [5].

Climáticamente la *Jatropha curcas* se encuentra en los trópicos y subtrópicos, se adapta al calor aunque también a bajas temperaturas resistiendo una escarcha ligera. Su requisito de agua es sumamente bajo y puede resistir períodos largos de sequedad por el desprendimiento de la mayoría de sus hojas para reducir la pérdida durante la transpiración [5].

2. 5 EXTRACCIÓN DE ACEITE DE Jatropha curcas.

La primera etapa en el proceso de producción de biodiesel es la extracción del aceite. Dependiendo de la escala de producción, la etapa de extracción se hace de la siguiente manera: [29]

^{*} msnm: metros sobre el nivel del mar.

Pequeña escala: por compresión en frío a nivel artesanal. **Gran escala:** por refinación dentro de plantas industriales.

A pequeña escala las semillas son sometidas a compresión, el aceite fresco puede estar contaminado con pequeñas partículas de pulpa, las cuales son retiradas ya sea por decantación o por un filtro. Después de que el aceite es extraído, el material residual (con un contenido de aceite entre 20 y 33%) puede ser utilizado como alimento para animales o como sustrato para la producción de biogás [29].

A gran escala se usa extracción con solventes. Primero las materias primas deben ser secadas hasta un contenido de humedad entre el 5 - 7% para ser almacenadas herméticamente, después del proceso de descascaramiento (solamente si se almacenarán por más de 10 días), para evitar la humidificación. Después de este tratamiento las semillas se compactan y se almacenan acondicionando la temperatura y humedad. El ajuste de humedad es importante ya que si es alta dificulta la penetración del solvente y si es baja la compactación será más efectiva con el mismo efecto anterior. El acondicionamiento de la temperatura alrededor de 80 °C es importante para desactivar a los microorganismos, evitar el coagulamiento de proteínas y el manchado de la prensa. El proceso de extracción con solvente por su disponibilidad y bajo precio. La solución de aceite y solvente se somete a un proceso de destilación con solvente produce un aceite con una pureza mayor, pero la extracción mecánica tiene un mayor rendimiento a expensas de la contaminación del aceite, en la *Tabla 2.4* se reportan las eficiencias de extracción para las dos alternativas.

Materia Prima		Jatropha
Rendimiento cultivo	(t/h)	2
Contenido total de aceite	(%)	35
Eficiencia de extracción de aceite		
Extracción mecánica	(%)	70
Extracción por solventes	(%)	96
Rendimiento de aceite		
Extracción mecánica	(kg/l)	4,1
	(l/ha)	533
Extracción por solventes	(kg/l)	2,7
	(l/ha)	730

Fuente: SENER-BID-GTZ, 2006

2.5.1. Refinamiento del aceite

Después de la extracción el aceite debe ser sometido a una etapa de refinamiento para remover sustancias indeseables tales como: ceras, ácidos grasos libres, tocoferoles, colorantes, humedad, etc., para producir un aceite con las propiedades físicas y químicas requeridas en la obtención de biodiesel. Durante esta etapa se pierde entre un 4 y 8% del aceite [31]. En la *Fig. 2.2* se reporta el proceso de refinación.

Fig. 2.2: Proceso de refinamiento del aceite Fuente: Mittelbach, Remschmidt, 2004 *Elab orado:* Los autores

Neutralización.

Se neutraliza los ácidos grasos libres (hasta llevarlos a una concentración menor al 3%) con una solución básica de NaOH ó KOH produciéndose jabón el cual es insoluble con el aceite y es fácilmente separado por lavados con agua; además se remueven fenoles, compuestos grasos oxidados y metales pesados [31].

• Blanqueo.

La remoción de colorantes se hace por medio de materiales adsorbentes tales como: tierras diatomeas, sílica gel y carbón activado; con el fin de mejorar la capacidad de almacenamiento del biodiesel. [31]

• Deshidratación.

Se realiza por destilación a baja presión o por absorción con nitrógeno [32].

2.6 PROPIEDADES FÍSICO QUÍMICAS DEL ACEITE

El aceite obtenido es de color amarillo claro, inoloro y tiene un ligero sabor a nuez, éste contiene 21% de ácidos grasos saturados y 79% ácidos insaturados [7].

El aceite de la semilla de Jatropha curcas po	osee las siguientes	propiedades	físico-químicas
Tabla 2.5 Propiedades of	del aceite de <i>Jatropha</i>	curcas.	

Propiedades	Aceite de Jatropha curcas	
Densidad [g/ml]	0,920	
Viscosidad a 40°C	3,5	
Capacidad calorífica [MJ/kg]	39,7	
Punto de llamarada [°C]	240	
Punto de nube [^o C]	16	
Fuente DAMECH D 2004		

Fuente: RAMESH. D., 2004

El índice de saponificación es de 196, el de yodo de 99,06, el de acidez de 13,86, el de ésteres de 182,1, el de hidroxilo 8,53, el de acetilo 8.48, la materia insaponificable de 0,82%, el índice de refracción a 25 °C es de 1,4688. El índice de yodo indica que contiene mayor cantidad de ácidos grasos insaturados que los aceites de oliva, palma y ricino e igual cantidad que el aceite de cacahuate y menor que el aceite de maíz. Los índices de hidroxilo y acetilo indican que el aceite de J. curcas contiene mono y/o diglicéridos [7].

Proaño (2008) ha realizado la caracterización del aceite de piñón respecto a la composición de ácidos grasos, con una especie cultivada en Guayaquil; obteniendo los siguientes resultados:

<u>Ácidos Grasos</u> Saturados		Composición %
		50.0
	Laúrico	0.1
	Mirístico	1.0
	Palmítico	43.8
	Esteárico	4.8
	Araquídico	0.3
Monoinsaturados		39.0
	Palmitoleico	0.1
	Oleico	38.9
Poliinsaturados		10.9
	Linoleico	10.6
	Linolénico	0.3

Tabla 2.6 Ácidos grasos del aceite de piñón.

Fuente: Proaño O. 2008. Memoria, Análisis de aceite de piñón para elaboración de biodiesel.

2.7 PASTA RESULTANTE.

La semilla contiene aproximadamente 30-32% de proteína y 60-66% de lípidos. La cáscara es aproximadamente 43% de la semilla y el grano 57% del cual el 30% es grasa cruda. Además contiene minerales como fósforo, calcio, sodio, potasio y magnesio. La pasta resultante posee un alto contenido de proteína por lo que puede ser destinada a la alimentación animal si se le realiza un proceso de detoxificación para eliminar los compuestos químicos tóxicos que son la curcina y diterpenos [9].

La solución más factible para este subproducto resultante es el uso como fertilizante en los campos agrícolas de la *Jatropha curcas* u otras especies cultivadas [29].

2.8 REACCIONES

Dentro de la producción de biodiesel se pueden dar tres reacciones: esterificación, saponificación y transesterificación. Por lo cual uno de los principales problemas que tiene el proceso de producción de biodiesel es la formación de sales sódicas de los ácidos carboxílicos (jabones), bien sea por saponificación de ésteres o por acción de los triglicéridos con el agua, es por ello que para mayor eficiencia y/o aprovechamiento máximo de la principal materia prima (aceite) se debe analizar la cantidad de ácidos grasos libres con el objeto de obtener un criterio decisivo para una implementación de una reacción de esterificación en el sistema o proceso.

2.8.1 Reacción de esterificación.

Para poder trabajar con materias primas ácidas (contenido alto de ácidos grasos libres) es necesario eliminar los ácidos grasos libres a valores de acidez muy bajos preferentemente menores a 3% a través de la esterificación, de lo contrario se produce una formación excesiva de jabones durante la reacción de transesterificación, lo cual dificulta el proceso de purificación del biodiesel, además disminuye el rendimiento del proceso [11].

NaOH
 c. Triglicérido + H₂O → Glicerina + Jabones
 Fig. 2.3: Esquema de reacciones.
 Fuente: M. L. Pisarello

Para eliminar los ácidos grasos la materia prima se puede someter a una etapa de neutralización, en la cual se pierde una parte de la misma; o bien realizar la esterificación de los ácidos grasos convirtiéndolos en biodiesel.

a) Mecanismo de esterificación

Los ácidos carboxílicos reaccionan con alcoholes en presencia de un catalizador ácido formando ésteres y agua (reacción de esterificación de Fischer).

Para desplazar el equilibrio hacia la formación del éster, se añade un exceso del ácido carboxílico o del alcohol. También se puede aumentar la proporción de éster en el equilibrio eliminando el agua formada en la reacción [12].

Este resultado es consistente con el mecanismo de esterificación que se indica en la *Fig. 2.4*.

Fig.2.4: Mecanismo de esterificación de Fischer. *Fuente*: Química Orgánica. Ácidos carboxílicos y derivados.

El mecanismo se inicia con la protonación del grupo carbonilo del ácido carboxílico, lo que provoca un aumento de la electrofilia de este grupo. A continuación el metanol ataca al grupo carbonilo protonado para formar un intermedio tetraédrico, que rápidamente, mediante un proceso de intercambio protónico forma un nuevo intermedio tetraédrico que contiene un grupo saliente: el agua. La regeneración del grupo carbonilo protónico con una molécula de agua regenera el catalizador ácido.

Si se sigue el mecanismo en la forma directa se tiene el mecanismo para la reacción de esterificación catalizada por ácido. Si se sigue el mecanismo desde el final, en forma
inversa, se tiene el mecanismo de la reacción de hidrólisis, catalizada por ácido, de los ésteres:

Si se desea esterificar un ácido hay que utilizar un exceso de alcohol y, si es posible, eliminar el agua de la reacción. Si se desea hidrolizar un éster hay que emplear un exceso de agua, por ejemplo con reflujo de éster en una disolución acuosa de HCI o H_2SO_4 diluidos [12].

b) Reacción de esterificación con distintos tipos de alcoholes.

La esterificación de una muestra con un valor inicial de acidez de 18 (gr. de ácido oleico/100gr de muestra) con metanol, etanol absoluto y con etanol 96% se alcanzan valores finales de acidez de 2; 4,8 11,5; respectivamente, conservando una relación molar alcohol: ácidos grasos de 12: 1, 60 °C y 0,21% de ácido sulfúrico (respecto a la mezcla reaccionante) [11].

c) Incidencia de la cantidad de catalizador en la reacción de esterificación.

Se han realizado estudios de aumento de la concentración de catalizador desde 0,21% a 0,5%, manteniendo la relación etanol: ácidos grasos (12:1) y la temperatura (60 °C); los cuales indican que la velocidad de reacción aumenta significativamente, logrando reducir la acidez de la muestra a 7,5 y 1, respectivamente [11].

d) Reacción de esterificación con distintos porcentajes de alcohol.

No hay una diferencia significativa en la velocidad de disminución de la acidez al modificar la relación etanol: ácidos grasos, 9:1 (30%v), 12:1 (40%v) y 15:1 (50%v) [11]. Sin embargo los valores finales de acidez en el equilibrio difieren ligeramente de acuerdo a la cantidad de alcohol agregada, lo cual es esperado en función de la estequiometria de la reacción y el desplazamiento de equilibrio al aumentar la relación de reactivos. No es muy clara la respuesta dinámica del sistema, mostrando una insensibilidad a la concentración de etanol; es posible que la aparición de una segunda fase esté enmascarando el comportamiento cinético [11].

e) Efecto de la temperatura en la reacción de esterificación.

Teniendo en cuenta que se trabaja a presión atmosférica con reflujo, se ha tomado como temperatura límite la temperatura de ebullición correspondiente del alcohol puro. Se ha reportado en el caso de la transesterificación con metanol, que el aumento de temperatura por encima de 65 °C conduce a una menor conversión que ha 60 °C. A 30 °C y 60 °C se alcanzan valores finales de acides de 11,5 y 4,5, respectivamente [11].

f) Análisis de las condiciones para la esterificación.

En la mayoría de las experiencias para facilidad de cálculos se cuenta con sistemas homogéneos al principio de la reacción ya que se trabaja con materias primas libres de agua, a 60-70 °C [11], pero con el transcurso de la reacción se va produciendo agua y se da la formación de la fase acuosa.

Por otro lado la velocidad de reacción se ve desfavorecida con la formación de la nueva fase ya que disminuye la cantidad de alcohol (reactivo) y catalizador en la fase orgánica, que es donde ocurre la reacción de esterificación y aparecen los problemas de transferencia de masa, que pueden llegar a ser controlantes de la velocidad si la agitación es insuficiente.

• Temperatura:

La velocidad de reacción se ve favorecida por el aumento de la temperatura de reacción. No obstante, en este sistema no es conveniente aumentar la temperatura por encima del punto de ebullición del alcohol puro, para evitar disminuir la concentración efectiva del reactivo en la fase líquida, con la consiguiente disminución de la velocidad de reacción [11].

• Cantidad de alcohol:

El aumento de la cantidad de alcohol en la reacción de esterificación no aumenta significativamente su velocidad, sin embargo, a bajos volúmenes de alcohol se forma una emulsión y por consiguiente una difícil separación de la fase acuosa, es por ello, que diversos estudios recomiendan trabajar con contenidos altos de alcohol (relación molar 15:1) [11], para que se dé en mayor cantidad la formación de la fase acuosa y facilidad de separación del agua.

• Cantidad de catalizador:

El aumento de la concentración de catalizador, manteniendo constante la relación etanol: ácidos grasos y la temperatura, aumenta la velocidad de reacción. Cabe notar

que se debe trabajar con la más alta posible concentración de catalizador para satisfacer la relación molar 15:1 de alcohol y ácidos grasos, con lo consiguiente evitar que disminuya la cantidad de catalizador en la fase orgánica. Para la decisión de la cantidad de catalizador se puede tomar como referencia: si se tiene una muestra de 18 gr de ácidos libres en 100 gr de muestra es recomendable trabajar con 0,5% de catalizador [11].

Por último, una vez transcurrida la reacción de esterificación es de vital importancia separar la fase acuosa antes de proceder a la transesterificación con el objeto de evitar que se dé acabo la reacción de saponificación [13].

2.8.2 Mecanismo de la saponificación

Los ésteres se pueden hidrolizar no solo en medio ácido, sino también en medio básico. El proceso de hidrólisis básica de los ésteres se denomina saponificación.

Esta reacción, al contrario que el proceso de esterificación de Fischer, es irreversible. "El ion hidróxido ataca al carbonilo del éster formando un intermedio tetraédrico. Cuando se regenera el grupo carbonilo se produce la eliminación del ión alcóxido y se forma un ácido carboxílico. Una rápida transferencia de protón forma el carboxilato y el alcohol. Este último paso es muy exotérmico y desplaza los dos equilibrios anteriores del proceso de saponificación hacia su terminación, haciendo que el proceso sea irreversible" [12].

Fig. 2.5: Mecanismo del proceso de saponificación de ésteres. *Fuente:* Química Orgánica. Ácidos carboxílicos y derivados.

Una vez realizada la esterificación de los ácidos grasos, la mezcla de ésteres y triglicéridos se somete a la reacción de transesterificación de la misma manera que se trabaja con las grasas y los aceites [11].

2.8.3 Reacción de transesterificación.

La transesterificación es un término general que se utiliza para designar a las reacciones orgánicas en las cuales se produce un intercambio o sustitución del grupo acilo o alquilo de éster. Así, si un éster interactúa con un alcohol para sustituir su grupo alquilo por el de el alcohol, la reacción se denomina alcohólisis; si el éster reacciona con un ácido carboxílico para sustituir su grupo acilo por el del ácido se conoce como acidólisis, y si existe un intercambio entre los grupos acilo y alquilo de los ésteres diferentes, la reacción se denomina interesterificación [13].

Específicamente en la producción de biodiesel la transesterificación se la define como la reacción en la cual los triglicéridos presentes en el aceite de *Jatropha cucas* se combinan con un alcohol de bajo peso molecular (metanol) en presencia de un catalizador básico (NaOH), para formar glicerina y una mezcla de ésteres grasos (*Fig. 2.6*).

Fig. 2.6: Reacción de transesterificación de triglicéridos (TG) mediante metanol en medio básico.

Los ésteres grasos obtenidos a partir de la reacción anterior, poseen propiedades y tamaños similares a los constituyentes del combustible diesel, y es lo que se conoce como biodiesel, su origen biológico y renovable viene enfatizado por el prefijo "bio" que lo diferencia del tradicional combustible diesel derivado del petróleo. [13]

a) Consideraciones generales de la transesterificación.

Si bien se han descrito diferentes procesos y condiciones experimentales para la producción de biodiesel, la transesterificación de aceites y grasas mediante alcoholes de bajo peso molecular como el metanol y la utilización de catalizadores básicos como el hidróxido de potasio o hidróxido de sodio, sigue considerándose como la opción más ventajosa en términos de economía, rendimiento, rapidez de reacción y calidad de producto obtenido [13]. Como muestra la *Fig. 2.6*, la estequiometria de la reacción de transesterificación requiere tres moles de alcohol por cada mol de triglicérido, químicamente consiste en una secuencia de tres reacciones reversibles consecutivas (*Fig. 2.7*), en las cuales el triglicérido es

convertido en diglicérido, monoglicérido y glicerol, produciéndose en cada una de ellas, una molécula de éster por cada glicérido involucrado [13].

1) Triglicérido (TG) + R'OH $\xrightarrow{k_1}$ Diglicérido (DG) + R'COOR₁

2) Diglicérido (DG)+ R'OH
$$\frac{k_2}{k_5}$$
 Monoglicérido (MG) + R'COOR₂

3) Monoglicérido (MG) + R'OH
$$\frac{k_3}{k_6}$$
 Glicerol (GL) + R'COOR₃

Fig. 2.7: Secuencia de reacciones reversibles en la transesterificación de triglicéridos. *Fuente:* Torossi Favio.

b) Mecanismo de la transesterificación.

La transesterificación de grasas y aceites en medio básico, es un buen ejemplo de una reacción de sustitución nucleofílica en el grupo acilo (carbonilo) que transcurre a través de un mecanismo de adición-eliminación con la intervención de un intermedio de reacción tetraédrico. La misma que se puede formular en tres pasos:

- Se produce un ataque nucleofílico del alcóxido al átomo de carbono del carbonilo del triglicérido para formar un intermedio tetraédrico
- Posteriormente reacciona con una molécula de alcohol para regenerar el anión alcóxido.
- Finalmente, el intermedio de reacción tetraédrico se reorganiza para dar un diglicérido y el correspondiente éster metílico [13].

c) Parámetros que afectan la reacción de transesterificación.

Las principales variables que afectan la reacción de transesterificación son: calidad del aceite, relación molar entre el alcohol y el aceite, tipo y concentración de catalizador, agitación, temperatura y tiempo de reacción.

• Calidad del aceite:

Al mencionar de calidad del aceite se refiere tanto a la acidez como a su contenido acuoso, que son parámetros importantes a tener en cuenta; es recomendable partir de aceites de baja acidez para minimizar la formación de jabones. La transesterificación en medio básico requiere de reactivos anhidros, por lo que la previa eliminación del agua de los aceites y la utilización de hidróxido de potasio o sodio y metanol de alta pureza son condiciones para no desestimar, y así, evitar al máximo la esterificación o hidrólisis [13].

• Relación molar entre el alcohol y el aceite:

Los esteres metílicos son los más obtenidos debido a varias razones. Una razón es el bajo precio del metanol comparado con el de otros alcoholes. Generalmente los ésteres metílicos son de baja viscosidad, por lo tanto esto mejora el proceso de inyección y asegura la mejor atomización del combustible en la cámara de combustión [4]. Por su polaridad y estructura en cadena corta el efecto de una posible polimerización es también disminuido [13]. Si bien la estequiometria para la reacción de transesterificación requiere tres moles de alcohol por mol de aceite (3:1), en la práctica se incrementa a relaciones mayores para desplazar el equilibrio hacia una mayor formación de ésteres metílicos, con el cuidado de que una proporción mayor de alcohol dificultaría la posterior separación del glicerol debido a un aumento de su solubilidad; estudios cinéticos (con un tiempo de reacción de 100 min) de la transesterificación del aceite de *Jatropha curcas* indican que a una relación molar de alcohol: aceite de 6:1, 9:1, 12:1, 15:1, 18:1 y 24:1 se han alcanzado con versiones del 93; 94,5; 95; 96,2; 96,3; y 96,3%; respectivamente [13].

• Tipo y concentración de catalizador:

La utilización de catalizadores básicos como el hidróxido de potasio, ha sido descrita como la más conveniente para aceites, aunque requieren menos temperatura y tiempo de reacción, presenta el inconveniente de propiciar una saponificación de forma simultánea a la transesterificación. Como la velocidad de reacción viene determinada por el ataque de un nucleófilo (ya sea el ión alcóxido en la transesterificación o bien el hidróxido en la saponificación), es de suma importancia la utilización de reactivos anhidros para minimizar la presencia de agua, permitiendo que el ataque del metóxido sea el determinante de la velocidad de reacción, esto sumado a un exceso de alcohol que desplace el equilibrio hacia la formación de ésteres metílicos, permitirá atenuar el efecto de la reacción de saponificación que no es reversible. 'Para aceites con una acidez inferior al 5%, se sugiere la utilización de un 1% p/p de catalizador siempre que se mantengan constantes los demás parámetros de reacción' [13], sin embargo, para la transesterificación del aceite de *Jatropha curcas* es suficiente trabajar con 0,6% p/p de catalizador [19].

Agitación, temperatura y tiempo de reacción:

Los reactivos intervinientes, así como los que se producen en el transcurso de la reacción, constituyen un sistema heterogéneo que requiere de una constante y eficiente agitación. La reacción de transesterificación puede ocurrir aún a una

temperatura de 25 °C [13] si bien su incremento es directamente proporcional a la velocidad de reacción, posee un intervalo limitado por el punto de ebullición del metanol (64,6 °C) y por las reacciones secundarias de formación de jabones, debiéndose mantener entre 37 y 65 °C [19]. El tiempo de reacción depende de la temperatura, durante el primer minuto, la reacción transcurre lentamente debido a la dispersión del metóxido, pero aumenta rápidamente alcanzando en cinco minutos, porcentajes próximos al 84,7; 61,6 y 49,3% de ésteres metílicos a 65, 45 y 25 °C, respectivamente [13].

CAPÍTULO III

3.1 PRODUCCIÓN DE BIOIDESEL A PARTIR DE JATROPHA CURCAS EN EL ECUADOR

En Ecuador se han realizado proyectos de desarrollos de cultivos de *Jatropha curcas* a gran escala en Santa Elena, Manabí, Imbabura y Loja (M. Muñoz, E. Jiménez) pero hasta el año 2009 no se ha producido biodiesel a partir del aceite de sus semillas a escala industrial.

3.2 DETERMINACIÓN DEL ÁREA DE CULTIVO

En la provincia de Loja existe 274 502,55 ha en proceso de erosión y 340 000 ha de bosques secos pertenecientes a los cantones Macará y Zapotillo [2]. En función de estos valores y de datos proporcionados por el Honorable Consejo Provincial de Loja (Ordenamiento Territorial, Dirección de Planificación) se usó ArcView GIS 3.2 y se determinó un área accesible de cultivo de 13 000 ha (áreas amarillas de los mapas 5 o 6) delimitadas de acuerdo a los siguientes factores:

3.2.1 Disponibilidad de agua

Se dispone de una adecuada distribución de agua natural (ríos) para el cultivo de *Jatropha curca*s así como lo muestra en el Mapa N° 5

Mapa N° 4: Áreas de cultivo. Fuente: Plan de Ordenamiento Territorial del HCPL Elaboración: Los autores

3.1.1 Tipo de suelo

El área de cultivo se determinó en función del espacio cubierto por el bosque seco, específicamente en los cantones de Zapotillo y Macará, que son sectores que poseen menor altitud sobre el nivel del mar, lo que favorece a la concentración de aceite en las semillas de *Jatropha curca*s. El suelo delimitado es de tipo entisol y a una altitud de 1000 – 1800 msnm. Constituye una extensión de baja pendiente (0 - 12%) de tendencia plana pronunciada (HCPL, 2007).

3.1.2 Vías y uso actual de terreno

El arribo al área de cultivo es a través de vías pavimentadas (*Mapa N° 2*), además la cosecha se facilita con el uso de vías secundarias (no pavimentadas) como lo muestra el *Mapa N° 6*.

Fuente: Plan de Ordenamiento Territorial del HCPL *Elaboración:* Los autores

El área delimitada actualmente forma parte del bosque seco (*Mapa N^o 1*), lo cual indica que es un terreno idóneo para el manejo sustentable de la especie ya que no es un suelo privado, ni área protegida y especialmente no está destinado para uso de suelo agrícola. Además, no existen poblaciones asentadas sobre éste (HCPL, 2007).

3.3 ESTIMACIÓN DE LA BASE DE CÁLCULO

En base a los estudios enunciados en el numeral 3.2, el área de cultivo delimitada es 13 000 ha, de estas, para evitar la sobreestimación del cultivo de *Jatropha curcas* se considera el 30% para la explotación en el último año de vida útil del proyecto dando un resultado un área explotable de 3900 ha.

Zapotillo						
Área aprovechable [ha]	msnm					
11000,0	1400 - 1800					
Macará						
Área aprovechable [ha]	msnm					
2000	1000 - 1400					
Área total aprovechable aproximada [ha]	13000					
Fracción de explotación	0,3					
Área explotable [ha]	3900,0					
Floborndo: Los Autoros						

Elaborado: Los Autores

Dentro de un periodo de 10 años se ha previsto aprovechar las 3900 ha en la cual se planteó una expansión de cultivo análoga a la tasa de inflación del 5,41%**, ya que ésta influye en los diversos rubros para su cultivo (éstas son proyectadas a los años anteriores). Por otro lado, las distancias de siembra en el campo de *Jatropha curcas* más frecuentes varían entre 2 x 2; 2,5 x 2,5; y 3 x 3m, correspondiendo a 2500, 1600 y 1111 plantas por hectárea, respectivamente [16]; por ello para efectuar los cálculos se tomó en consideración las 1600 plantas por hectáreas, éstas alcanzan la primera cosecha a los 8 meses de cultivo, con una producción por planta de 4 kg de semilla, luego se efectúa normalmente dos cosechas anuales, con un rendimiento de extracción mecánica del 35% en aceite [FIMCP-ESPOL, 2008], además para obtener la producción diaria de aceite se considera 250 días laborables con 24 horas de trabajo operativo*, e incluyendo el 10% como factor de seguridad por sobredimensionamiento, se obtuvo base de cálculo de 3203,2 kg/h de aceite de *Jatropha curcas* tal como lo muestra la *Tabla 3.2*.

En la estimación de la base de cálculo no se consideró renovación de las plantas, ya que éstas pueden producir durante 50 años [Joerdens, 2007].

^{**} Banco Central del Ecuador. 2008

^{*} Código de trabajo. Ecuador 2008

Tabla 3.2. Base de cálculo.											
Año	Hectáreas cultivadas	Plantas por ha	Especies plantadas	Frutos por planta [Kg]	Producción de semilla por año[Kg]	% de aceite por semilla	Producción de aceite por año [kg]	Producción diaria de aceite [Kg]	Producción de aceite por hora [Kg/h]	Factor de seguridad	Base de cálculo Aceite(kg/h)
1	2364	1600	3782610	4	15130442	35	5295655	21182,62	882,6	0,1	970,9
2	2499	1600	3998954	8	31991631	35	11197071	44788,28	1866,2	0,1	2052,8
3	2642	1600	4227671	8	33821367	35	11837478	47349,91	1972,9	0,1	2170,2
4	2793	1600	4469469	8	35755753	35	12514514	50058,05	2085,8	0,1	2294,3
5	2953	1600	4725097	8	37800775	35	13230271	52921,09	2205,0	0,1	2425,5
6	3122	1600	4995345	8	39962760	35	13986966	55947,86	2331,2	0,1	2564,3
7	3301	1600	5281050	8	42248399	35	14786940	59147,76	2464,5	0,1	2710,9
8	3489	1600	5583095	8	44664762	35	15632667	62530,67	2605,4	0,1	2866,0
9	3689	1600	5902416	8	47219328	35	16526765	66107,06	2754,5	0,1	3029,9
10	3900	1600	6240000	8	49920000	35	17472000	69888,00	2912,0	0,1	3203,2

Elaborado: Los Autores

3.4 PROPIEDADES FÍSICAS

La mayoría de las propiedades físicas de los componentes empleados o producidos en el proceso están disponibles en la base de datos del software Aspen Plus 2006.5 versión 21, a excepción de la Tripalmitina, Metil palmitato y Trioleina por esto se realizó una estimación de sus propiedades a través de este software.

Para lo cual inicialmente bajo una simulación "*Property Estimation*" se procedió a estimar las propiedades dependientes de la temperatura creando la identificación y tipo de componente (TRIPALMI, METPAL y TRIOLEIN), seguido se digitó la estructura molecular y grupos funcionales en la opción *Properties*.*

La siguiente tabla muestra las propiedades físicas de la Tripalmitina (TRIPALMI), Trioleina (TRIOLEIN) y Metil palmitato (METAPL).

^{*} Ver ANEXO 2.

Nombre	Parámetro	TRIPAMITINA	TRIOLEINA	METIL PALMITATO	Unidades	Método
		Valor	Valor	Valor		FORMULA
MOLECULAR WEIGHT	IVIVV	807,33552	885,44916	807,33552	I/KMOL K	FURMULA
AT 500 K		1220300,70	1072025 57	1220306,76	J/KIVIOL-K	BENSON
AT 1000 K		2600800 7	2008875 58	2600800 7		BENSON
STD HT OF FORMATION	DHEORM	-2 05E+09	-1 84F+09	-2 05E+09	J/KMOL	BENSON
STD.FREE ENERGY FORM	DGFORM	-555010000	-263830000	-555010000	J/KMOL	JOBACK
VAPOR PRESSURE AT TB		101324.636	101324.682	101324.636	N/SQM	RIEDEL
AT 0.9*TC		103557,056	95869,2685	103557,056	N/SQM	RIEDEL
AT TC		509000	482000	509000	N/SQM	RIEDEL
HEAT OF VAP AT TB	DHVLB	89194397,5	87501025,7	89194397,5	J/KMOL	DEFINITI
LIQUID MOL VOL AT TB	VB	0,6713839	0,65582617	0,6713839	CUM/KMOL	GUNN-YAM
SOLUBILITY PARAMETER	DELTA	7689,6298	7532,15373	7689,6298	(J/CUM)**.5	DEFINITI
UNIQUAC R PARAMETER	GMUQR	35,7409361	39,090969	35,7409361		BONDI
UNIQUAC Q PARAMETER	GMUQQ	29,172	31,764	29,172		BONDI
	PARC	2142,4	2340,4	2142,4		PARACHOR
LIQUID CP AT 298.15 K		1623991,01	1680984,95	1623991,01	J/KMOL-K	RUZICKA
	CDIC	4020813,33	3850917,8	4020813,55	J/KIVIOL-K	RUZICKA
IDEAE GASTIEAT CAPACITT	CFIG	4929 36278	4929 36278	4929 36278	N,J/NWOL-N	BEINGOIN
		-2 6266117	-2 6266117	-2 6266117		
		0.00043088	0.00043088	0.00043088		
		0	0	0		
		0,00E+00	0,00E+00	0		
		280	280	280		
		1100	1100	1100		
		36029,2	36029,2	36029,2		
		237,761677	237,761677	237,761677		
		1,5	1,5	1,5		
VAPOR PRESSURE	PLXANT	207,598239	207,598239	207,598239	K,N/SQM	RIEDEL
		-29437,134	-29437,134	-29437,134		
		0	0	0		
		0	0	0		
		-23,89733	-23,89733	-23,89733		
		1,002-10	1,002-10	1,002-10		
		799	799	799		
		889	889	889		
HEAT OF VAPORIZATION	DHVLWT	89194397,5	89194397,5	89194397,5	K,J/KMOL	DEFINITI
		799	799	799		
		0,40661767	0,40661767	0,40661767		
		-1,758421	-1,758421	-1,758421		
		799	799	799		
MOLAR VOLUME	RKTZRA	0,13229742	0,13229742	0,13229742		GUNN-YAM
VAPOR VISCOSITY	MUVDIP	9,21E-09	9,21E-09	9,21E-09	K,N-SEC/SQM	REICHENB
		0,97926827	0,97926827	0,97926827		
		0	0	0		
		0	0	0		
		280	280	280		
		1100	1100	1100		
LIQUID VISCOSITY	MULAND	-19,306747	-19,306747	-19,306747	K,N-SEC/SQM	ORRICK-E
		6286,99882	6286,99882	6286,99882		
		-1,43E-06	-1,43E-06	-1,43E-06		
		799	799	799		
		853	853	853		
LIQ THERM CONDUCTIVITY	KLDIP	-67,889246	-67,889246	-67,889246	K,WATI/M-K	SATO-RIE
		0,33019776	0,33019776	0,33019776		
		-0,0006016 4 87E-07	-0,0006016	-0,0006016		
		-1 48F-10	-1 48F-10	-1 48F-10	+	
		799	799	799		
		880.11	880.11	880.11	1 1	
LIQUID SURFACE TENSION	SIGDIP	0,04384043	0,04384043	0,04384043	K,N/M	BROCK-BI
		1,2222231	1,22222231	1,2222231		
		-2,95E-07	-2,95E-07	-2,95E-07		
		3,20E-07	3,20E-07	3,20E-07		
		-1,17E-07	-1,17E-07	-1,17E-07		
		799	799	799		
		871,22	871,22	871,22		DUZIOKA
LIQUID HEAT CAPACITY	CPLDIP	13968/1,//	13968/1,//	13968/1,//	J/KIVIOL-K	RUZICKA
		-144,18606	-/44,18000	-744,18000		
		5,05097337	o,uou9/33/	5,05097337	<u> </u>	

Tabla 3.3: Resultados de la Tripalmitina, Trioleina y Metil palmitato.

Fuente: Aspen Plus 2006.5. *Elaborado:* Los autores.

3.5 SIMULACIÓN

La simulación del proceso de obtención de biodiesel a partir del aceite de *Jatropha curcas* se realizó con el software Aspen Plus 2006.5 versión 21 con licencia universitaria tipo Network, desarrollando para nuestro proceso el diagrama de flujo mostrado en la *Fig. 3.1*.

TRANSESTERIFICACIÓN DEL ACEITE DE JATROPHA CURCAS

Fig. 3.1: Diagrama de flujo. *Elab orado:* Los autores

3.5.1 Descripción del proceso.

El aceite de *Jatropha curcas* ingresa al proceso por la corriente OIL hacia un tanque de mezclado (MIXER3), donde se mezcla con una corriente de reciclo de aceite OILREC, todo este aceite es llevado a través de la corriente OIL2 hacia el reactor de transesterificación (REACTOR); paralelamente en un tanque de mezclado (MIXER1) se prepara el metóxido con el metanol y el hidróxido de sodio que ingresan por las corrientes MEOH y NAOH, respectivamente; a continuación este metóxido es llevado al MIXER2 donde es mezclado con una corriente de reciclo de metanol MEOH1.

En el REACTOR se da la producción de biodiesel y glicerina; por consiguiente la corriente **PRODUCTS** compuesta de: biodiesel, glicerina, aceite, metanol no reaccionado, catalizador (NaOH) y pequeñas fracciones de jabón; es llevada a una columna de destilación (MEOHREC1) para extraer el metanol no reaccionado y reciclarlo a través de la corriente MEOH1; dando como resultado la corriente ESTERES con baja concentración de metanol, la misma que necesita disminuir su temperatura en un intercambiador de calor (EXCHANG2) con el objeto de lavar o quitar las fracciones de jabón con agua (corriente WATER) en una columna de extracción líquida o columna de lavado (WASHCOL) y además separar la glicerina del biodiesel. Luego de este equipo se tiene una corriente ESTER2 compuesta principalmente de biodiesel y aceite, la cual se lleva a una columna de destilación para separar el biodiesel (corriente BIODIESE) del aceite (corriente OILREC) y purgar impurezas como agua y metanol (corriente PURGE).

La corriente AQU1 que sale de la columna de lavado contiene: agua, jabón, glicerina y catalizador; ésta es llevada a un reactor de neutralización del catalizador llamado NEUTRA, la neutralización se la realiza con ácido sulfúrico (corriente H2SO4). El equipo NEUTRA da como producto la corriente AQU2 compuesta de: sulfato de sodio, agua, jabón y glicerina. El sulfato de sodio es separado por el FILTER hacia la corriente SOLIDS; finalmente la glicerina (corriente GLYCEROL) es purificada en una columna de destilación (GLYCERPU) con eliminación de agua y jabón (corriente WATEROUT).

3.5.2 Determinación de las condiciones de reacción.

El presente proceso posee solamente la reacción de transesterificación para la obtención de biodiesel, ya que el aceite de Piñón de la región sur del Ecuador posee tan solo el 1,26% de ácidos grasos libres^{*} se trabajó a una temperatura de reacción de 60 °C ^{**} y 1 atm.

^{*} Ver A NEXO 1.

^{**} Ver ANEXO 3.

Con un tiempo de residencia de 90 min, una concentración de catalizador de 0,6% y una relación molar acohol:aceite 9:1; la transesterificación del aceite de *Jatropha curcas* puede darse a una temperatura de 25 °C y además mantiene una relación directa proporcional con la velocidad de reacción hasta los 65 °C, lo que concuerda con estudios realizados en la India (Sastry 2006). Ello se demuestra en la *Fig.3.2.*

Fig. 3.2: Efecto de la temperatura sobre la transesterificación del aceite de Jatropha curcas. *Elaborado:* Los Autores

3.5.3 Catalizador.

Se seleccionó al hidróxido de sodio en una concentración del 0,6% como el catalizador (Benjumea, 2004), además por ser el más económico y más utilizado a nivel industrial.

3.5.4. Relación molar entre el alcohol y el aceite.

El alcohol que se utilizó en nuestro proceso es el metanol debido a su polaridad y a su estructura de cadena corta, lo que brinda ventajas en términos de economía, rendimiento y velocidad de reacción (Torossi, 2006).

Si bien la estequiometria para la reacción de transesterificación requiere tres moles de alcohol por mol de aceite (3:1), en la práctica se incrementa a relaciones mayores para desplazar el equilibrio hacia una mayor formación de ésteres metílicos, con el cuidado de que una proporción mayor de alcohol dificultaría la posterior separación del glicerol debido a un aumento de su solubilidad. Es por ello que se trabajó con una relación molar de 9:1, para garantizar altas conversiones del reactivo limitante (aceite).

Fig. 3.3: Efecto del exceso de metanol sobre la transesterificación del aceite de *Jatropha curcas*. *Elab orado:* Los Autores

3.5.5 Tiempo y velocidad de agitación.

Como se analizó en el capítulo 2 el tiempo de reacción depende de diversas variables, principalmente de la temperatura, es por ello que se analiza en función de ésta variable deduciendo así que el mejor tiempo de reacción es de 1 hora (Sastry, 2006), pero con el objetivo de garantizar las más altas conversiones el tiempo de residencia en el CSTR fue de 90 minutos, cuyo valor se determinó mediante un análisis dinámico de la conversión del aceite de *Jatropha curca*s a 60 °C; 0,6% de catalizador y una relación molar 9:1 (alcohol: aceite), obteniéndose así una conversión del aceite de *Jatropha curca*s del 82,7% lo cual es menor a la obtenida por A. Gupta (aproximadamente 90%)

Fig. 3.4: Efecto del tiempo de residencia en la transesterificación. *Elab orado:* Los Autores

Debido a que los reactivos forman un sistema heterogéneo se requiere de una constante y eficiente agitación, razón por la cual se empleó un reactor con tanque agitado (CSTR).

3.5.6 Intercambiador de calor.

Las especificaciones de operación del EXCHANG2 son: 50 °C y 1 atm; se enfrió la corriente ESTERES a 50 °C debido a que en la columna de extracción líquida se necesitó disminuir el arrastre de agua y glicerina en el refinado (ESTER2), con especial precaución de que la temperatura de enfriamiento debe estar por encima del punto de solidificación de la glicerina 38°C [Nagar 2006]. A continuación se muestran las repercusiones que causa el enfriamiento de la corriente ESTERES sobre el arrastre de agua y glicerina en el refinado.

Fig. 3.5: Electo de la temperatura de enimamiento sobre el anastre de impurezas en el refinado. *Fuente:* Los autores. *Elab orado:* Los autores.

La *Fig. 3.5* muestra que el arrastre de glicerina y agua en el refinado (corriente ESTER2) es menor cuando la temperatura de enfriamiento de la corriente de entrada a la columna de extracción líquida disminuye (ESTER1).

3.5.7 Determinación de las especificaciones de las columnas de destilación.

Para la operación de las columnas de destilación se estimó: número de platos, plato de la alimentación, relación de reflujo, salida de fondos y tasa de destilado mediante el uso de torres DSTWU*, que son bloques de cálculo contenidos dentro del simulador orientados específicamente al diseño de torres de destilación simples mediante el método Winn-Underwood-Gilliland, cuyos resultados se muestran a continuación:

^{*} Ver ANEXO 5.

Tabla 3.47 Especifica dones esti madas a partir de columnas DSTWO.							
ESPECIFICACIÓN	MEOHREC1	DESTILL	GLYCERPU				
Presión [atm]	1	0,00528	1				
Número de fases	4	4	4				
Relación de reflujo	1,5	3,5	2,5				
Plato de alimentación	3	11	3				

Table 2.4. For a if a signed action decay any tinde action as DCTA//

Fuente: Los autores.

Elaborado: Los autores.

3.5.8 Análisis de los requerimientos de las columnas de destilación por etapa del proceso.

Las columnas de destilación precisan de parámetros adecuados para cumplir objetivos específicos que estén orientados a satisfacer los requerimientos del producto final, con la búsqueda de una disminución de la inversión requerida.

Por ello la tasa de destilado de las columnas MEOHREC1 y GLYCERPU fueron analizadas en función de la temperatura de sus respectivos hervidores, la misma que no debe sobrepasar la temperatura de degradación del glicerol 204,44°C [Zapata, 2006].

Fig. 3.6: Efecto de la tasa de destilado del MEOHREC1 sobre la temperatura de su hervidor. Elaborado: Los Autores

Fig. 3.7: Efecto de la tasa de destilado del GLYCERPU sobre la temperatura de su hervidor. *Elaborado:* Los Autores

Por lo tanto al operar a una temperatura aproximada de 190 °C en el hervidor las tasas de destilado fueron 793 kg/h y 52 kg/h en las columnas MEOHREC1 y GLYCERPU, respectivamente.

Para estudiar la tasa de fondo adecuada en la columna de destilación del biodiesel (DESTILL) se conectó el reciclo de aceite al mezclador (MIXER3) y se mantuvo constante la corriente OIL2 de entrada al reactor de transesterificación en un valor 3203,2 kg/h mediante el uso de la herramienta *Calculador* del simulador, cabe indicar que la temperatura del hervidor de la columna DESTILL no debe sobrepasar la temperatura de degradación del biodiesel 250°C [Zapata, 2006].

Fig. 3.8: Efecto de la salida de fondos del DESTILL sobre la temperatura de su hervidor. *Elaborado:* Los Autores

Fig. 3.9: Efecto de la salida de fondos del DESTILL sobre el arrastre de biodiesel en el recido de aceite. *Elaborado:* Los Autores

Consecuentemente purificar biodiesel a una temperatura de 240 °C en el hervidor la tasa de fondo fue 650 kg/h, con un arrastre de biodiesel en la corriente de aceite reciclado de 61,42 kg/h.

3.5.9 Efecto de la corriente de reciclo de aceite sobre las columnas MEOHREC1 y GLYCERPU.

Al reciclar el aceite no reaccionado desde la columna DESTILL al mezclador de aceite (MIXER3) provocó un aumento de temperatura hasta 268 °C, el cual no es permitido en el hervidor de columna MEOHREC1, debido a que es mayor a la temperatura de degradación del glicerol, por ésta razón se procedió a realizar un análisis de la tasa de destilado y fondo en la etapa de recuperación de metanol y purificación de glicerina respectivamente, hasta encontrar una temperatura adecuada, menor a la temperatura de degradación del glicerol.

Fig. 3.10: Efecto de la tasa de destilado del MEOHREC1 sobre la temperatura de su hervidor. *Elab orado:* Los Autores

Se fijó operar el hervidor a una temperatura de 190 °C obteniendo un valor de tasa de destilado de 575 kg/h.

En la columna de recuperación de la glicerina se realizó un nuevo análisis para obtener una tasa de destilado adecuada que aumente la pureza de la glicerina, hasta alcanzar una temperatura de 190 °C en el hervidor.

Fig. 3.11: Efecto de la tasa de destilado del GLYCERPU sobre la temperatura de su hervidor. *Elab orado:* Los Autores

Fig. 3.12: Tasa de destilado sobre pureza de la glicerina. *Fuente:* Los autores. *Elaborado:* Los autores.

En la *Fig. 3.11* se observa que a una temperatura de 190 °C en el hervidor de la columna la tasa de destilado fue 52k g/h, obteniendo una glicerina con una pureza de 98,7% según la *Fig. 3.12*.

3.5.10 Relación de reflujo de las columnas de destilación.

La selección del valor de la relación de reflujo influye directamente en los requerimientos de los servicios y costos de operación, por ende el valor de reflujo adecuado sería el que disminuya considerablemente costos de operación del proceso, los mismos que tienen una relación directa con la energía requerida en el hervidor y condensador de las columnas de destilación (Coulson et. al.). Es por ello que se realizó un análisis de la energía requerida a diversas relaciones de reflujos molares.

Relación	Recupera	ación de metanol	Purificac	ión de glicerina	Recuperación de biodiesel		
de reflujo	Hervidor	Condensador	Hervidor	Condensador	Hervidor	Condensador	
	[kJ/s]	[kJ/s]	[kJ/s]	[kJ/s]	[kJ/s]	[kJ/s]	
5	1389,83	1051,34	216,7	201,4	2283,51	2202,81	
4	1201,09	876,11	183,2	167,8	1913,5	1832,8	
3	1012,35	700,89	149,6	134,2	1543,4	1462,7	
2,5	917,98	613,28	132,8	117,5	1358,4	1277,7	
2	823,61	525,67	116,1	100,7	1173,4	1092,7	
1,5	729,24	438,06	99,3	83,9	988,4	907,7	
1	634,88	350,45	82,5	67,1	803,4	722,6	

Tabla 3.5: Análisis de la razón de reflujo sobre la energía requerida en el hervidor y condensador de las columnas.

Fuente: Los autores.

Elaborado: Los autores

En la *Tabla 3.5* se observa que la disminución de la relación de reflujo provoca el decremento de la energía requerida en el hervidor y condensador.

Columna	Relación de reflujo
MEOHREC1	1
DESTILL	1
GLYCERPU	1
Fuente: Los autores	

Tabla 3.6: Relación de reflujo de operación de las columnas.

Fuente: Los autores. *Elaborado:* Los autores

Se decidió operar a una relación de reflujo de 1 ya que en estas condiciones se necesita una menor energía de operación. Además se analizó el efecto de la relación de reflujo sobre las concentraciones de los reciclos y prácticamente éstos resultaron ser despreciables.

3.5.11 Presión de operación de la columna DESTILL

En la columna de recuperación de biodiesel la temperatura en el hervidor fue 240 °C a diferencia de las demás columnas de destilación ésta osciló alrededor de 194 °C, lo cual indicó que era necesario producir vapor de agua a dos diferentes presiones. Es por ello que se realizó un análisis de la presión de operación en la columna DESTILL (vacío) con el fin de emplear el mismo vapor de agua en todas las columnas.

Fig. 3.13: Efecto del vacío sobre el hervidor de la columna DESTILL. *Elaborado:* Los Autores

Por consiguiente se decidió que para operar a una temperatura aproximada de 193 °C en el hervidor de DESTILL se necesita una presión de 100 Pa.

3.5.12 Temperatura de condensación de la columna DESTILL.

Tanto en las columnas MEOHREC1 como en la GLYCERPU se trabajó con condensación total por lo que fue necesario que sus destilados salgan a una temperatura de 40 °C y 93,1 °C a 1 atm, respectivamente; lo que indicó que no existen inconvenientes para trabajar con agua a 25 °C como fluido frío en los condensadores de las columnas.

Si en la columna DESTILL se trabaja con condensación total se requiere que la temperatura de su destilado salga a 1,2 °C, lo que implicaría que se trabaje con un refrigerante muy costoso; la temperatura de condensación total en el condensador de DESTILL es muy baja por lo que se debe condensar pequeñas fracciones de agua y metanol a 100 Pa; por consiguiente se decidió purgar el agua y el metanol presente en el biodiesel mediante condensación parcial; por ello se realizó un estudio de la temperatura de condensación adecuada en la columna DESTILL.

Como se puede notar la temperatura de condensación en la columna es directamente proporcional a las pérdidas de biodiesel en la purga; al trabajar a una temperatura de condensación de 40 °C se tuvo la menor pérdida posible según la *Fig.3.13*, además permite trabajar con agua como refrigerante.

3.5.13 Operación de la columna de extracción líquida WASHCOL.

Esta columna se empleó para refinar el biodiesel y aceite presentes en la corriente ESTER2, para lograr este propósito se utilizó agua como solvente ya que posee gran afinidad con los solutos (NaOH, glicerina y metanol) además de ser insoluble con el biodiesel y aceite; inclusive se evita posibles formaciones de emulsiones de alcohol en el biodiesel, ya que debido a la polaridad el metanol, glicerol y jabón son arrastrados hacia la corriente AQU1.

Las especificaciones de la columna de extracción líquida son las siguientes:

Variable	EQUIP O WASHCOL
Número de platos	4
Presión atm	1
Fase 1	Glicerol, metanol Agua y Hidróxido de sodio
Fase 2	Tripalmitina, Metil Palmitato, Trioleina y Metil Oleato
Fuente: Los autores	

Tahla	3 7 · Fe	necificac	iones de	، دا د	columna	WASHCO)
iavia	J.1. ES	pecilicac	iones de	t la i	columna	VIASIDU	ノレ

Fuente: Los autores. *Elaborado:* Los autores.

Elabolado. Eos autores.

Para determinar el número de platos se tomó en consideración los siguientes requerimientos:

- Menor contenido de metanol en el refinado (ESTER2).
- Menor contenido de glicerol en el refinado (ESTER2).

	Número de platos							
Agua		2	3	6	4			
[kg/h]	Glicerol [kg/h]	Metanol [kg/h]	Glicerol [kg/h]	Metanol [kg/h]	Glicerol [kg/h]	Metanol [kg/h]		
50	2,240	3,300	1,036	3,176	0,560	3,136		
100	1,311	2,269	0,421	2,028	0,028	0,728		
300	0,501	0,814	0,068	0,471	0,010	0,297		
500	0,312	0,420	0,027	0,164	0,002	0,068		
700	0,222	0,255	0,014	0,072	0,001	0,021		
900	0,168	0,171	0,008	0,037	0,0004	0,008		

Tabla 3.8: Pérdidas de glicerol y metanol a diferentes flujos de agua.

Fuente: Los autores.

Elaborado: Los autores.

Fig. 3.15: Arrastres de glicerol y metanol en el refinado. *Fuente:* Los autores. *Elaborado:* Los autores

Según la *Fig. 3.15* se puede deducir que es necesitó el empleo de 4 platos para conseguir cumplir los requerimientos antes mencionados con un flujo de 50 kg/h de agua.

3.6. RESULTADOS.

TRANSESTERIFICACIÓN DEL ACEITE DE JATROPHA CURCAS

Fig. 3.16: Diagrama de flujo simulado. *Elaborado:* Los autores A continuación únicamente se muestran los resultados de las cinco corrientes de salida del proceso (BIODIESE, GLYCEROL, SOLIDS, WATEROUT y PURGE); además los resultados de las corrientes MEOH y NAOH que están en función de la corriente de entrada de aceite al reactor de transesterificación (OIL2), junto con la corriente de ácido sulfúrico que depende de la corriente AQU1.

3.6.1 Alcohol, catalizador y ácido sulfúrico.

El flujo de entrada de metanol (MEOH) al proceso para transesterificar los 2553,2 kg/h de aceite fue de 297,577 kg/h, teniendo así un flujo de entrada de METOXI de 891,796 kg/h y 3203,200 kg/h de OIL2 al reactor de transesterificación (REACTOR) debido a los reflujos. Por lo tanto la entrada de catalizador (NAOH) necesaria fue de 19,219 kg/h, de esta manera se cumplió con las relaciones molares de alcohol:aceite como lo muestra la siguiente figura:

Material Heat Load	Vol.% Curves	Wt. % Curves	Petro, Curve	s Poly. Curves
Display: Streams 💌	Format: GEN_	d 💌	Stream Table	
	METOXI -	OIL2 🔻	PRODUCT:	MEOH 💌
Mole Flow kmol/hr				
TRIPALMI	0,001	0,387	0,079	
METPAL	TRACE	0,100	1,024	
TRIOLEIN	< 0,001	0,346	0,074	
METHY-01	TRACE	0,002	0,817	
GLYCE-01	TRACE	TRACE	0,580	
METHA-01	6,597	TRACE	4,857	1,814
WATER	0,086	TRACE	0,086	
NAOH	0,206	TRACE	0,206	
NA3P04				
H3P04				-

Fig. 3.17: Cumplimiento de la relación molar alcohol: aceite. *Elab orado:* Los autores

 $9 \times (Moles \ de \ Tripalmitina + Moles \ de \ Trioleina) = Moles \ de \ Me \tan ol$ $9 \times (0,387 + 0,346) = 6,597$ 6,597 = 6,597

La corriente de entrada H2SO4 al reactor de neutralización fue de 23,987 kg/h, de los cuales 23,564 kg/h son de ácido sulfúrico ya que es de 98% de pureza.

3.6.2 Biodiesel.

Con una entrada de 2553,2 kg/h y un reciclo de 650 kg/h de aceite se tuvo una producción de 2566,168 kg/h de biodiesel, cuya composición se muestra en la *Tabla 3.9*.

El biodiesel sale a una temperatura de 30 °C; tal como se deduce de la *Tabla 3.9* tiene una pureza cercana al 100%, cumpliendo así con los requisitos de biodiesel que exige la norma ecuatoriana NTE INEN 2 482:2009.

3.6.3 Glicerina.

La producción de glicerina que es un subproducto fue de 281,700 kg/h de 98,7% de pureza, la misma que fluye a través de la corriente GLYCEROL a 191,1 °C, cuya composición se muestra en la *Tabla 3.9*.

	BIODIESEL		GLIC	ERINA
Component	Mass Flow [kg/h]	Mass Fracc	Mass Flow [kg/h]	Mass Fracc
Tripalmitin	0,004	2 PPM	-	-
Methyl palmitate	1308,611	0,510	-	-
Triolein	0,010	4 PPM	-	-
Methyl oleate	1256,754	0,490	-	-
Glycerol	0,567	221 PPM	278,040	0,987
Methanol	0,118	46 PPM	0,032	113PPM
Water	0,104	40 PPM	3,628	0,013
NAOH	-	-	-	-
NA2SO4	-	-	-	-
H2SO4	-	-	-	-

Tabla 3.9. Composición de la producción de biodiesel y glicerina a partir del aceite de Jatropha curcas.

Elaborado: Los Autores

3.6.4 Sólidos.

La corriente de flujo de catalizador neutralizado (SOLIDS) fue de 34,127 kg/h a 89,5 °C, con composición mostrada en la *Tabla 3.10*.

3.6.5 Salida de agua.

La corriente WATEROUT tiene un flujo de 53 kg/h a 93,1 °C con composición mostrada en la *Tabla 3.10*.

El objetivo de la corriente PURGE con un flujo de 8,989 kg/h a 123,9 °C, fue eliminar el agua presente en el biodiesel.

	PURGE		SOLIDS		WATEROUT	
Component	Mass Flow [kg/h]	Mass Frac	Mass Flow [kg/h]	Mass Frac	Mass Flow [kg/h]	Mass Frac
Tripalmitin	TRACE	TRACE	-	-	-	-
Methyl palmitate	0,019	0,002	-	-	-	-
Triolein	TRACE	TRACE	-	-	-	-
Methyloleate	0,001	111 PPM	-	-	-	-
Glycerol	0,033	0,004	-	-	0,018	347 PPM
Methanol	2,720	0,303	-	-	3,849	0,073
Water	6,216	0,691	-	-	49,132	0,927
NAOH	-	-	-	-	-	-
NA2SO4	-	-	34,127	1,000	-	-
H2SO4	-	-	-	-	-	-

Tabla 3.10. Composición de la corriente PURGE, SOLIDS y WATEROUT.

Elaborado: Los Autores

3.7 DIGRAMA P&I.

La construcción de éste diagrama se realizó en base al diagrama de flujo desarrollado en el software Aspen Plus, mostrado en la *Fig. 3.1*; el mismo que se muestra en el ANEXO 8. En cuanto a la selección de tangues y equipos del proceso se tomó en cuenta dos criterios

principales:

- *Dimensiones del equipo:* Se consideró la cantidad de materia prima que se almacenará o manejará dentro del equipo.
- Material de construcción: En función del tipo de sustancia que se va ha manejar, así como las condiciones de operación de dicho equipo (temperatura y presión) y requerimientos mínimos de seguridad.

Con el fin de precautelar la oxidación tanto del biodiesel como del aceite el material que se consideró en algunos tanques y tuberías fue acero inoxidable 316L; además, tomando en consideración los altos costos de este material también se trabajó con acero al carbón en donde generalmente exista gran presencia de metanol, las tuberías de PVC fueron consideradas para el manejo de agua y ácido sulfúrico.

El material empleado específicamente para cada equipo mostrado en el diagrama P&I se indica en el literal 3.7.3, los mismos que se encuentran bajo la siguiente nomenclatura:

En donde:

La primera letra (T) indica el tipo de equipo (tanque).

La segunda letra (O) indica la sustancia o función del equipo (aceite).

El número (1) indica la numeración del equipo.

A continuación se muestra el significado de la segunda letra empleada en la nomenclatura de este proyecto:

O: aceite de Jatropha curcas.

P: pasta de semilla de Jatropha curcas.

A: amortiguamiento.

M: metanol.

W: agua.

B: biodiesel.

C: catalizador.

H⁺²: ácido sulfúrico.

G: glicerina.

S: sólidos (sulfato de sodio)

La instrumentación necesaria para el proyecto se la presenta en el diagrama P&I.

3.7.1 Selección de válvulas y tuberías.

Se siguieron los siguientes criterios para determinar el material de construcción de tuberías y válvulas así como el tamaño:

- Material que se transporta en la tubería.
- Flujo requerido.
- Condiciones del fluido.

Las válvulas del proceso son válvulas de bola de ¼ de vuelta y compuerta, las segundas se implementan por seguridad ya que éstas permiten el flujo en una sola dirección.

El material de las tuberías, sus diámetros y disposición de las válvulas se muestran en el diagrama P&I (Anexo 8)

3.7.2 Selección de bombas.

En todo el proceso se consideró el uso de bombas centrífugas de flujo radial con impulsor abierto.

Para el cálculo de la potencia teórica necesaria para las bombas se consideró una eficiencia y diferencial de presión preliminar (Coulson et. al.2005) cuyos resultados mostramos a continuación; los cálculos correspondientes se muestran en el ANEXO 9.

Equipo	Q [m3/h]	Potencia [W]	
B-1	0,94	65,28	
B-3	1,31	69,98	
B-6	0,38	26,39	
B-8	1,12	74,07	
B-10	4,8	111,11	
B-12	4,25	101,77	
B-15	3,39	94,17	
B-16	0,38	26,39	
B-18	2,79	69,20	
B-20	2,79	69,20	
B-22	0,05	34,72	
B-24	0,27	18,75	
B-26	0,03	20,83	
B-28	0,35	24,31	
B-29	0,28	19,44	
B-30	0,25	17,36	

Elaborado: Los autores. *Fuente:* Anexo 9.

3.7.3 Equipos.

• Tanques, reactores y mezcladores.

El dimensionamiento de los tanques se los realizó en base a la norma API STANDARD 650 Onceava Edición (Junio, 2007).

Para los mezcladores y reactores se tomó una relación de 1:1,2 (diámetro:altura) en función de las capacidades sugeridas por la norma para asegurar el mezclado y homogenización. Además por seguridad en todos los equipos se consideró un 10% de
sobredimensionamiento (Coulson, 2005) y ello se ajustó a una capacidad estandarizada por la norma determinándose el diámetro, altura y espesor de éstos equipos.

A continuación se muestran las dimensiones de los tanques del diagrama P&I, cabe indicar que las abreviaturas AI, AC y PE significan acero inoxidable, acero al carbón y polietileno (los tanques de polietileno fueron ajustados a capacidades de tanques ROTOPLAS), respectivamente.

		TANQUES									
	TO-1	TP-1	TO-2	TO-3	TA-1	TA-2	TM-1	TW-1	TW-2	TB-1	TB-2
Almacenamiento	3 meses	24 h	8 h	8 h	8 h	3 h	15 días	15 días	7 días	8 h	10 días
Capacidad [m ³]	1590,00	7,07	25,00	2,50	153,00	38,00	153,00	38,00	15,90	38,00	779,00
Diámetro [m]	15,00	3,00	3,00	1,02	6,00	3,00	6,00	3,00	4,50	3,00	10,50
Altura [m]	9,00	1,00	3,60	3,06	5,40	5,40	5,40	5,40	1,00	5,40	9,00
Espesor [mm]	30,00	5,00	10,00	5,00	15,00	15,00	15,00	15,00	5,00	15,00	25,00
Material	AI	AC	AI	AI	AC	AC	AC	AC	AC	AI	AI
Montaje	Vertical										

Tabla 3.12: Dimensiones de tanques, mezcladores y reactores.

		TANQUES							
	TC-1	TH ⁺² -1	TH ⁺² -2	TA-3	TA-4	TG-1	TS-1	S - 1	
Almacenamiento	15 días	15 días	7 días	1,5 h	2 h	15 días	15 días	1 mes	
Capacidad [m ³]	10,00	10,00	5,00	0,85	0,85	102,00	7,07	1247	
Diámetro [m]	2,50	2,50	2,00	0,97	0,97	6,00	3,00	9	
Altura [m]	2,62	2,62	2,12	1,16	1,16	3,60	1,00	19,6	
Espesor [mm]	-	-	-	5	5,00	10,00	0,50	40	
Material	PE	PE	PE	AC	AC	AC	AC	AC	
Montaje	Vertical	Vertical	Vertical	Vertical	Vertical	Vertical	Vertical	Vertical	

	ME	ZCLADOF	REACTORES		
	M-1	M-2	M-3	RX-1	RX-2
Almacenamiento	8 h	8h	8 h	1,5 h	30min
Capacidad [m ³]	7,07	38,00	38,00	10,00	0,35
Diámetro [m]	1,96	3,43	3,43	2,20	0,72
Altura [m]	2,35	4,12	4,12	2,64	0,86
Espesor [mm]	5,00	15,00	15,00	10,00	5,00
Material	AI	AC	AC	AI	AC
Montaje	Vertical	Vertical	Vertical	Vertical	Vertical

Elaborado: Los autores. *Fuente:* Anexo 9.

La siguiente tabla indica la potencia requerida por los agitadores tanto de los mezcladores como de los reactores mostrados en el diagrama P&I (Anexo 8).

	Unidadas	MEZCLADORES			REACTORES		
	Unidades	M-1	M-2	M-3	RX-1	RX-2	
Volumen del tanque	m³	7,07	38,00	38,00	10,00	0,35	
Díametro del tanque	m	1,96	3,43	3,43	2,20	0,72	
Diám. agitador/ Diám. del tanque		0,60	0,40	0,30	0,50	0,60	
Viscosidad del líquido (μ)	Ns/m²	0,0007410	0,0004445	0,4980205	0,4980205	0,0095580	
Densidad del líquido (ρ)	kg/m ³	864,11	793,66	2438,38	2438,38	1261,36	
Velocidad del agitador (N)	rps	1	1	3	3	3	
Díametro del agitador (D)	m	1,17	1,37	1,03	1,10	0,43	
Número de Reynolds (Re)		804766,08	1679568,81	15543,63	17740,68	73885,94	
Número de Potencia (N _p)		0,26	0,21	0,28	0,29	0,28	
Potencia requerida (P)	ĸw	13,57	21,85	21,24	30,61	5,31	
Tipo de agitador		Turbina	Turbina	Turbina con cuchilla inclinada	Liston helicoidal	Turbina	

Tabla 3.13: Potencia requerida de los agitadores.

Elaborado: Los autores.

El objetivo de los agitadores tanto en los mezcladores como en los reactores es crear turbulencia (Re>2000) para homogenizar la mezcla líquida, la misma que tiene una relación directa con la velocidad del agitador, con las velocidades mostradas en la tabla anterior se obtuvo turbulencias semejantes a las trabajadas por A. Gupta

• Filtros.

No se efectuó el procedimiento de dimensionamiento del filtro debido a que se desconoce las propiedades del solidó a separar, como es el tamaño de partícula, aspecto importante para realizar este fin. Ante ésta situación se escogió emplear una centrifuga de discos debido a que se requiere producir un sólido puro y seco (Coulson *et al.*, 2005) con el propósito de lograr un tratamiento integro que incluya la purificación de los subproductos.

• Intercambiadores de calor.

Los resultados del dimensionamiento de los intercambiadores de calor se muestran a continuación:

EXCHANG2.

Tabla 3.14. Especificaciones principales del EXCHANG2.

U[W/m ² ºC]	∆Tm [ºC]	A[m ²]		
300,00	65,95	16,01		

Elaborado: Los Autores

Parámetro	Longitud[m]	Diámetro interno[mm]	Diámetro externo [mm]	Número de tubos	Espacio entre tubos[mm]	Material
Tubos	4,88	16	20	52,00	25	AC

AC: acero al carbono

Elaborado: Los Autores.

Tabla 3.16. Especificaciones de la coraza del EXCHANG2

Parámetro	Diámetro[mm]	Diámetro limpio[mm]	Material
Coraza	381,2	10	AC
AC: acero al carb	ono		

Elaborado: Los Autores

	Tabla 3.17. Especificaciones	de los deflectores	del EXCHANG2
--	------------------------------	--------------------	--------------

Parámetro	Corte de deflector	Espacio entre deflectores	Número de deflectores	
Deflector	0,25	76,23	65	

Elaborado: Los Autores

Hervidores de las columnas MEOHREC1, GLYCERPU Y DESTILL.

Tabla 3.18. Especificaciones de equipo							
Parámetro	HC.GLYCERPU	HC. DESTILL	HC. MEOHREC1				
Tipo de hervidor	Temosifón	Caldero	Temosifón				
Orientación	Vertical	Horiz ontal	Vertical				
Presión de operación[atm]	1	0,000987	1				
HC: Hervidor de la columna							

Elaborado: Los Autores

Tabla 3.19. Especificaciones de corrientes a los hervidores.

	HC.GLYCERPU		H. DES	STILL	HC. MEOHREC1	
Variable	Vapor de	Glycerol	Vapor de	Biodiesel	Vapor de	Metanol
Temperatura [ºC]	217	191 4	217	152 55	217	193.9
Presión [atm]	21.71	1	21.71	0.00099	21.71	1
Flujo másico[kg/h]	158,84	407,32	1501,83	8437	1222,51	4627,28
Dirección de flujo	Coraza	Tubos	Tubos	Coraza	Coraza	Tubos
Fase de transición	Condensación	Vaporización	Condensación	Vaporización	Condensación	Vaporización

HC: Hervidor de la columna

Elaborado: Los Autores.

Parámetro	HC.GLYCERPU	HC. DESTILL	HC.MEOHREC1
Longitud[m]	2,5	4,8	2,5
Diámetro interno [mm]	25	25	25
Diámetro externo[mm]	30	30	30
Número de tubos	11		979
Número de tubos U		344	
Material	AC	AC	AC

Tabla 3.20. Especificaciones de los tubos de los hervidores.

HC: Hervidor de la columna

Elaborado: Los Autores.

Tabla 3.21. Especificaciones de la coraza de los hervidores

Parámetro	HC.GLYCERPU	HC. DESTILL	HC.MEOHREC1
Diámetro de coraza[mm]	166,6592307	2083,5	1283,6
Diámetro ocupado por los tubos[mm]	156,7	1389	1273,6
Espacio entre deflectores[mm]	166,66		1283,6
Número de deflectores	16		3

HC: Hervidor de la columna

Elaborado: Los Autores.

Tabla 3.22. Especificaciones principales de los hervidores

Parámetro	HC.GLYCERPU	HC. DESTILL	HC.MEOHREC1
A [m ²]	1,3	160,2	192,3
U[W/m ² ºC]	2136,0	79,3	142,7

HC: Hervidor de la columna

Elaborado: Los Autores

Condensadores.

Tabla 3.23. Especificaciones de las corrientes de los condensadores

			C.MEOHREC1		C.GLYCERPU		C,BIODIESEL	
Parámetro	Unidades	Agua	Metanol	Agua	Vapor de agua	Agua	Biodiesel	
	t₁[ºC]	25		25		25		
Temperatura	t ₂ [ºC]	35		35		35		
	T₁[ºC]		64,54		100,00		5264,67	
	T₂[⁰C]		40		40		40	
Presión	Atm	1	1	1	1	1	0.00099	
Flujo másico	kg/h	32385	1150	6203 Cora	106	62515	5265	
Dirección de flujo		Coraza	Tubos	za	Tubos	Coraza	Tubos	
Orientación del co	ondensador	Ve	rtical	Ve	ertical	Ve	rtical	

C: Condensador.

Elaborado: Los Autores.

Parámetro	C.MEOHREC1	C.GLYCERPU	C.DESTILL				
Longitud[m]	1,83	1,83	1,83				
Diámetro externo [mm]	20	20	20				
Diámetro interno [mm]	16	16	16				
Número de tubos	156,00	15,00	513				
Material	AC	AC	AC				

Tabla 3.24. Especificaciones de tubos de los condensadores

C: Condensador. *Elaborado:* Los Autores AC: Acero al carbono

Tabla 3.25. Especificaciones de coraza de los condensadores

Parámetro	C.MEOHREC1	C.GLYCERPU	C.DESTILL
Diámetro de coraza D _s [mm]	371	131	640
Diámetro de haz de tubos D _b [mm]	360	121	628
Espacio entre deflectores e [mm]	186	65	192
Número de deflectores N	11	29	11

Elaborado: Los Autores

Tabla 3.26.	Especificaciones	principales	de los	condensadores

Parámetro	C.MEOHREC1	C.GLYCERPU	C.DESTILL	
A [m ²]	17,91	1,67	57	
U [W/m ² ºC]	930,45	1175,61	673	

C: Condensador.

Elaborado: Los Autores

• Columnas de destilación.

El espaciado recomendado entre platos para columnas de destilación con diámetros menores a 1,219 m es 0,457 – 0,508 m y para diámetros de 3,658 – 7,315 m es 0,914 m además se puede emplear hasta un mínimo de 0,152 cm (Petters, 1991).

Tomando como referencia las estimaciones del número de platos, espaciado entre ellos, y adicionando 4 pies por encima del plato superior para separar el líquido arrastrado y 10 pies por debajo del plato inferior para disponer de suficiente capacidad de remansamiento (Henley, 2000), se estimó la altura total de la columna.

Parámetro	C Metanol	C biodiesel	C Glicerina
Espacio entre platos(m)	0,457	0,9144	0,1524
Altura(m)	4,724	5,181	4,419
Número de Platos teóricos	4	4	4
Material	AC	AC	AC
Diámetro m	0,53	3.75	0.37

Tabla. 3.27: Resultados de las columnas de destilación.

C: columna; AC: acero al carbono

Fuente: Los autores.

Elaborado: Los autores

Columna de extracción líquida.

Tabla 3.28. Dimensiones de la columna de extracción líquida.

Parámetro	Valor	Unidades
Altura	2	М
Diámetro	0,77	М
Espacio entre platos	0,4	М
Número de platos	4	-

Fuente: Los autores Elaborado: Los Autores

3.8 UBICACIÓN DE LA PLANTA DE PRODUCCIÓN DE BIODIESEL

Para llevar a cabo la localización de la planta se analizaron cuatro sectores potenciales en función de fuerzas localizacionales (Sapag, cuarta edición), las mismas que están ubicadas en la columna FACTOR de la *Tabla 3.29*.

ΕΛΟΤΟΡ	DESO	LOJA		ZAPOTILLO		MACARÁ		CATAMAYO	
FACTOR	FLSU	Calificación	Ponderación	Calificación	Ponderación	Calificación	Ponderación	Calificación	Ponderación
MP disponible	0,25	0	0	9	2,25	7	1,75	1	0,25
Cercanía de mercado	0,25	4	1	7	1,75	6	1,5	5	1,25
Costo insumos	0,07	3	0,21	6	0,42	6	0,42	5	0,35
Clima	0,03	3	0,09	8	0,24	8	0,24	7	0,21
MO disponible	0,1	9	0,9	5	0,5	7	0,7	8	0,8
Servicios públicos	0,25	8	2	5	1,25	5	1,25	5	1,25
Factores ambientales	0,05	5	0,25	7	0,35	6	0,3	5	0,25
TOTALES	1		4,45		6,76		6,16		4,36

Tabla 3.29. Factores de localización.

Elaborado: Los Autores

3.8.1. Materia prima disponible.

La calificación en Loja en cuanto a materia prima fue 0 debido a que no existen plantaciones de piñón y además no presta las condiciones climáticas para su cultivo como si es el caso del sector de Catamayo, es por ello que tuvo una calificación de 1. En el sector Zapotillo existe una mayor área para plantación de *Jatropha curcas* como es el caso semejante en Macará, como se observa en los mapas 5 y 6.

3.8.2. Cercanía de mercado.

Actualmente el gobierno incentiva la producción de biocombustibles a través del Ministerio de Electricidad y Energía Renovable además ha manifestado que el organismo autorizado para la venta y mezcla de biocombustibles será Petrocomercial, es por ello que han empezado elaborando proyectos pilotos de plantas de mezclado de combustible fósil con biocombustible en la ciudad de Guayaquil (Petrocomercial, 2008). Por lo tanto los valores colocados en la fila de cercanía de mercado están en función de la distancia y condiciones viales entre Guayaquil y los diversos sectores estudiados (Zapotillo < Macará < Catamayo < Loja de distancia vial a Guayaquil).

3.8.3. Costo de insumos.

El costo de insumos abarca todo los materiales que necesita la planta para operar, un agente determinante a ser analizado fue la distancia que tendría la ubicación de la planta con respecto a las principales distribuidoras de materiales del país que se encuentran en Quito y Guayaquil; en base a ello se colocó los valores de ésta fuerza de localización.

3.8.4. Clima.

El clima en los sectores analizados es estable con una temperatura promedio de 25°C a excepción de Loja que tiene un clima muy variado.

3.8.5. Mano de obra disponible.

Esta fuerza de localización está analizada en función de la sociedad de las diferentes localidades, en el caso de Loja se tuvo la mayor calificación puesto que es el sector que tiene mayor población (Catamayo: 27 412 habitantes, Loja: 118 532 habitantes, Macará: 16 082 habitantes y Zapotillo: 10 234 habitantes [Inec, 2001]) y por lo tanto tiene una mayor probabilidad de encontrar mano de obra disponible.

3.8.6. Servicios públicos.

No se ha emitido información por parte de los diferentes Municipios de los sectores estudiados acerca del estado de sus servicios públicos, por indagación propia con pobladores de los diversos sectores se determinó que los servicios públicos con que cuenta nuestra provincia son ineficientes, ya que no se mantiene un constante abastecimiento de los mismo durante las 24 horas del día.

3.8.7. Factores ambientales.

Las zonas de Zapotillo, Macará y Catamayo son cálidas y poco lluviosas; lo que favorece como ubicación, como no es el caso del clima de Loja que suele presentar lluvias inesperadas.

3.9 DIAGRAMA LAYOUT DEL PROCESO.

En el anexo 10 se muestra el diagrama Layout del proceso de producción; para la distribución espacial de la planta se tomó en consideración las dimensiones requeridas de los equipos y un espaciado de 3 m a excepción del elevador que se consideró un espaciado de 6 m (Petters, 1991) de acuerdo a recomendaciones establecidas por la OSHA.

3.9 COSTO DEL PROYECTO.

3.10.1 Estimación de costos.

Un diseño preliminar es una aproximación de la tendencia económica y técnica de un proceso, esto permite visualizar el interés posterior para decidir la continuación o no con la ejecución del proyecto (Coulson, 2005).

Para estimar el costo físico de la planta se empleó factores individuales que están contenidos dentro del factor de Lang y el capital de trabajo se consideró el 10% del capital fijo (Coulson, 2005).

El costo de los equipos se calculó mediante el método factorial (Coulson, 2005). Algunos equipos tales como: extractor de aceite, filtro centrifuga y eyectores de vapor sus precios fueron valores obtenidos de fuentes bibliográficas y proformas (Anexo11).

A continuación se muestra los resultados obtenidos:

Capital de trabajo[\$]	Inversión requerida[\$]
101 4975	11164720
	Capital de trabajo[\$]

Tabla 3.30. Costos requeridos del proyecto.

Elaborado: Los Autores

Los criterios para la evaluación económica del proyecto se muestran a continuación:

TMAR	13,84%
VAN [\$]	10115606
TIR	26,77%
B/C	1,26
PR	5 años
Costo de biodiesel [\$/litro]	0.99
Elaborado I os Autores	

Tabla 3.31. Indicadores financieros del proyecto

Elaborado: Los Autores

TMAR: Tasa mínima actual de rendimiento.

TIR: Tasa interna de retorno.

VAN: Valor actual neto.

B/C: Relación beneficio/costo

PR: Período de recuperación de la inversión.

Según la *tabla 3.34* el proyecto resulta atractivo para el inversionista no obstante ésta conclusión ésta sujeta a que el biodiesel será vendido a precio estimado, dicha suposición se debe justificar con un estudio de mercado que sale del alcance de este trabajo. Sin embargo en el análisis de sensibilidad se muestra el efecto de las principales variables tales como: precio de la materia prima y del biodiesel sobre la rentabilidad del proyecto.

3.10.2 Análisis de sensibilidad

Para conocer el efecto del aumento del precio de la semilla de *Jatropha curcas* se procede a mantener constantes los demás rubros del flujo de caja, obteniendo los siguientes resultados.

TMAR	13,84%
VAN (US\$)	0
TIR	13,84%
B/C	1,12
↑Precio de la semilla	27,3%
↑ Aumento	

Tabla 3.32. Efecto del precio de la semilla sobre los indicadores financieros.

De acuerdo a la *Tabla 3.32* el precio de la semilla puede aumentar en un 27,3% para que el proyecto sea aún considerado rentable, es decir conseguir la mínima tasa de rendimiento TMAR de la inversión y el valor actual neto VAN sea igual a cero.

Para conocer el efecto de la disminución del precio del biodiesel por año del aceite de *Jatropha curcas* se procede a mantener constantes los demás rubros del flujo de caja, obteniendo los siguientes resultados

TMAR	13,84%
VAN (US\$)	0
TIR	13,84%
B/C	1,13
↓Precio del biodiesel	10%

Tabla 3.33. Efecto del precio del biodiesel sobre los indicadores financieros

↓Disminución

Según la *Tabla 3.33* el precio del biodiesel puede disminuir en un 10% para que el valor actual neto VAN sea igual a cero y conseguir la mínima tasa de rendimiento TMAR de la inversión.

CAPÍTULO IV

4.1 Conclusiones.

- En la región sur del Ecuador, existen pocas plantaciones de esta especie vegetal, cantidad insuficiente para implementar una planta de producción de biodiesel actualmente.
- Se documentó una base de datos de las propiedades físicas de la Tripalmitina, Trioleina, Metil palmitato, Metil oleato y Glicerol.
- Se desarrolló un diagrama de flujo óptimo para la obtención de biodiesel a partir de Jatropha curcas en función de los requerimientos establecidos por la norma técnica ecuatoriana NTE INEN 2 482:2009.
- Se reportó las características necesarias para la selección de equipos y sistemas de la planta de producción de biodiesel.
- Se desarrolló un diagrama de tubería e instrumentación de la planta de producción de biodiesel.
- Se realizó un diagrama Layout del proceso de producción.
- Con una corriente de aceite fresco de 2553,2 kg/h y 650 kg/h de aceite reciclado se obtuvo 2566,168 kg/h de biodiesel con una elevada pureza (99,62 – 100%).
- La localidad más factible para instalar una planta de producción de biodiesel a partir de *Jatropha curcas* en la región sur del Ecuador es Zapotillo - Loja.
- La inversión requerida para la implementación del proceso de producción de biodiesel a partir del aceite de *Jatropha curca* es \$ 11.164.720 (±25%).
- El precio de la semilla (4\$/100lb) puede aumentar en un 27,3% y el de biodiesel (1.20 \$/litro) en un 10% para que el VAN sea igual a 0 y obtener la mínima tasa de rendimiento TMAR de la inversión de 13,84% y el precio del biodiesel (1,20\$/litro) puede disminuir en un 10% para que el VAN sea igual a 0 y obtener la mínima tasa de rendimiento TMAR de la inversión de 13,84%.
- El precio de biodiesel mínimo que genera rentabilidad con un precio de semilla de *Jatropha curca*s de 0,088\$/kg es de 1,1\$/litro.

4.2 Recomendaciones.

- A fin de comprobar los resultados de la simulación en el software Aspen Plus 2006.5, se debe realizar un análisis FAME (fatty acid methyl esters) por cromatografía de gases del aceite de *Jatropha curca*s de la región sur del Ecuador y del biodiesel obtenido a partir de éste, puestos que los resultados obtenidos tienen un error del 25%
- Efectuar un estudio de tratamiento post cosecha de la semilla para garantizar altos rendimientos en la extracción de aceite.
- A través de un estudio realizar un análisis de integración energética del proceso de producción para reducir sus costos.
- Realizar un estudio de un estabilizante adecuado que permita mejorar la estabilidad oxidativa del biodiesel obtenido desde el aceite de *Jatropha curcas*, debido a que el biodiesel obtenido a partir del aceite de palma sin estabilizantes tiene una vida útil de 6 meses.

BIBLIOGRAFÍA

- 1. Food Drug Administration. Bosques y Energía, Organización de las Naciones Unidas para la Agricultura y la Alimentación, Roma 2007.
- Solórzano V., Estrategia de manejo para los bosques secos como alternativa de lucha contra la desertificación en el suroccidente de la provincia de Loja. Experiencia del Proyecto del Bosque Seco. Memoria
- Ramesh D., Samapathrajan A., Venkatachalam P. Production of Biodiesel from Jatropha curcas oil by using pilot Biodiesel Plant. Tamil Nadu Agricultural University Coimbatore, Tamil Nadu, India 2004 [revisado en: www.jatropha.de/Journal/Pilot_Plant_for_Biodiesel-leaflet1.pdf]. Febrero 2008
- 4. García Juan, García Juan. CEIM. Biocarburantes líquidos: biodiésel y bioetanol. Madrid España, 2005.
- Cultivo de Jatropha *Curca*s y Construcción de una Planta de Biodiesel en San Esteban, Olancho; Inversiones San Martín, Olancho, Honduras, 2006 [revisado en: www.sica.int/busqueda/busqueda_archivo.aspx?Archivo=odoc_9537_1_22062006.p df]. Febrero 2008.
- Cultivos Energéticos SRL & Cooperativa El Rosario Ltda. Ficha Técnica de la Jatropha curcas [revisado en: http://www.elsitioagricola.com/articulos/cultivosEnergeticos/JatrophaCurcas_FichaTe cnica.pdf] Febrero 2008
- Cruz V., M.T., Contreras T., Anaya I. Aceite de la (*Jatropha Curcas*), análisis de su composición. Instituto Politécnico Nacional. Mexico [revisado en: www.respyn.uanl.mx/especiales/2006/ee-14-2006/documentos/Art81.pdf] Febrero 2008
- Knothe G., Dunn R., Bagby M. Biodiesel: The Use of Vegetable Oils and Their Derivatives as Alternative Diesel Fuels. National Center for Agricultural Utilization Research, Peoria, USA, 2004
- 9. De La Vega J. Jatropha Curcas L. Agro-Energía. Agro-Proyectos y Agro-Energía. México 2006
- Plan de Ordenamiento Territorial del Honorable Consejo Provincial de Loja; Dirección de Planificación; Loja Ecuador 2007.
- 11. Pisarello M., Querin C.. Esterificación con etanol para la producción de biodiesel a partir de materias primas de alta acidez. Instituto de Investigaciones en Catálisis y

Petroquímica Facultad de Ingeniería Química. Universidad Nacional del Litoral. Santa Fe.

- 12. Química Orgánica. Ácidos carboxílicos y derivados. [revisado en: http://www.sinorg.uji.es/Docencia/QO/tema11QO.pdf] Febrero 2008.
- 13. Torossi F.; Revista ANALES de la Real Sociedad Española de Química; Julio Septiembre. 2006, págs. 43-49.
- American Society for Testing and Material, Standard Specification D 6751-03a for Biodiesel Fuel (B100).2003
- Sapag N., Sapag R. Preparación y Evaluación de Proyectos. Cuarta edición. Impreso en Chile.
- 16. Dagmar R. PIÑÓN (*Jatropha curcas*). Agroenfoque Junio 2007. N° 155. Pág. 24-25 [revisado en: www.minem.gob.pe/archivos/ogp/GVEP/Roettgerda.pdf] Febrero 2008.
- 17. FIMCP-ESPOL Perspectivas de Oleaginosas no Comestibles en generación de Biodiesel. Equipo multidisciplinario de investigadores ESPOL, Área Biocombustibles. Memoria de Biocombustibles y Ambiente II expo-conference, Guayaquil 23-25 de junio de 2008.
- 18. Benjumea P., Agudelo J., Cano G., Estudio experimental de las variables que afectan la reacción de transesterificación del aceite crudo de palma para la producción de biodiesel. Scientia of Technica, No 24, Mayo 2004.
- Gupta A., Sastry S. Developing the rate equation for biodiesel production reaction.
 Department of Chemical Engineering, Indian Institute of Technology.
- 20. Nielsen S. Análisis de los alimentos. Manual de Laboratorio. Editorial Acribia, S.A. Zaragoza España 2003.
- 21. Proaño O. Análisis de aceite de piñón para la elaboración de biodiesel. Memoria.
- 22. Coulson R. Chemical Engineering Design. Person Educación. Cuarta edición.2005
- 23. Petrocomercial. Proyecto piloto de biocombustibles en Guayaquil.
- 24. Knight S. Fundamentos de Físico Química. Segunda Edición. México.
- 25. The Complete Book on Jatropha (Bio-Diesel) with Ashwagandha, Stevia, Brahmi & Jatamansi Herbs (Cultivation, Processing & Uses). Asia Pacific Business Pres Inc. Kamla Nagar, delhi 110007 India.
- 26. Crockford H., Knight B.; Fundamentos de Físico Química; Segunda Edición; México, pp 361-376.
- 27. Rodríguez A.; Ministerio de Electricidad y Energía Renovable del Ecuador; Matriz Energética al 2020. Memorias.

- 28. Generación de Combustibles Renovables Provenientes del Aceite Producido en Plantas *Jatropha curcas L*.
- 29. Análisis Integrado de las Tecnologías, El Ciclo de Vida y la Sustentabilidad de las Opciones y Escenarios para el Aprovechamiento de la Bioenergía en México. Reporte final. pág. 44-46.
- SENER-IDB-GTZ, 2006. Potenciales y Viabilidad del Uso de Bioetanol y Biodiesel para el Transporte en México (Proyectos ME-T1007 – ATN/DO-9375-ME y PN 04.2148.7-001.00).Noviembre 2006.
- 31. Rutz D., Janssen R., 2007 Biofuel Technology Handbook, WIP Renewables Energies,
- 32. Mittelbach M., Remschmidt C.; Biodiesel The comprehensive handbook, Institut for Chemistrz Universitz Gray. 2004.
- 33. Treybal R.; Operaciones de transferencia de Masa; Segunda edición. México 2007.
- 34. Zachary F., Líquid-Liquid Extraction. Senior Design CHE 396.
- 35. ZHANG, Y. et al. Biodiesel production from waste cooking oil: 1. Process design and technological assessment. En: Bioresource technology. New York. №89 (2003); p. 1-16.
- 36. Zapata C. Producción de biodiesel a partir de aceite crudo de palma: Diseño y simulación de dos procesos continuos. Colombia 2006.
- 37. Petters S., Timmerhaus D. Plant Design and Economics for Chemicals Engineers. Cuarta Edición. Francia 1991.
- 38. Senley E., Seader J., Operaciones de Separación por etapas de equilibrio en Ingeniería Química. Mexico 2000
- McCabe W., Smith C., Harriot P. Operaciones Unitarias en Ingeniería Química. Cuarta Edición. España (1998); p. 633
- 40. Kern D. Procesos de Transferencia de Calor. Primera Edición. México (1999); p. 167.
- 41. Inec. VI Censo de Población y V de Vivienda. 25 de noviembre del 2001.
- 42. Integración regional de América del Sur (IIRSA). Ministerio de Obras Públicas y Comunicaciones. Sistema de carreteras, red vial nacional [revisado en: http://www.iirsa.org/BancoMedios/Documentos%20PDF/anr_lima01_presentacionecu adortransporte.pdf] Julio 2009
- Biodiesel, Requisitos. Primera edición. Instituto Ecuatoriano de Normalización. Norma Técnica Ecuatoriana NTE INEN 2 482:2009.
- 44. Welded Steel Tanks for Oil Storage. API STANDARD 650. Onceava edición, Junio 2007.

45. Muñoz M., Jiménez E., Tesis., Facultad de Ingeniería Mecánica y Ciencias de la Producción. Escuela Superior Politécnica del Litoral. Guayaquil Guayas, 2008.

ANEXO 1

AN ALISIS EXPERIMENTAL DE LA MATERIA PRIMA

La determinación de acidez se realizó por titulación con solución de NaOH.

% *FFA*(*oleico*) = $\frac{V \times N \times 282}{W} \times 100$ *Fuente:* NIELSEN., 2003.

Donde:

V = Volumen de NaOH gastados (ml).
N = Normalidad del NaOH valorante (mol/1000ml).
W = masa de la muestra.
282 = peso molecular del ácido oleico.
%FFA = porcentaje de ácidos grasos libres (g/100g) expresado como ácido oleico.

Aceite de Jatropha curcas.

El aceite empleado para este análisis fue extraído de frutos recolectados el 16 de mayo del 2008 en los sectores de El Purón y Playas pertenecientes al cantón Paltas – Loja – Ecuador.

El aceite se extrajo mecánicamente utilizando una prensa hidráulica.

Resultados.

Tabla A1.1. Acidez del aceite de Jatropha curcas de la región sur del Ecuador.

Exp.	V [ml]	N [mol/1000ml]	W [g]	%FFA	%FFA _{promedio}
1	1	0,1	2,235	1,261	1 26%
2	0,5	0,1	1,114	1,265	1,2070

Elaborado: Los autores

Determinación de densidad de la semilla y pasta.

# de semillas	Peso [g]	Volumen [ml]	ρ [g/ml]	P _{semilla} [g/ml]	Peso _{pasta} [g]	Volumen [ml]	ρ [g/ml]	ρ _{pasta} [g/ml]
100	737	200	3,685	0 707	479,135	18	26,619	04 767
50	360	95	3,789	3,737	252,05	11	22,914	24,707

Elaborado: Los autores

ANEXO 2

CÁLCULO DE PROPIEDADES FÍSICAS

Parámetros para la estimación de propiedades físicas en Aspen Plus.

Para realizar una estimación de propiedades físicas de un compuesto con Aspen Plus se debe introducir como mínimo dos parámetros de entrada para la simulación, razón por la cual para estimar las propiedades de la Tripalmitina y Trioleina se especificó los siguientes datos bibliográficos: presión crítica, volumen crítico, temperatura de ebullición, factor de compresibilidad y factor acéntrico, a excepción del Metil palmitato (ester) se introdujo dos propiedades estimadas mediante el método aproximado de Lydersen (1955).

Método de Lydersen (1955)

Volumen crítico

V_{a}	$=0.04 + \sum \Delta V$
' c	°,° · · ∠ [_]

$I U \subseteq I I \subseteq . \cup \cup$

Donde:

Vc = Volumen molar a condiciones críticas [m³/kmol]

Pc = Presión crítica [atm]

M = peso molecular.

TB = punto normal de ebullición

Zc = Factor de compresibilidad

Tc= Temperatura crítica

 ω = Factor acéntrico

Tabla A2.1. Datos termodinámicos

	Tripalmitina	Trioleina
TB(K)	799	783
TC(K)	889	867
Pc(bar)	5.09	4.82
Vc(cm³/mol)	2920	3130
ω	1.67	1.73
Zc	0.201	0.209

Fuente: C. Baquero 2008.

Presión crítica

$$Pc = \frac{M}{\left(0,34 + \sum \Delta P\right)^2}$$

PALMITATO DE METILO

M = 270

Grupo funcional	No	Contribucio	ón total	Vc	Pc
Grupo funcional	NO.	ΔV	ΔР	vc	FC
CH ₃	2	0,11	0,227	0,945	13,68
CH ₂	13	0,715	0,227		
COO	1	0,08	0,47		
	Σ	0,905	4,102		

Elaborado: Los autores

Fuente: Coulson, 2005.

Creación del componente

Se creó la identificación y tipo de componente tal como se muestra en la siguiente figura:

Fig. A2.1: Definición de la Tripalmitina. *Elaborado:* Los autores

Opciones de estimación

En las opciones de estimación de las propiedades se trabajó bajo el modo '*Estimate all missing parameters*' para calcular las propiedades físicas de los componentes en estudio.

Definición de la estructura molecular por conectividad de sus átomos

Las estructuras del Metil palmitato, Tripalmitina y Trioleina definidas se muestran en las siguientes figuras:

Fig. A2.2: Estructura del Metil palmitato *Elaborado:* Los autores

1	Gen	eral 🗸 Fi	unctional Grou	ıp ∣ Forr	mula Struc	ture
l r	De	fine molec	ule by its con	nectivity -		
		A	.tom1	A	tom2	Bond type
		Number	Туре	Number	Туре	
	►	1	С	2	С	Single bond
		2	С	3	С	Single bond
		3	С	4	С	Single bond
		4	С	5	С	Single bond
		5	С	6	С	Single bond
		6	С	7	С	Single bond
		7	С	8	С	Single bond
		8	С	9	С	Single bond
		9	С	10	С	Single bond
		10	С	11	С	Single bond
		11	С	12	С	Single bond
		12	С	13	С	Single bond
		13	С	14	С	Single bond
		14	С	15	С	Single bond
		15	С	16	С	Single bond
		16	С	17	0	Double bond
		18	0	16	С	Single bond
		19	С	18	0	Single bond
	*					

Fig. A2.3: Estructura definida del Metil palmitato. *Elaborado:* Los autores.

Fig. A2.4: Estructura de la Tripalmitina. *Elaborado:* Los autores

	cale by its co	nnectivity -		
A Number	tom1 Type	A Number	tom2 Type	Bond type
1	С	2	С	Single bond
2	С	з	С	Single bond
3	С	4	С	Single bond
4	С	5	С	Single bond
5	С	6	С	Single bond
6	С	7	С	Single bond
7	С	8	С	Single bond
8	С	9	С	Single bond
9	С	10	С	Single bond
10	С	11	С	Single bond
11	с	12	с	Single bond
12	С	13	С	Single bond
13	С	14	С	Single bond
14	С	15	С	Single bond
15	С	16	C	Single bond
16	С	17	0	Double bond
18	0	16	С	Single bond
19	С	18	0	Single bond
20	c	19	c	Single bond
21	0	20	C	Single bond
22	-	23	- -	Double bond
23	С С	21	0	Single bond
24	с С	23		Single bond
25		24	с С	Single bond
26	с С	25	C	Single bond
20		20		Cingle bond
20		20		Single bond
20		27	C C	Single Dond
23		20		Single bond
21	с с	20	с С	Single bond
31		21		Single bond
32				Single bond
33		32		Single bond
34	L	33	L	Single bond
35	C	34	C C	Single bond
36		35		Single bond
37	L.	36	L.	Single bond
38	- C	37	L.	Single bond
39		20		Single bond
40	0	39	С -	Single bond
41	0	42	C	Double bond
42	С	40	0	Single bond
43	C	42	C	Single bond
44		4.3		Single bond
40		44		Sirigle bond
46	-	45		Single bond
47		46		Single bond
48		47		Single bond
49		48		Single bond
50	C	49	C	Single bond
51	С	50	С	Single bond
52	С	51	С	Single bond
53	С	52	С	Single bond
54	С	53	С	Single bond
55	С	54	С	Single bond
56	С	55	С	Single bond
		IEC.		Single band

Fig. A2.5: Estructura definida de la Tripalmitina *Elaborado:* Los autores

A Number	tom1 Type	A Number	tom2 Type	Bond type
1	C	2	C	Single bond
2	С	3	С	Single bond
3	С	4	С	 Single bond
4	- -	5	- -	Single bond
-	с С	с С	с С	Circle Land
5	L	6	L -	Single bond
6	С	7	C	Single bond
7	С	8	С	Single bond
8	С	9	С	Single bond
9	С	10	С	Double bond
10	С	11	С	Single bond
11	C	12	C	Single bond
12	-	12	-	Single bond
12	0	13	0	
13	L	14	L C	Single bond
14	L	15	с -	Single bond
15	С	16	С	Single bond
16	С	17	С	Single bond
17	С	18	С	Single bond
18	С	19	0	Double bond
20	0	18	r -	Single bond
21	-	20	-	Single bond
21	0	20	0	
22	L	21	L	Single bond
23	0	22	С	Single bond
24	С	23	0	Single bond
25	0	24	С	Double bond
26	С	24	С	Single bond
27	C C	26	C .	- Single bond
128	lc	127		Single bond
29	-	20	-	Single bond
2.0	C	20	с —	
30	L	29	L	Single bond
31	С	30	С	Single bond
32	С	31	С	Single bond
33	С	32	С	Single bond
34	с	33	c	Double bond
35	C	34	l c	Single bond
26	C	25	C C	Single bond
07	0		с С	
37	L	36	L	Single bond
38	С	37	С	Single bond
39	С	38	С	Single bond
40	С	39	С	Single bond
41	С	40	С	Single bond
42	С	41	lc –	Single bond
43		22		Single bond
		43		Cingle bond
44	0			
45	L	44	0	Single bond
46	0	45	С	Double bond
47	С	45	С	Single bond
48	С	47	С	Single bond
49	С	48	с	Single bond
50	с	49	c	Single bond
51		50		Single bond
51				Circle Land
32		51		
53		52		Single bond
54	<u> </u>	53	<u> </u>	Single bond
55	С	54	С	Double bond
56	С	55	С	Single bond
57	С	56	С	Single bond
58	lc.	57	lc.	Single bond
		5.		
69	<u>ا</u> د	50	5	
59		16.4	1 C	Single bond
59 60	С	55		
59 60 61	С	60	С	Single bond
59 60 61 62	с с с	60 61	с	Single bond Single bond
59 60 61 62 63		60 61 62	с с с	Single bond Single bond Single bond

Fig. A2.7: Estructura definida de la Trioleina. *Elaborado:* Los autores.

Definición de la estructura molecular por sus grupos funcionales

Para definir las estructuras moleculares en función de sus grupos funcionales se empleó el método *UNIFAC*, para calcular los coeficientes de equilibrio líquido-liquido.

Ge	ne	ral √Func	tional (Group	For	mula	S	tructur	•
E	Ent /let	er functional thod:	groups i	n the m	oleci	ule			
		Group nu	ımber	Nun occu	nber rrend	of ces			
	►	1015		2					
		1010		13					
		1500		1					
2	*								

Fig. A2.8: Grupos funcionales digitados del Metil palmitato *Elaborado:* Los autores

Tabla A2.2: Grupos funcionales del Metil palmitato

Grupo funcional	No.	Group Number
CH ₃	2	1015
CH ₂	13	1010
-CH2-COO-	1	1500

Elaborado: Los autores

Gene	aral Functional	Group Formula	Structure
En Me	ter functional groups i thod:	in the molecule	
	Group number	Number of occurrences	
	1005	1	
	1010	41	
	1015	3	
	1500	3	
*			

Fig. A2.9: Grupos funcionales digitados de la Tripalmitina. *Elaborado:* Los autores.

Tabla A2.3: Grupos	funcionales	del Tripalmitina.
1 ubiu / 12.0. Olup00	lanolonialoo	doi inpuintana.

Grupo funcional	No.	Group Number
CH ₃	3	1015
CH ₂	41	1010
-CH2-COO-	3	1500
СН	1	1005

Elaborado: Los autores

ĺ	√Ger	neral √Func	tional (aroup	Formula	Structure
	En Me	ter functional thod:	groups i	n the mol F AC	lecule	
		Group nu	ımber	Numt	ences	
		1005		1		
		1010		41		
		1015		3		
		1500		3		
		1065		3		
	*					

Fig. A2.11: Grupos funcionales digitados de la Trioleina. *Elaborado:* Los autores

	Tabla A2.4: Grup	oos funcionales	del Tri	palmitina.
--	------------------	-----------------	---------	------------

Grupo funcional	No.	Group Number
CH ₃	3	1015
CH ₂	41	1010
СН	1	1005
-CH ₂ -COO-	3	1500
-CH=CH-	3	1065

Elaborado: Los autores

ANEXO 3

COMPOSICIÓN DE LA CORRIENTE DE ACEITE

Al realizar una simulación con el propósito de conocer la tendencia del proceso de producción, existe una materia prima que presenta varios compuestos dando lugar a un sistema complejo de difícil solución. Para minimizar este problema se estimó una composición equivalente del material real, tomando en cuenta los componentes mayoritarios que éste contiene, tal como se muestra en la siguiente tabla:

Tabla A3.1. Composición del ac	ceite de <i>Jatropha curc</i> as.
Ácidos grasos	Composición %
Saturados	50
Laúrico	0,1
Mirístico	1
Palmítico	43,8
Esteárico	4,8
Araquídico	0,3
Monoinsaturados	39
Palmitoleico	0,1
Oleico	38,9
Poliinsaturados	10,9
Linoleico	10,6
	0,3

Fuente: Proaño, 2008.

La tabla anterior muestra la composición del aceite de *Jatropha curcas*; de ésta se consideran los ácidos grasos o triglicéridos mayoritarios utilizados en nuestra simulación

Ácidos grasos	%	Incluyendo los grasos libres	%*
Palmítico	0,438	$0,4254^{\dagger}$	0,51
Oleico	0,389	0,389	0,49
Total	0,827	0,8144	1,00

Tabla A3.2. Componentes mayoritarios del aceite de Jatropha curcas.

Elaborado: Los autores.

[†] Resultado menos el 1.26% de ácidos grasos libres

* Contenido de ácidos grasos utilizados para el diseño

Según la *Tabla A3.1* se observa que los ácidos grasos mayoritarios son el Palmítico (ácido predominante) y el Oleico, los mismos que representan el 82.7% de la composición total del aceite de piñón, este valor es significativo y puede representar al contenido total de la

materia prima. Además, el ácido predominante representa la acidez, es por esta razón que se resta el 1,26% (ANEXO 1) al contenido del ácido palmítico.

Considerando una equivalencia entre el contenido de ácidos grasos para el diseño y los triglicéridos, se representa en la siguiente tabla la composición utilizada en la simulación:

Triglicéridos	%**
Tripalmitina	0,51
Trioleina	0,49

Tabla A3.3. Composición del aceite de Jatropha curcas para la simulación.

Elab orado: Los autores * *Contenido de triglicéridos utilizados para el diseño

ANEXO 4

FACTOR PREEXPONENCIAL

La obtención del factor pre-exponencial (nombrada como k en ASPEN PLUS) y la energía de activación se lo realizó mediante el análisis de las conversiones de la transesterificación del aceite de Jatropha curcas realizadas por A. Gupta. S. Sastry. Empleando los siguientes modelos matemáticos [26]:

Expresión de una reacción de 1^{er} orden Expresión de una reacción de 2^{do} orden

$$\log \frac{a^{\circ}}{a} = \frac{kt}{2,3} \qquad \qquad \frac{a^{\circ} - a}{a^{\circ} a} = kt$$

Energía de activación

$$\log \frac{k_2}{k_1} = \frac{\Delta E_a}{2,3R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

Donde:

k = constante de velocidad, cuyo valor numérico depende de las características de la reacción en particular.

 a° = concentración inicial de la sustancia reaccionante.

a = concentración final de la sustancia reaccionante.

t = tiempo.

T = temperatura

 ΔE_a = energía de activación.

En las tablas de este anexo la simbología [A] y [D] representan la concentración de reactivo limitante y producto (aceite y biodiesel), respectivamente; el subíndice (_o) significa inicial.

T = 37 °C							
t (min)	[D]/[D]o	[A]/[A]o = 1 - [D]/[D]o	[A] (mol/L)	<i>k</i> de 1 ^{er} orden	<i>k</i> de 2 ^{do} orden		
750,000	0,7830	0,2170	0,198186	0,000661790	0,002790743		
907,500	0,8000	0,2000	0,182660	0,000630202	0,002775948		
1125,000	0,8150	0,1850	0,168961	0,000567061	0,002605412		
1312,500	0,8255	0,1745	0,159371	0,000524431	0,002487736		
1500,000	0,8370	0,1630	0,148868	0,000501396	0,002469634		
1687,500	0,8375	0,1625	0,148411	0,000440768	0,002174709		
1875,000	0,8380	0,1620	0,147955	0,000393618	0,001945399		
2062,500	0,8395	0,1605	0,146585	0,000359212	0,001784548		
2250,000	0,8406	0,1594	0,145580	0,000329887	0,001645142		
2437,500	0,8469	0,1531	0,139826	0,000320298	0,001633673		
2625,000	0,8500	0,1500	0,136995	0,000304043	0,001568643		

Tabla A4.1. Constantes de velocidades específicas a 37°C.

		Promedio	s ⁻¹ L mol ⁻¹	0,000426676	0,002005396
3750,000	0,8600	0,1400	0,127862	0,000227374	0,001219639
3000,000	0,8600	0,1400	0,127862	0,000288007	0,001544875
2812,500	0,8583	0,1417	0,129415	0,000303986	0,001619479

Elaborado: Los autores

Tabla A4.2. Constantes de velocidades específicas a 50°C.						
T = 50 °C						
t (min)	[D]/[D]o	[A]/[A]o = 1 - [D]/[D]o	[A] (mol/L)	<i>k</i> de 1 ^{er} orden	<i>k</i> de 2 ^{do} orden	
1500,000	0,8680	0,1320	0,120556	0,000438961	0,002770018	
1687,500	0,8733	0,1267	0,115715	0,00041138	0,00265509	
1875,000	0,8817	0,1183	0,108043	0,000406276	0,002723711	
2062,500	0,8858	0,1142	0,104299	0,000384439	0,002628562	
2250,000	0,8858	0,1142	0,104299	0,00034949	0,002389602	
2437,500	0,8858	0,1142	0,104299	0,000320366	0,002190468	
2625,000	0,8858	0,1142	0,104299	0,000295723	0,002021971	
2812,500	0,8858	0,1142	0,104299	0,0002746	0,001877544	
3000,000	0,8858	0,1142	0,104299	0,000256293	0,001752375	
3187,500	0,8900	0,1100	0,100463	0,000252751	0,001764878	
3375,000	0,8930	0,1070	0,097723	0,000246549	0,001748617	
3562,500	0,8980	0,1020	0,093157	0,000247015	0,001800099	
3750,000	0,8985	0,1015	0,092700	0,000235392	0,0017202	
		Promedio	s ⁻¹ L mol ⁻¹	0,000415537	0,002586204	

Elaborado: Los autores

Tabla A4.3. Constantes de velocidades específicas a 03 (Tabla	A4.3.	Constantes	de	velocidades	específicas	а	65	°C
--	-------	-------	------------	----	-------------	-------------	---	----	----

T = 65 °C						
t (min)	[D]/[D]o	[A]/[A]o = 1 - [D]/[D]o	[A] (mol/L)	<i>k</i> de 1 ^{er} orden	<i>k</i> de 2 ^{do} orden	
562,500	0,8300	0,1700	0,155261	0,000862463	0,004750637	
750,000	0,8600	0,1400	0,127862	0,000919754	0,005620717	
907,500	0,8700	0,1300	0,118729	0,00082137	0,005226755	
1125,000	0,9085	0,0915	0,083567	0,001005	0,00779432	
1312,500	0,9100	0,0900	0,082197	0,000852176	0,006672547	
1500,000	0,9200	0,0800	0,073064	0,000820076	0,006877983	
1687,500	0,9300	0,0700	0,063931	0,000806487	0,007321724	
1875,000	0,9400	0,0600	0,054798	0,000808123	0,008053074	
2062,500	0,9400	0,0600	0,054798	0,000727311	0,007247767	
2250,000	0,9400	0,0600	0,054798	0,000661192	0,006588879	
2437,500	0,9400	0,0600	0,054798	0,000606093	0,006039806	
2625,000	0,9400	0,0600	0,054798	0,00055947	0,005575205	
2812,500	0,9400	0,0600	0,054798	0,000519508	0,005176976	
Promedio s ⁻¹ L mol ⁻¹ 0,000720719 0,00594381						

Elaborado: Los autores

Al analizar estas tres tablas que muestran el comportamiento de la concentración del aceite ([A]) y de la concentración del biodiesel ([D]) en el transcurso de la reacción, sus dos últimas columnas muestran los cálculos de las constantes k que se realizó, claramente se visualiza que los datos se aproximan mejor a una cinética de segundo orden debido a que sus valores son más constantes.

Por consiguiente se determinó la energía de activación en función de constantes de velocidad de segundo orden.

Т[к]	k [s-1 L mol-1]	R [kJ/kmol K]	$\Delta E_a [kJ/kmol]$
333,	15	0,002586204	8,31434	39255,20935
338,2	15	0,005943813		

Tabla A4.4. Cálculo de la energía de activación.

Elaborado: Los autores

Al representar gráficamente el logaritmo natural de k y el inverso de la temperatura en grados Kelvin se puede aplicar la ecuación de Arrhenius para determinar el factor preexponencial (A), el mismo que se lo despeja del siguiente modelo matemático:

Ecuación de Arrhenius:
$$k_A(T) = Ae^{-E/RT}$$

Donde:

A = factor preexponencial o factor de frecuencia.

E = energía de activación.

R = constante de los gases.

T = temperatura absoluta.

Fig. A4.1: Comprobación de la linealidad del 1/T vs. Ink. *Elaborado:* Los autores.

Tabla A4.6. Factor preexponencial.

Factor preexponencial (A)					
T [K]	k [s-1 L mol-1]	Α			
333,15	0,005943813	15807,23115			
Elaborado: Los autores.					

ANEXO 5

ESPECIFICACIONES DE LA SIMULACIÓN

A continuación se explican las especificaciones de las corrientes y equipos mostrados en la *Fig. 3.1* necesarias para realizar la simulación.

Corrientes

Al realizar una simulación se debe especificar las corrientes de entrada al proceso puesto que las demás son el resultado de la interacción entre éstas, en el presente caso se tiene cinco corrientes de entrada OIL, MEOH, NAOH, WATER y H2SO4.

Alcohol y catalizador.

Con el objetivo de cumplir con las condiciones de reacción, se realizaron *Calculators* dentro del *Flowsheeting Options* de Aspen para determinar la cantidad necesaria de metanol y NaOH en función del reactivo limitante (aceite).

Para calcular la cantidad necesaria de metanol en Aspen se inició definiendo el flujo molar de la corriente de entrada (MEOH) como variable exportada, siendo necesaria mantener una relación molar 9:1 (alcohol: aceite) en la entrada del reactor, las variables importadas fueron los flujos molares de Tripalmitina y Trioleina de la corriente OIL2, que sumados son el flujo de moles totales de aceite a ser convertidos; para cumplir con la relación molar a este flujo total de moles de aceite se lo multiplicó por 9. Tomando en cuenta que existe una recuperación o reflujo de metanol (MEOH1), se definió como variable importada al flujo molar de metanol de ésta corriente con el objetivo de hacer los cálculos correspondientes para satisfacer la relación molar. Estos pasos se muestran en las siguientes figuras:

Calculator MEOHF - Data Browse	:r				
🗿 🖟 EOHF 🔹 🗈 🔡 ENG 🔹 🗢 🔷 🗸 🗛 🔹 🔉 🛄 🕲 🚳 🕪 🖄 🖉 🗙					
Image: Setup	Calculate Calculate Calculate Variable name Info. flow MEDH Export TRIPAL Import TRIDIE Import TRIDIE	ce Tears Stream Flash ED Options Definition Mole Flow Stream-MCHD Substream-MKED Component-METHANDL Units-Ibmol/hr Mole Flow Stream-OIL Substream-MKED Component-TRIPALMI Units-Ibmol/hr Mole Flow Stream-OIL Substream-MKED Component-TRIPALMI Units-Ibmol/hr			
Reactions Convergence Flowsheeting Option Design Spec Galculator Galculator H2S04	REFLUX Import	MdeFlow Stean=MEDH1 Substean=MD/ED Component=METHANOL Units=bmd/hr k Delete Copy			
MEOHF G Input C Resul C 0 V: C 0 V	Move Up Move I	Down Paste			

Fig. A5.1: Definición de las variables para el cálculo de flujo de metanol. *Elaborado:* Los autores
Calculator MEOHF - Data Browse	f - C - C
👷 [меонғ 🗸 🖻 🔡	; Eng 🔹 🗢 < (All 🔹 >> 🛄 🕲 🏐 N> 🖄 🖉 🗡
🔹 🚮 📕 Setup 🔥 🔺	✓Define ✓Calculate ✓Sequence Tears Stream Flash ED Options
 B Components B - M B - M	Calculation method
	Enter executable Fortran statements
i i Blocks i i Reactions i i Convergence i i Flowsheeting Optior_	OIL = TRIOLE + TRIPAL A MEOH = (OIL*9)-REFLUX
Design Spec Galculator H2SO4	
(1.500 (1.500	row:1 cot 1
Results Available	,

Fig. A5.2: Ecuaciones de cálculo para el flujo de metanol. *Elab orado:* Los autores

Para el cálculo de la carga de catalizador se declaró como variable exportada a la corriente NAOH y como variables importadas los flujos másicos de Tripalmitina y Trioleina de la corriente OIL2 ya que es necesario que el catalizador entre en una concentración del 0,6% al reactor, además se debe tener en cuenta que existen arrastres de NaOH en la corriente MEOH1 proveniente de la primera columna de recuperación de metanol (MEOHREC1).

✓Define ✓Calculate ✓Sequence Tears Stream Flash EO Options

NAOH	Export	Stream-Var Stream=NAOH Substream=MIXED Variable=MASS-FLOW Units=kg/h
TRIPAL	Import	Mass-Flow Stream=DIL2 Substream=MIXED Component=TRIPALMI Units=kg/hr
TRIOLE	Import	Mass-Flow Stream=OIL2 Substream=MIXED Component=TRIOLEIN Units=kg/hr
NAOHIN Import		Mass-Flow Stream=MEOH1 Substream=MIXED Component=NAOH Units=kg/hr

Fig. A5.3: Definición de las variables para el cálculo de flujo de NaOH. *Elaborado:* Los autores

Define VCalculate VSequence	ears Stream Flash EO Options	
Calculation method		
Fortran C Excel	Fortran Declarations	
Enter executable Fortran statement		
oil = TRIPAL + TR	Æ	
NAOH = (0.006*oil)	AOHIN	
		-
		+
	rowr 1	col: 1

Fig. A5.4: Ecuaciones de cálculo para el flujo de NaOH. Elaborado: Los autores

Aceite.

El flujo de aceite en la corriente OIL está determinado por la base de cálculo obtenida en el numeral 3.2 que es de 3203,2 kg/h. La composición en fracciones másicas de ésta corriente es de 0,51 de tripalmitina y 0,49 de trioleina estimadas tal como se muestra en el ANEXO 3, la temperatura de entrada es de 25°C y 1 atm de presión, (condiciones ambientales promedios en el lugar de ubicación de la planta).

Fig. A5.5: Especificaciones de la corriente de entrada de aceite. *Elaborado:* Los autores

Fijación de la corriente de aceite al REACTOR

Para mantener constante la entrada de aceite (OIL2) al reactor de transesterificación (REACTOR), se realizó el siguiente *Calculator*.

💷 Calcu	ılator OIL - Data Brov	vser				
🕲 Dil	•	£	ME	т 🔹 🔶	⇒ ‹‹	Al 🔹 🗸 🔁 🔯 🚳 🕪 🖄 🖉 X
	Setup Components Properties Flowsheet Streams Utilities Blocks Reactions Convergence Flowsheeting Opti Calculator Design Spec Calculator H2SO4 H2 H2SO4 H2 H2SO4 H2 H2 H	ior	J [ME √Def 	Variable name OILREC OIL2 OIL New	Sequence Info. flow Import Import Export Call Move D	Definition Stream-Var Stream-OILREC Substream-MD/ED Variable-MASS FLOW Units-kg/hr Stream-Var Stream-OIL2 Substream-MD/ED Variable-MASS FLOW Units-kg/hr Stream-Var Stream-OIL Substream-MD/ED Variable-MASS FLOW Units-kg/hr Own Paste
Results A	iii ke	ĕ				

Fig. A5.6: Definición de las variables. *Elaborado:* Los autores

2	
💷 Calculator OIL - Data Browser	
🖀 [DIL 🔷 🖻 📑] met 🔹 🗢 < 🚛 🔹 🚬 🤷 🛯 🖉 🖓 🗤 🖄 🖉 🗡
🖭 📲 Setup 🔺	✓Define ✓Calculate ✓Sequence Tears Stream Flash E0 Options
🗄 📲 Components	1
😥 🔂 Properties	Calculation method
🗄 📲 Flowsheet	Fortran Excel Fortran Declarations
🗄 📲 Streams	
Utilities 🗉	Enter executable Fortran statements
🗄 🔂 🖉 Blocks	OIL2 = 3203.2
🗄 📲 Reactions	OIL = OIL2-OILREC- METPAL- TRIOLE
🗄 📲 Convergence	
📄 🔯 📕 Flowsheeting Option	
Design Spec	
🖻 📲 🖸 Calculator	
🕀 🖬 🖬 H2SO4	4 b
🗄 🔤 MEOHF	row: 1 col: 1
i NAOHF	
⊡	
🗸 🚺 Input	
Resul	
Results Available	

Fig. A5.7: Ecuación de cálculo. *Elaborado:* Los autores

Agua de lavado.

La corriente de agua WATER que entra al equipo de lavado (WASHCOL), se la especificó con 50kg/h a 25°C y 1 atm.

Ácido sulfúrico.

La corriente de entrada H2SO4 al reactor de neutralización del catalizador NaOH (NEUTRA) es ácido sulfúrico al 98% a 25°C y 1 atm. Su flujo másico se determinó por un *Calculator* dentro del *Flows heeting Option* en donde se definió como variable exportada al flujo molar de la corriente H2SO4 y como variable importada al flujo molar del componente NAOH de la corriente AQU1, finalmente las ecuaciones de cálculo para el flujo de H2SO4 dentro del Fortran son:

$$H2SO4 = \frac{NAOH}{2}$$

En donde: $NAOH \rightarrow$ nombre de la variable importada.

 $H2SO4 \rightarrow$ nombre de la variable exportada.

Equipos

Mezcladores.

Los distintos mezcladores (MIXER1, MIXER2 y MIXER3) mostrados en la *Fig. 3.1* no requieren especificaciones de operación para llevar a cabo la simulación.

Intercambiador de calor.

Las especificaciones del intercambiador de calor EXCHANG2 sus especificaciones de operación son: 50°C y 1atm.

Reactor de transesterificación.

Como ya se explicaron las condiciones de reacción en el capítulo 3 en Aspen Plus solamente insertamos aquellas especificaciones de operación como lo muestra la *Fig.A5.8*.

🗈 Block REACTOR (RCSTR) - Data Browser
Image: Subscript of the s
Input Complete

Fig. A5.8: Especificaciones de operación del reactor de transesterificación. *Elaborado:* Los autores

En la pestaña *Reactions* del *Data Browser del Block REACTOR (RCSTR)* insertamos la reacción *R-1*, cuyas especificaciones de estequiometria y cinética se muestran en las siguientes figuras:

J	Stoichiometr	y <mark> √</mark> Kinetic	Equilibrium Activity	
	Rxn No.	Reaction type		
	2	Kinetic	TRIOLEIN + 3 METHA-01 -> 3 METHAL+ GLYCE-01 TRIOLEIN + 3 METHA-01 -> 3 METHY-01 + GLYCE-01	
		1		Þ

Fig. A5.9: Estequiometria de la transesterificación del aœite de *Jatropha curcas*. *Elab orado:* Los autores

1	Stoichiometry	Kinetic Ed	quilibrium	Activity		
	1) TRIPALMI +	3 METHA-01 -	-> З МЕТРА	AL + GLYCE	·01	•
F	Reacting phase:	Liquid	•	Rate basis	Reac (vol)	•
	- Power Law kine Kinetic factor=k	etic expression (T/To) ⁿ e ⁻ (E/F	3)[1/T-1/To]			
	k:	15807,2312			Edit reactions	
	n:	0				
	E:	39255,2093	kJ/kmol	-		
	To:		С	-	Solids	
	[Ci] basis:	Molarity		-		

Reactor de neutralización.

El reactor empleado para la neutralización del catalizador es un RStoic ya que éste opera en función de la conversión, cuyas especificaciones son: 50°C y 1 atm.

La estequiometria de la reacción llevada a cabo en este reactor se muestra en la siguiente figura:

leaction No.: - Reactants —	<u>/</u> 1		F	roducts	
Con	ponent	Coefficient		Component	Coefficient
NAOH		-3		NA3P04	1
H3P04		-1		WATER	3
*			Ż	ĸ	
Products ger	eration	r			
O Molar ext	ent:		kmol/hr	<u> </u>	
Fractional	conversion:	1	of compo	nent NAOH	•

Fig. A5.11: Estequiometria de la neutralización del catalizador. *Elaborado:* Los autores

Columna de recuperación de metanol MEOHREC1

La corriente PRODUCTS posee una alta cantidad de metanol debido al exceso de alcohol que se inserta en el reactor de transesterificación, razón por la cual se necesitó de una

^{*} El ANEXO 4 muestra los cálculos para la obtención de la energía de activación (E) y el factor preexponencial (k).

columna RADFRAC para su recuperación. Por consiguiente, para la operación de éste equipo se necesita especificar: Número de platos, tipo de condensación, tasa de destilación, razón de reflujo, plato de la corriente de entrada y presión *.

Fig. A5.12: Columna RADFRAC. *Elaborado:* Los autores

La *Fig. A5.13* muestra las especificaciones de operación de la columna MEOHREC1, determinadas de acuerdo a las instrucciones del ANEXO 6.

		_								
Calculation type:	Equilibrium	•		Fe	ed streams	4 -	1 -			
Number of stages:	4	* *		_	Name	Stage	Convei	ntion		
Condenser:	Total		-	►	PRODUCTS	3 🗄	Above-St	age		
Reboiler:	Thermosyphon		-							
Valid phases:	Vapor-Liquid		-							
Convergence:	Standard		-	- Pro	duct streams					
Operating specifications					Name	Stage	Phas	e Basis	s Elos	. i
Distillate rate	- - Marr - 57	(5 ka/l	hr 💌		MEOH1	1	Liquid	Mole		kme
Beflux ratio	Mole 1	- Ingri		-	ESTERES	4	Liquid	Mole	_	kme
Free westerne (I west're				-			1	MOIE		NIII N
Free water reflux ratio:		,	Feed basis							,
Configuration 🛛 🗸 Strea	ams √Pressure	🗸 Condenser 📔	✓Reboiler 3-P	hase	🗸 Configurati	on 🛛 🗸 Stre	ams 🗸 Pre	ssure 🗸 Cond	lenser 🗸 🛛	eboiler 🗌
		1								
View: Top / Bi	ottom 🔻	J			Londense	r specificati	on			_
Top stage / Condense	er pressure				💿 Tempe	rature:			К –	·
Stage 1 / Condenser p	oressure:	l al	tm 👻		Oistillat	e vapor frac	tion:	Mass 📼	0	
		_		<u> </u>						
- Stage 2 pressure (optic	onal)				Subcoolin	g specificati	on			_
Stage 2 pressure:		a	tm 👻		Subcool	ed temperat	ure 👻	40	с 🗸	-
Condenser pressure	e drop:	a	tm 👻		Roth to	flux and lies	id distillato	ro subocolod		
					Bourie	nux anu iiqu a	ilu uistiliate (ale supcooleo		
Pressure drop for rest of	of column (optional)			Only re	riux is subco	olea			
Stage pressure drop	p:	a	.tm 👻		- Utility spec	ification —				
			tm 👻		Libilitur					
Column pressure dr	op:	a			Ounty.					
Column pressure dr.	op:	a								
Column pressure dr	op: 	Configuration Thermosyphe Specify re Specify re Flow rate Mass	Streams of the stream of the s	Pressure ition t condition	✓ Condenser ✓I Outlet con Temperatu 194	Reboiler	3-Phase			
Column pressure dr	op:	Configuration Thermosyphe Specify re Specify re Flow rate Mass Untire al	Streams of the stream of the s	Pressure ition t condition mol/hr	Condenser VI Outlet com Temperatu 194	Reboiler	3-Phase			
Column pressure dr	op:	Configuration Thermosyphe Specify re Specify re Flow rate Mass Uptional Behailer create	Surver.	Pressure ition t condition mol/hr	Condenser VI Outlet con Temperatu 194	Reboiler	3-Phase			
Column pressure dr	op: 	✓ Configuration Thermosyphi ③ Specify re ④ Specify b Flow rate Mass 0 ptional Reboiler press	Streams V for the stream of th	Pressure ition t condition mol/hr	Condenser V Outlet con Temperatu 194	Reboiler	3:Phase			
Column pressure dr	op:	Configuration Thermosyphe Specify re Specify te Specify b Flow rate Mass Uptional Reboiler pres Reboiler retu	Streams of the second	Pressure) ition t condition mol/hr	✓ Condenser ✓I Outlet con Temperatu 194 1 On-Stage	Reboiler	3:Phase			

Elaborado: Los autores

^{*} Ver ANEXO 5.

Columna de purificación del biodiesel.

Para obtener un biocombustible con alta pureza (>96,5%) se emplea una columna tipo RADFRAC con condensación parcial (*Fig. A5.14*) y a vacío (100Pa), debido a que el principal producto recuperado (BIODIESEL) tiene un alto punto de ebullición. Otras especificaciones de entrada tales como: tasa de fondo no destilada, número de platos y plato de alimentación; son estimadas a partir de cálculos realizados en una columna de destilación DSTWU, de modo similar como se muestra en el ANEXO 6.

Fig. A5.14: Columna DESTILL para purificación del biodies el. *Elaborado:* Los autores

La *Fig. A5.15* muestra las especificaciones de operación requeridas por la columna DESTILL.

✓Configuration ✓Streams	Pressure 🗸	Condenser 🛛 🗸 F	leboiler 3-Pha	√ Cor	nfiguration √Strea	ms √ Press	sure 🛛 🗸 Condens	er 🛛 🗸 Reboiler	3-Phase	
Setup options Calculation type: Number of stages: Condenser: Reboiler:	Equilibrium 4 Partial-Vapor-Li Kettle	▼ ■ quid	•	Fe	ed streams Name ESTER2	Stage	Convention Above-Stage			
Valid phases: Convergence:	Vapor-Liquid Standard		• •	Pr	oduct streams	Stage	Phase	Basis	Flow	(
Operating specifications					BIODIESE	1	Liquid	Mole		kmc 🔺
Reflux ratio 🔻	Mole 🚽 1		-		OILREC	4	Liquid	Mole		kmc 🗐
Bottoms rate 🔹	Mass 🔻 6	50 kg/l	n 🔻		PURGE	1	Vapor	Mole		kmc 🔻
Free water reflux ratio:			Feed basis			•				,

Configuration Strea	ms ✓ Pressure ✓ Condense	er √ Reboiler 3-P	Feed streams	r eams √ Pres	sure 🗸 Conden	ser √ Reboile
Calculation type:	Equilibrium 💌		Name	Stage	Convention	
Number of stages:	11 🕂 Sta	ge wizard	▶ ESTER2	8	Above-Stage	_
Condenser:	Partial-Vapor-Liquid	-			•	
Reboiler:	Kettle	-				
Valid phases:	Vapor-Liquid	•				
Convergence:	Standard	-				
Operating exactling tion	•		Product streams			
operating specifications	\$ 		Name	Stage	Phase	Basis
Heflux ratio			OILREC	11	Liquid	Mole
Bottoms rate		kg/hr _	BIODIESE	1	Liquid	Mole
Free water reflux ratio:		Feed basis		•		
Configuration ↓ Streams ↓ View: Top / Bottom Top stage / Condenser press Stage 1 / Condenser pressur	Pressure ✓Condenser ✓Rebo ▼ sure re: 100 Pa	iler 3-Phase ↓ ✓C	onfiguration ✓ Streams ✓ Condenser specification) Temperature:) Distillate vapor fraction:	Pressure 40 Mole	ondenser √Rel C →	boiler 3-Phase
- Stage 2 pressure (optional) -			Subcooling specification	1		
Stage 2 pressure:	atm	•	Subcooled temperature	T	K 👻	
Condenser pressure drop:	atm	-	Both reflux and liquid distil Only reflux is subcooled	late are subcool	ed	
Pressure drop for rest of colu	imn (optional)		Itility specification			
Stage pressure drop:	atm	-	Itilito:		•	

Fig. A5.15: Especificaciones de entrada de la columna DESTILL. *Elaborado:* Los autores

Purificación de la glicerina.

El proceso implementado es integrado, incluye el tratamiento de los subproductos como la glicerina, para este propósito se utiliza una columna de destilación tipo RADFRAC con condensación total a presión atmosférica, en éstas condiciones se separa el agua con restos de metanol y se consigue obtener un glicerol con alta pureza. Otras especificaciones de entrada tales como: tasa de destilado, número de platos, plato de alimentación, razón de reflujo y presión; son estimadas a partir de cálculos realizados en una columna de destilación DSTWU (ANEXO 6).

✓Configuration ✓Streams	🗸 Press	sure 🛛 🗸 Condens	ser 🗸 Reboiler] 3-Pha 🗸 C	onfiguration √Stre	ams 🗸 Pres:	sure 🗸 Conden:	ser 🛛 🗸 Reboiler	3-Phase
Setup options Calculation type: Number of stages: Condenser: Reboiler:	Equilibri 4 Total Thermo	ium 🔹	•		Feed streams Name ▶ AQU3	Stage	Convention Above-Stage	_	
Valid phases:	Vapor-L	Liquid			Product streams				
Convergence:	Standar	rd	•		Name	Stage	Phase	Basis	Flow
Operating specifications					WATEROUT	1	Liquid	Mole	ŀ
Distillate rate 🔹	Mass	▼ 53	kg/hr	•	GLYCEROL	4	Liquid	Mole	ŀ
Reflux ratio 🔹	Mole	▼ 1		-		•			
Free water reflux ratio:			Feed	basis					
		Configuration View: Top stage / Stage 1 / Co Stage 2 pre © Stage 2 © Condens Pressure dro © Stage pr © Column p	Top / Bottom Condenser pressure ondenser pressure ssure (optional) pressure: er pressure drop op for rest of colu essure drop: oressure drop:	r Pressure	Condenser ✓ Reb	viler 3-Pha	38		

Fig. A5.16: Especificaciones de entrada a la columna GLYCERPU. *Elab orado:* Los autores.

Columna de extracción líquida.

El solvente seleccionado para esta operación es el agua (corriente WATER) ya que posee gran afinidad por el soluto, es inmiscible con el biodiesel y aceite; además se evita posibles formaciones de emulsiones de alcohol en el biodiesel, ya que debido a la polaridad el metanol y glicerol son arrastrados hacia la corriente AQU1.

✓Specs ✓Key Components ↓✓Streams ✓Pressure Heal	Streams	✓Specs ✓Key Components ✓S	Streams √ Pressure Heat	Streams
Configuration Number of stages: 4 Specify tempe Specify heat of Feed streams	rature profile uty profile t Streams	1st liquid phase Available components TRIPALMI METPAL TRIOLE METHY-01 NA2SO4 H2SO4	 Key components GLYCEROL METHANOL WATER NAOH 	
Name Stage WATER 1 ESTER1 4 Product streams Name Stage AQU1 4 ESTER2 1	Unit kmol/h	2nd liquid phase Available components GLYCEROL METHANOL WATER NAOH NA2SO4 H2SO4	 Key components TRIPALMI METPAL METHY-01 TRIOLE]
✓ Specs ✓ Key Components ✓ Streams ✓ Pressure Pressure profile Stage Pressure ↓ 1 ↓	Kmol/h			

Fig. A5.17: Especificaciones de entrada de la columna WASHCOL. *Elaborado:* Los autores

Filtro.

El objetivo del filtro es separar el Sulfato de Sodio (Na₂SO₄) que se encuentra en la corriente de alimentación AQU2.

El equipo de filtración utilizado requiere de las siguientes especificaciones para realizar la simulación en ASPEN PLUS 2006.5:

Specifications Feed	IFlash Outlet Flash Utility
Outlet stream conditions	3
Outlet stream: AQU3	•
Substream: MIXED) 🗸
Component ID	Specification Basis Value Units
TRIPALMI	Split fraction 🔻
METPAL	Split fraction
TRIOLE	Split fraction
METHY-01	Split fraction
GLYCEROL	Split fraction
METHANOL	Split fraction
WATER	Split fraction
NAOH	Split fraction
NA2SO4	Split fraction
H2SO4	Split fraction

iutlet stream co	nditions				
Outlet stream:	SOLIDS	i 🗸			
Substream:	MIXED	•			
Componer	nt ID	Specification	Basis	Value	Units
TRIPALMI		Split fraction		0	
METPAL		Split fraction		0	
TRIOLE		Split fraction		0	
METHY-01		Split fraction		0	
GLYCEROL		Split fraction		0	
METHANOL		Split fraction		0	
WATER		Split fraction		0	
NAOH		Split fraction		1	
NA2SO4		Split fraction		1	
H2SO4		Split fraction		1	

Fig. A5.18: Especificaciones de entrada del FILTER. *Elaborado:* Los autores

DETERMINACIÓN DE LAS ESPECIFICACIONES DE LAS COLUMNAS RADFRAC EMPLEDADAS EN LA SIMULACIÓN.

Para determinar las especificaciones en las columnas RADFRAC de recuperación de los diferentes productos se creó en el proceso una simulación con una columna DSTWU.

Fig. A6.1: columna DSTWU Elaborado: Los autores

En función de la temperatura de destilación que permita recuperar el componente deseado a presión de operación especificada, se realizó un análisis por componente puro dando como resultado la presión de vapor descendente por compuesto, valor que se emplea como referencia para seleccionar el sistema binario.

R d	e Metanol	P de Glicerina					
Pre	sión 1atm	Presión 1 atm					
TC	D =64.7⁰C	TD = 100°C					
Metanol	764,95mmHg	Metanol	2643,34mmHg				
Glicerol	0,011mmHg	Agua	759,52mmHg				
Metil palmitato	0,0042mmHg	Glicerol	0,192mmHg				
Metil Oleate	0,00080973mmHg	Metil Palmitate	0,046mmHg				
Trioleina	5,39e-07 mmHg	Metil Oleate	0,021mmHg				
Tripalmitina	3,039e-07mmHg	Trioleína	1,79e- 05mmHg				
NaOH	5,015e-13 mmHg	Tripalmitina	1,0547e- 05mmHg				

Tabla A6.1. Orden descendente de las presiones de vapor.

R=Recuperación, P=Purificación de la glicerina. TD = Temperatura de destilación Elaborado: Los Autores.

Según la *Tabla A6.1* para conseguir la destilación del componente a recuperar o purificar la presión de vapor debe ser igual a mayor a la presión de operación.

Para especificar la presión de operación en la recuperación de biodiesel, a una temperatura especificada de 190°C, se procedió a buscar mediante un análisis por componente que la presión de vapor del componente menos volátil (metil palmitato) que conforma el biocarburante sea mayor o igual a la presión de operación dando como resultado un valor de 535Pa.

	Recuperación de biodiesel										
	Presión 535Pa										
	TD =190°C										
	Metanol 3319320Pa										
	Agua	1252470Pa									
	Glicerol	3849,241Pa									
	Metil Oleate	727,435Pa									
	Metil Palmitato 535,738Pa										
	Trioleina	1,622Pa									
	Tripalmitina	1,030162Pa									
= 1	ahorado I os Auto	ores									

Tabla A6.2. Presiones de vapor a 190°C

Elaborado: Los Autores

Una vez fijadas las presiones de operación en las diferentes columnas se procede a realizar un análisis binario en el simulador para obtener mediante las curvas de equilibrio líquidovapor, las máximas fracciones de recuperación de los componentes distribuidos en el destilado y en el fondo.

Unidad	de proceso	CR. Me	tanol	R. Bio	odiesel	R. Glicerina			
Presión	Condensador	1		53	5Pa	1			
atm	Hervidor	1		53	5Pa	1			
		FR	FR	FR		FR	FR		
Con	nnononto	Liquido	Liquido	Liquido	FR Liquido	Liquido	Liquido		
COL	nponente	más	menos	más	menos	más	menos		
		volátil	volátil	volátil	volátil	volátil	volátil		
TRIPALI	MI	-	-	-	-	-	-		
METPAL	_	-		0,9996195	-	-	-		
TRIOLE	IN	-	-	-	0,00038048	-	-		
METHY-	-01	-	-	-	-	-	-		
	01		2,7599e-				9,8577e-		
GLICE-	01	-	06	-	-	-	06		
METHA-	-01	0,9999972	-		-	-	-		
WATER		-	-	-	-	0,9999901	-		
NAOH		-	-	-	-	-	-		
NA3PO4	1	-	-	-	-	-	-		
H3PO4		-	-	-	-	-	-		

Tabla A2.3. Especificaciones de las Columnas DSTWU.

FR= Fracción de recuperación, CR=Columna de recuperación, R = Recuperación.

Elaborado: Los Autores

Para especificar la relación de reflujo y el número de platos en la columna DSTWU, se procedió a realizar un análisis gráfico entre estas dos variables, encaminado a recuperar la fracción de los componentes especificada en la *Tabla 3.4* tal como se muestra a continuación:

Fig. A6.2: Análisis de la relación de reflujo sobre el número de platos, a; Columna de recuperación de biodiesel b; columna de recuperación de metanol y c; Columna de recuperación de la glicerina *Elab orado:* Los autores

De acuerdo a la *Fig. A6.2* el número de platos tiende a ser constante a una razón de reflujo de 3.5, 1.5 y 2.5 para recuperar el biodiesel, metanol y glicerol, respectivamente.

CUSTOM STREAMS RESULTS

		AQU1	AQU2	AQU3	BIODIESE	ESTER1	ESTER2	ESTERES	GLYCEROL	H2SO4	MEOH	MEOH1	METOX1	ΜΕΤΟΧΙ	NAOH	OIL	OIL2	OILREC	PRODUCTS	PURGE	SOLIDS	WATER	WATEROUT
From		WASHCOL	NEUTRA	FILTER	DESTILL	EXCHANG2	WASHCOL	MEOHREC1	GLYCERPU			MEOHREC1	MIXER1	MIXER2			MIXER3	DESTILL	REACTOR	DESTILL	FILTER		GLYCERPU
То		NEUTRA	FILTER	GLYCERPU		WASHCOL	DESTILL	EXCHANG2		NEUTRA	MIXER1	MIXER2	MIXER2	REACTOR	MIXER1	MIXER3	REACTOR	MIXER3	MEOHREC1			WASHCOL	
Substream: M	IXED																						
Phase:		Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Vapor	Liquid	Liquid	Liquid
Component	Mole Flow																						
TRIPALMI	KMOL/HR	0	0	0	0	0,36	0,36	0,36	0	0	0	0	0	0	0	1,61	1,97	0,36	0,36	0	0	0	0
METPAL	KMOL/HR	0	0	0	4,84	4,98	4,98	4,98	0	0	0	0	0	0	0	0	0,14	0,14	4,98	0	0	0	0
TRIOLE	KMOL/HR	0	0	0	0	0,34	0,34	0,34	0	0	0	0	0	0	0	1,41	1,75	0,34	0,34	0	0	0	0
METHY-01	KMOL/HR	0	0	0	4,24	4,32	4,32	4,32	0	0	0	0	0	0	0	0	0,08	0,08	4,32	0	0	0	0
GLYCEROL	KMOL/HR	3,02	3,02	3,02	0,01	3,03	0,01	3,03	3,02	0	0	0	0	0	0	0	0	0	3,03	0	0	0	0
METHANOL	KMOL/HR	0,12	0,12	0,12	0	0,21	0,09	0,21	0	0	9,29	17,95	9,29	27,23	0	0	0	0	18,15	0,08	0	0	0,12
WATER	KMOL/HR	2,42	2,93	2,93	0,01	0	0,35	0	0,2	0,02	0	0	0	0	0	0	0	0	0	0,35	0	2,78	2,73
NAOH	KMOL/HR	0,48	0	0	0	0,48	0	0,48	0	0	0	0	0,48	0 <i>,</i> 48	0,48	0	0	0	0,48	0	0	0	0
NA2SO4	KMOL/HR	0	0,24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,24	0	0
H2SO4	KMOL/HR	0	0	0	0	0	0	0	0	0,24	0	0	0	0	0	0	0	0	0	0	0	0	0
Component	Mass Flow																						
TRIPALMI	KG/HR	0	0	0	0	290,41	290,41	290,41	0	0	0	0	0	0	0	1302,13	1592,54	290,41	290,41	0	0	0	0
METPAL	KG/HR	0	0	0	1308,61	1346,82	1346,82	1346,82	0	0	0	0	0	0	0	0	38,19	38,19	1346,82	0,02	0	0	0
TRIOLE	KG/HR	0	0	0	0,01	298,12	298,12	298,12	0	0	0	0	0	0	0	1251,07	1549,17	298,11	298,12	0	0	0	0
METHY-01	KG/HR	0	0	0	1256,75	1280,05	1280,05	1280,05	0	0	0	0	0	0	0	0	23,29	23,29	1280,05	0	0	0	0
GLYCEROL	KG/HR	278,06	278 <i>,</i> 06	278,06	0,57	278,66	0,6	278 <i>,</i> 66	278,04	0	0	0	0	0	0	0	0	0	278,66	0,03	0	0	0,02
METHANOL	KG/HR	3,88	3 <i>,</i> 88	3 <i>,</i> 88	0,12	6,72	2,84	6,72	0,03	0	297,58	575	297,58	872,58	0	0	0	0	581,72	2,72	0	0	3,85
WATER	KG/HR	43,68	52,76	52,76	0,1	0	6,32	0	3,63	0,42	0	0	0	0	0	0	0	0	0	6,22	0	50	49,13
NAOH	KG/HR	19,22	0	0	0	19,22	0	19,22	0	0	0	0	19,22	19,22	19,22	0	0	0	19,22	0	0	0	0
NA2SO4	KG/HR	0	34,13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	34,13	0	0
H2SO4	KG/HR	0	0	0	0	0	0	0	0	23,56	0	0	0	0	0	0	0	0	0	0	0	0	0
Component N	lass Fraction																						
TRIPALMI		0	0	0	0	0,08	0,09	0,08	0	0	0	0	0	0	0	0,51	0,5	0,45	0,07	0	0	0	0
METPAL		0	0	0	0,51	0,38	0,42	0,38	0	0	0	0	0	0	0	0	0,01	0,06	0,33	0	0	0	0
TRIOLE		0	0	0	0	0,08	0,09	0,08	0	0	0	0	0	0	0	0,49	0,48	0,46	0,07	0	0	0	0
METHY-01		0	0	0	0,49	0,36	0,4	0,36	0	0	0	0	0	0	0	0	0,01	0,04	0,31	0	0	0	0
GLYCEROL		0,81	0,75	0 <i>,</i> 83	0	0,08	0	0 <i>,</i> 08	0,99	0	0	0	0	0	0	0	0	0	0,07	0	0	0	0
METHANOL		0,01	0,01	0,01	0	0	0	0	0	0	1	1	0,94	0,98	0	0	0	0	0,14	0,3	0	0	0,07
WATER		0,13	0,14	0,16	0	0	0	0	0,01	0,02	0	0	0	0	0	0	0	0	0	0 <i>,</i> 69	0	1	0,93
NAOH		0,06	0	0	0	0,01	0	0,01	0	0	0	0	0,06	0,02	1	0	0	0	0	0	0	0	0
NA2SO4		0	0,09	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
H2SO4		0	0	0	0	0	0	0	0	0 <i>,</i> 98	0	0	0	0	0	0	0	0	0	0	0	0	0

		AQU1	AQU2	AQU3	BIODIESE	ESTER1	ESTER2	ESTERES	GLYCEROL	H2SO4	МЕОН	MEOH1	METOX1	ΜΕΤΟΧΙ	NAOH	OIL	OIL2	OILREC	PRODUCTS	PURGE	SOLIDS	WATER	WATEROUT
From		WASHCOL	NEUTRA	FILTER	DESTILL	EXCHANG2	WASHCOL	MEOHREC1	GLYCERPU			MEOHREC1	MIXER1	MIXER2			MIXER3	DESTILL	REACTOR	DESTILL	FILTER		GLYCERPU
То		NEUTRA	FILTER	GLYCERPU		WASHCOL	DESTILL	EXCHANG2		NEUTRA	MIXER1	MIXER2	MIXER2	REACTOR	MIXER1	MIXER3	REACTOR	MIXER3	MEOHREC1			WASHCOL	
Substream: MIXE	ED																						
Phase:		Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Vapor	Liquid	Liquid	Liquid
Mole Flow	KMOL/HR	6 <i>,</i> 05	6,31	6,07	9,09	13,71	10,44	13,71	3,22	0,26	9,29	17,95	9,77	27,71	0,48	3,03	3,94	0,92	31,65	0,43	0,24	2,78	2,85
Mass Flow	KG/HR	344,84	368,83	334,7	2566,17	3520	3225,16	3520	281,7	23,99	297 <i>,</i> 58	575	316,8	891,8	19,22	2553,2	3203,2	650	4095	8,99	34,13	50	53
Volume Flow	CUM/HR	0,27	0,35	0,28	2,79	3,74	3,39	4,25	0,25	0,03	0 <i>,</i> 38	0,74	0,37	1,12	0,01	0,94	1,31	0,38	4,8	10846,51	0,07	0,05	0,06
Temperature	С	60,95	89,48	89,48	30	50	59,3	193 <i>,</i> 86	191,06	25	25	40	24,4	49,78	25	25	64,72	194,17	60	30	89,48	25	93,14
Pressure	KG/SQCM	1,03	1,03	1,03	0	1,03	1,03	1,03	1,03	1,03	1,03	1,03	1,03	1,03	1,03	1,03	1,03	0	1,03	0	1,03	1,03	1,03
Vapor Fraction		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
Liquid Fraction		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1
Solid Fraction		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Molar Enthalpy	KCAL/MOL	-111,79	-115,26	-109,57	-176,33	-182,67	-193,42	-162,81	-143,22	-194,69	-57 <i>,</i> 63	-56 <i>,</i> 61	-58,85	-57,4	-82,48	-470,85	-443,21	-351,93	-109,59	-55,87	-269,33	-68,72	-66,88
Mass Enthalpy	KCAL/KG	-1959 <i>,</i> 85	-1971,59	-1986,82	-624,79	-711,45	-626,08	-634,09	-1637,86	-2140,46	-1798,64	-1766,7	-1814,63	-1783,72	-2062,26	-558	-545,43	-496,04	-847,17	-2674,94	-1896,12	-3814,81	-3593,28
Enthalpy Flow	GCAL/HR	-0,68	-0,73	-0,66	-1,6	-2,5	-2,02	-2,23	-0,46	-0,05	-0,54	-1,02	-0,57	-1,59	-0,04	-1,42	-1,75	-0,32	-3,47	-0,02	-0,06	-0,19	-0,19
Molar Entropy	CAL/MOL-K	-83,82	-79 <i>,</i> 88	-81 <i>,</i> 59	-419,45	-380,8	-458,84	-329,24	-113,17	-112,29	-59 <i>,</i> 6	-56 <i>,</i> 35	-58 <i>,</i> 64	-57,12	-27,05	-1189,9	-1118,73	-894,61	-191,64	0,14	-65 , 25	-40,1	-36,5
Mass Entropy	CAL/GM-K	-1,47	-1,37	-1,48	-1,49	-1,48	-1,49	-1,28	-1,29	-1,23	-1,86	-1,76	-1,81	-1,77	-0,68	-1,41	-1,38	-1,26	-1,48	0,01	-0,46	-2,23	-1,96
Molar Density	MOL/CC	0,02	0,02	0,02	0	0	0	0	0,01	0,01	0,02	0,02	0,03	0,02	0,05	0	0	0	0,01	0	0	0,06	0,05
Mass Density	GM/CC	1,26	1,07	1,19	0,92	0,94	0,95	0 <i>,</i> 83	1,13	0,86	0,79	0,77	0 <i>,</i> 86	0,79	1,89	2,71	2,44	1,73	0,85	0	0,47	0,99	0,9
Average Molecu	lar Weight	57,04	58,46	55,15	282,22	256,76	308,94	256,76	87,45	90,96	32,04	32,04	32,43	32,18	40	843 <i>,</i> 81	812,59	709,48	129,36	20,89	142,04	18,02	18,61
Phase: Liquid																							
Density	LB/CUFT	78,74	66,6	74,1	57,47	58,75	59,89	51,66	70,64	53,93	49,5	48,37	53,94	49,55	118,15	169,37	152,222894	107,77516	53,3138948	0	29,2315446	62,05	56,49
Viscosity	СР	9 <i>,</i> 55	3,66	2,63	5 <i>,</i> 8	12,69		0,77	1,46	18,03	0 <i>,</i> 54	0 <i>,</i> 45	0,74	0,44	299,54	8526,54	497,673417	2,15264687	1,47960219	0,01	15651,4803	0,91	0,3
Surface tension	DYNE/CM	53,03	0	39,94	29,82	71,98		38,84	31,9	71,79	21,63	21	25,83	23,67	70,5	20,34	19,3632093	15,2598024	64,3560198		1,94E-09	35,95	23,82

DIAGRAMA P&I

PROCEDIMIENTOS DE CÁLCULO

Cálculo de las especificaciones de los intercambiadores de calor y requerimientos de servicios.

Las propiedades físicas requeridas para dimensionar los diferentes intercambiadores de calor fueron obtenidos desde la simulación del proceso a los diferentes estados físicos de las corrientes en cuestión.

Dimensionamiento del enfriador EXCHANG2.

Para dimensionar el enfriador EXCHANG2 se procedió a calcular la geometría requerida, luego el dimensionamiento fué verificado en el simulador mediante el uso de la herramienta HeatX que es un bloque de cálculo de intercambiadores de calor.

Fluido caliente: Aceite Fluido frío: Agua

U

Nomenclatura

t ₁	Temperatura de entrada del líquido frío.
t ₂	Temperatura de salida del líquido frío.
T_1	Temperatura de entrada del líquido caliente.
T_2	Temperatura de salida del líquido caliente.
W_1	Flujo másico del aceite.
W_2	Flujo másico del agua.
Cp ₂	Capacidad calorífica del agua.
ΔP [kpa]	Caída de presión.
J [W/m ² °C]	Coeficiente global de transferencia de calor.
ΔT _m [⁰C]	Temperatura media logarítmica.
\mathbf{f}_{t}	Factor de corrección de la temperatura.
A [m ²]	Área de transferencia de calor.
d_{o} [mm]	Diámetro externo de un tubo.
d _i [mm]	Diámetro interno de un tubo.
L [m]	Longitud de un tubo.
$A_t [m^2]$	Área longitudinal de un tubo
Nt	Número de tubos
D _b [mm]	Diámetro de haz de tubos

D_s[mm]Diámetro de corazae [mm]Espacio entre deflectoresNNúmero de deflectoresK_w[W/m°C]Conductividad térmica del material de los tubos

$$t_{1} [^{o}C] = 25$$

$$t_{2} [^{o}C] = 40$$

$$T_{1} [^{o}C] = 193,85$$

$$T_{2} [^{o}C] = 50$$

$$\Delta t_{1} [^{o}C] = t_{2} - t_{1} = 15$$

$$\Delta T_{2} [^{o}C] = T_{1} - T_{2} = 143,85$$

$$Cp_{2} [KJ/Kg {}^{o}C] = 3,896$$

Caída de presión máxima permitida ΔP [Kpa] = 68,94 Cantidad de agua de enfriamiento requerida.

$$Q_{\text{cedido}}(\text{kJ/h}) = Q_{\text{ganado}}(\text{KJ/h})$$

$$1140060,20=\text{Qg}=\text{W}_2\text{Cp}_2\Delta\text{T}_2$$

$$W_2[kg/h] = \frac{Qg}{Cp_2\Delta T_2} = 19510,2$$

Según la figura 12.1 [22] el coeficiente global de transferencia de calor asumido es: $I = \frac{1}{2} \frac{W}{m^{20}C} - 300$

$$0 \, \text{W/m}^{3}\text{C} = 300$$

Temperatura media logarítmica en el flujo en contracorriente

$$\Delta T_{m} = \frac{(T_{1} - t_{2}) - (T_{2} - t_{1})}{\ln \frac{(T_{1} - t_{2})}{(T_{2} - t_{1})}}$$
$$\Delta T_{m} \, {}^{0}C = 70.91$$

Corrección de la temperatura media logarítmica está en función de la temperatura de los fluidos a través de la coraza y los tubos, se emplea dos relaciones adimensionales.

$$R = \frac{(T_1 - T_2)}{(t_2 - t_1)} = 9,6$$
$$S = \frac{(t_2 - t_1)}{(T_1 - t_1)} = 0,1$$

Según la figura 12.19 [22]

 $f_t = 0,93$

$$\Delta T_m \, {}^{o}C = f_t \Delta T I_m = 65,95$$

Área provisional de transferencia de calor.

$$A = \frac{Q}{U\Delta T_m} = A [m^2] = 10,67$$

Especificaciones de los tubos

$$d_{o}[mm] = 20$$

$$d_{i} [mm] = 16$$

$$L [mm] = 4,88$$

Material = Acero al carbono
Área de un tubo

$$A_{i} = \pi d_{o}L = A_{t} [m^{2}] = 0,31$$

Número de tubos

$$N_t = \frac{A}{A_t} = 52$$

Arreglo triangular con espacio entre tubos 1,25d₀.

 P_{t} [mm] = 25

Diámetro de haz ocupado por los tubos.

Dónde n y K1 son constantes obtenidas de la tabla 12.4 [22]

$$n = 2.249$$

K1 = 0.0743

$$D_b = d_0 \left(\frac{N_t}{K_1}\right)^{\bar{n}} = D_b \text{ [mm]} = 368.2$$

Usando un intercambiador de tubo fijo, desde la figura 12.10 [22] se obtiene el diámetro limpio de haz de tubos.

Diámetro limpio de haz de tubos = 11mm.

Diámetro de coraza D_s [mm]. $D_s = D_b$ +Diámetro limpio de haz de tubos = 381,2

El tamaño de tubo estándar más cercano para la coraza sería 406,4 mm [22].

Deflectores.

Espacio entre deflectores e.

Número de deflectores.

$$N = \frac{L}{e} + 1 = 65$$

Según la tabla 7.1 [40] el diámetro de boquilla es 50,8mm.

Los factores de incrustación se obtuvieron desde la tabla 12.2. [22] los cuales se muestran a continuación:

Resultados obtenidos en el simulador.

Área de transferencia de calor = 15,9 m² Coeficiente de transferencia de calor U = 256,4 W/m² C. Caída de presión en los tubos ΔP = 0,1 atm Caída de presión en la coraza ΔP = 0,24 atm

La caída de presión obtenida es menor a la máxima permitida de esta manera se deduce que la geometría del diseño es satisfactoria.

Dimensionamiento de los hervidores de la columna MEOHREC1 y GLYCERPU.

El hervidor empleado en la columna de recuperación de metanol es tipo termosifón, de orientación vertical, este intercambiador de calor es empleado en la mayoría de aplicaciones por ser más económico y no requiere el empleo de circulación forzada [22].

1 [m] 0 5

Especificaciones de los tubos

	L [III] = 2,5
	d _i [mm] = 25
	d _o [mm] = 30
	Presión [atm] = 1,00
Material = Acero al carbono	
	K _w [W/mºC] = 51,19

Punto de burbuja en el hervidor = 193,9°C

Cantidad de calor requerido.

Q[J/s] = 634877

Coeficiente global de transferencia de calor

Considerando a ambas corrientes como isotermas se calcula la temperatura media logarítmica.

$$\Delta TL_{m}[^{\circ}C] = Tsat-T = 23,135$$

El flujo máximo de calor q por m² para calderetas verticales tipo termosifón es 39700 W/m² [22].

 $q = U \Delta T L_m = 3301,60$

Área requerida de transferencia de calor en m².

$$A = \frac{Q}{q} = 192,3$$

Área longitudinal de un tubo en m².

$$A_t = \pi d_0 L = 0,2$$

Número de tubos

$$N_t = \frac{A}{A_t} = 979$$

Densidad del líquido en la base del intercambiador de calor kg/m³ = 827,44

Fases que dejan el hervidor. Flujo másico del liquido L [kg/h] = 3520,00 Flujo másico del vapor V [kg/h] = 1107,29 Flujo másico total L+V [kg/h] = 4627,28 Densidad de la mezcla que deja el hervidor ρ_m = kg/m³ = 827,43

Pérdidas por fricción.

Flujo másico de la alimentación al hervidor en kg/s = 1,285

Área seccional de los tubos.
$$A_c [m^2] = (\pi d_i^2/4) N_t = 0,480566$$

Velocidad másica [G].

G [Kg/m²s] = Flujo másico/área seccional ocupada por los tubos = 2,675

A la salida del tubo la caída de presión por unidad de longitud, considerando un modelo homogéneo es:

Velocidad lineal homogénea u [m/s] =G/ ρ_m = 0,003

Viscosidad tomada suponiendo que la mezcla es líquida $[N/sm^2] = 0,000770$ En función del Número de Reynolds mediante el uso de la figura 12.24[22] se encuentra el valor del factor fricción j_f.

$$Re = \frac{\rho_m ud}{\mu}$$

$$Re = 86.84$$

$$j_f = 0.09$$

$$\Delta P = 8j_f (L'/d_i)\rho \frac{u_i^2}{2} \left(\frac{\mu}{\mu_w}\right)^{-m}$$

El valor de la viscosidad se considera despreciable $\Delta P(N/m^2) = 0,12$

Pérdida de fricción del líquido no evaporado.

Velocidad lineal m/s =G/ ρ_L = 0,003

$$Re = \frac{\rho_L u d}{\mu}$$

Re= 86.84
j_f=0.09

$$\Delta P = 8j_f (L'/d_i) \rho \frac{u_i^2}{2} \left(\frac{\mu}{\mu_w}\right)^{-m}$$

El valor de la viscosidad se considera despreciable.

Asumiendo que la caída de presión es lineal a través de la longitud del tubo. Caída de presión promedio = (caída de presión de la mezcla + caída de presión del liquido que entra)/2

Caída de presión promedio por metro de tubo $[N/m^2] = 0,12$ Caída de presión por longitud del tubo $[N/m^2] = 0,31$

Presión estática en los tubos

Se asume que la variación en la densidad es lineal en los tubos desde el fondo hasta la parte superior entonces la presión estática sería dada por:

$$\Delta P_s = g \int_{0}^{L} \frac{\mathrm{d}x}{v_i + x(v_0 - v_i)/L} = \frac{gL}{(v_0 - v_i)} \times \mathrm{Ln}(v_0/v_i)$$

Dónde v_i y v_o son los volúmenes específicos de entrada y salida de los tubos.

$$\Delta P_{\rm s} [{\rm N/m}^2] = 20272,11$$

 $\Delta P_{\rm s} [{\rm KN/m}^2] = 20,27$

Presión hidrostática.

$$\Delta P_a = \rho_L gL$$

 $\Delta Pa [N/m^2] = 20272,11$
 $\Delta Pa [N/m^2] = 20,3$

La presión hidrostática es mayor que la pérdida de presión total a través de los tubos dando lugar a un estado satisfactorio con un reciclo de 1.

Coeficientes de transferencia de calor.

Coeficiente nuclear de ebullición

Presión crítica de la mezcla Pc[atm] = 34,86

Usando la correlación de la ecuación reducida propuesta por MostinsKi [22] se calcula el coeficiente nuclear de ebullición h_{nb} .

$$h_{nb} = 0.104(P_c)^{0.69}(q)^{0.7} \left[1.8 \left(\frac{P}{P_c} \right)^{0.17} + 4 \left(\frac{P}{P_c} \right)^{1.2} + 10 \left(\frac{P}{P_c} \right)^{10} \right]$$
$$h_{nb} \left[W/m^{20}C \right] = 364,4404756$$

Fracción en masa de vapor producido.

x= Masa de vapor total/flujo total de alimentación = 0,2393 Viscosidad del vapor $[N/sm^2] = 1,49E-05$ Densidad del vapor $[kg/m^3] = 0,97$ Capacidad calorífica del líquido Cp [J/kgK]= 2276,48 Conductividad térmica del líquido K₁ [W/mK] = 0,0913

$$\frac{h_i d_i}{k_f} = j_h Re P r^{0.33} \left(\frac{\mu}{\mu_w}\right)^{0.14}$$

El coeficiente de convección forzada está calculado en función del líquido que sale de los tubos.

Despreciando la viscosidad.

Número de Prandt.

$$Pr = \frac{C_p \mu}{k_f}$$

$$Pr = 19.2$$

Número de Reynolds.

$$\operatorname{Re}_{L} = \frac{u_{L}d_{i}\rho_{l}}{\mu_{L}} = 66,06$$

En función de la relación L/D y el número de Reynolds mediante la figura12.23 [22] se obtiene el factor J_h de transferencia de calor.

En función término $\frac{1}{X_u}$ mediante el empleo de la figura 12.56 [22] el factor de convección de ebullición f_c es:

$$\frac{1}{X_{tt}} = \left[\frac{x}{1-x}\right]^{0.9} \left[\frac{\rho_L}{\rho_v}\right]^{0.5} \left[\frac{\mu_v}{\mu_L}\right]^{0.1}$$
$$\frac{1}{X_u} = 6,95$$

El coeficiente de convección forzada corregido es igual a:

$$h'_{fc} = h_{fc} \times f_c$$

 $h'_{fc} = 57,57$

El coeficiente nuclear de ebullición es modificado mediante el uso del factor de supresión f_s , el cual es obtenido desde la figura 12.57 [22]. Este es una función del número de Reynolds del líquido y el coeficiente de convección forzada.

$$h'_{nb} = h_{nb} \times f_s$$

Re_L $f_c^{1.25} = 1174,73$
 $f_s = 0.99$
 $h'_{nb} = 225.95$

El coeficiente conectivo de ebullición es igual a:

 $h_{cb} = h'_{fc} + h'_{nb}$ $h_{cb} = 283,53$ W/m² °C, este valor ha sido calculado a las condiciones de salida

Asumiendo que la variación del coeficiente de transferencia de calor es lineal a lo largo del tubo, el coeficiente promedio es igual a:

Coeficiente promedio = [Coeficiente a la entrada (todo el líquido) + coeficiente a la salida (líquido + vapor)]/2= 145.67 W/m²°C.

Coeficiente de transferencia de calor a la entrada del tubo.

$$\frac{h_i d_i}{k_f} = j_h Re P r^{0.33} \left(\frac{\mu}{\mu_w}\right)^{0.14}$$
$$h_i [W/m^{20}C] = 7.8$$

Velocidad másica a la entrada.

 $\begin{array}{l} G \ [kg/m^2s] = L_i / A_c = 2.67 \\ L_i = a limentación al hervidor \ [kg/h]. \end{array}$

Velocidad lineal.

En función del número de Reynolds y L/d se obtiene el factor de transferencia de calor j_h.

$$Re_{L} = \frac{\mu_{L}d_{i}\rho_{l}}{\mu_{L}} = 86.84$$

L/d_i = 100
j_h=0,0093

Coeficiente de condensación al exterior de los tubos:

Fluido = Vapor de agua saturado Presión [bar] = 22 Cantidad de vapor de agua kg/s $Q=W_sH_{vs}$ $W_s= 0,25$ kg/s

 $\begin{array}{l} \mbox{Propiedades del vapor a Tsat} \\ T_{sat} [^{o}C] = 217,000 \\ \mu_{L} [\ Ns/m^2] = 0,0001 \\ \mu_{v} [\ Ns/m^2] = 1,7043E-05 \\ \rho_{L} [\ kg/m^3] = 846,14 \\ \rho_{v} [\ kg/m^3] = 9,73 \\ K_{L} [\ W/m^{o}C] = 0,653 \\ Cp_{L} [\ J/kg \ K] = 6342,06 \\ Pr = 1,204 \\ H_{vs} [\ J/kg] = 1869553,9 \end{array}$

Tasa de condensado por perímetro de tubo vertical

$$\Gamma = \frac{Ws}{\pi d_e N_t} = \Gamma \text{ [kg/ms]} = 0.0037$$

En función del número de Reynolds y el Número de Prandt desde la figura 12.43 [22] el valor de se obtiene el valor de:

$$\frac{h_{c}}{K_{L}} \left[\frac{u_{L}^{2}}{\rho_{L}(\rho_{L} - \rho_{v})g} \right]^{\frac{1}{3}} = 0,140$$

Número de Reynolds en el lado del condensado

$$\operatorname{Re}_{c} = \frac{4\Gamma}{u_{L}} = 118.8$$

Coeficiente de condensación h_c [W/m² C] =7014.28

Coeficiente Global de transferencia de calor

$$\frac{1}{U_o} = \frac{1}{h_o} + \frac{1}{h_{od}} + \frac{d_o \ln\left(\frac{d_o}{d_i}\right)}{2k_w} + \frac{d_o}{d_i} \times \frac{1}{h_{id}} + \frac{d_o}{d_i} \times \frac{1}{h_i}$$

....

Despreciando la resistencia de la pared del tubo y los factores de suciedad el coeficiente global de transferencia de calor es igual a:

 $\begin{array}{ll} 1/U_0 = \ 0,002 \\ U_0 \left[W/m^{20}C \right] = 629,77 \\ h_o = h_c \left[W/m^{20}C \right] & \text{Coeficiente de transferencia de calor fuera de los tubos} \\ h_{od} \left[W/m^{20}C \right] & \text{Factor de suciedad en el exterior de los tubos} \\ h_{id} \left[W/m^{20}C \right] & \text{Factor de suciedad en el interior de los tubos} \\ h_i = h_c \left[W/m^{20}C \right] & \text{Coeficiente de transferencia de calor en el interior de los tubos}. \end{array}$

Diámetro de coraza.

Intercambiador de un solo pasó por los tubos y uno por la coraza Arreglo triangular con espacio entre tubos $P_t = 1,25d_0$ $P_t \text{ [mm]} = 37,5$

Diámetro del haz de tubos

$$D_b = d_0 \left(\frac{N_t}{K_1}\right)^{\frac{1}{n}} = 1273.6$$
mm

Dónde n y K1 son constantes obtenidas de la tabla 12.4 [22] n = 2,142 $K_1 = 0,319$

Número de tubos en la hilera central:

Tubos en la hilera central= $D_b/P_t = 34$

Usando un intercambiador de tubo fijo, desde la figura 12.10 [22] se obtiene el diámetro limpio de haz de tubos

Diámetro limpio de haz de tubos = 10 mm

Dónde $D_s = D_b$ + diámetro limpio de haz de tubos D_s [mm] = 1283,6

El tamaño de tubo estándar más cercano para la coraza sería de 1420 mm [22].

Deflectores:

Espacio entre deflectores

I_B [mm] =D_s [22] I_B [mm] =1283.61

Número de deflectores = $N = \frac{L}{l_B} + 1 = 3$

Según la tabla 7.1 [40] el diámetro de boquilla es 50,8 mm

Hervidor de la columna GLYCERPU.

Para calcular el dimensionamiento del hervidor de la columna GLYCERPU se sigue una metodología idéntica al ejemplo anterior, por esta razón se muestra a continuación un resumen simplificado del proceso de cálculo.

Especificaciones de tubos $L_t [m] = 2,5$ $d_i [mm] = 25$ $d_o [mm] = 30$ Presión [atm] = 1,00 Material = Acero al carbono $K_w [W/m^oC] = 51,19$

Se determina el punto de burbuja de la mezcla [ºC] = 191,3

$$\sum y_i = \sum K_i x_i = 1.0$$

Donde:

 y_i = fracción molar en el vapor

 k_i = coeficiente de distribución líquido-vapor+

 x_i = fracción molar en el líquido.

Tabla A9.1: Determinación del punto de burbuja

Componente	Х _b	K _i	K ixi
GLYCEROL	0,93734698	0,06476871	0,061
METHANOL	0,00016531	40,3497117	0,007
WATER	0,0624877	14,9248095	0,933
			1,000

Calor requerido para evaporar la mezcla Q [J/s] = 82487 Temperatura media logarítmica ΔT_{LM} [°C] = 25,6 Flujo máximo de calor q por m² W/m² para calderetas verticales tipo termosifón =39700 Área de transferencia de calor requerida A [m²] = 2,1 Área de un tubo [m²] = 0,2 Número de tubos N_t = 11 Densidad del líquido en la base del intercambiador de calor [kg/m³] = 1131,24

Fases que dejan el hervidor:

Flujo másico del liquido L [kg/h] = 282,00 Flujo másico del vapor V [kg/h] = 125,3 Flujo másico total L+V [kg/h] = 407,32 Densidad media del flujo que deja el hervidor ρ_m [kg/m³] =336,09

Pérdidas por fricción:

Flujo másico de la mezcla al hervidor [kg/s] = 0,078 Área seccional de tubos: $A_cm^2 = (\pi d_i^2/4)N_t = 0,0054$ Velocidad másica: G [kg/m²s] = Flujo másico/Ac = 14,5 Caída de presión del líquido y vapor producido: ΔP [N/m²] = 2.3

Pérdida de fricción del líquido que entra:

Velocidad lineal [m/s] = $G/p_{L} = 0,013$ $\Delta P [N/m^{2}] = 0,68318$ Caída de presión por longitud del tubo N/m² = 3.75

La caída de presión es menor a la máxima permitida por lo que se considera al diseño satisfactorio.

Presión estática en los tubos:

Presión hidrostática:

Pa [N/m²] = 27721,6 Pa [N/m²] = 27,7

La presión hidrostática es mayor que la pérdida de presión total a través de los tubos dando lugar a un estado satisfactorio siendo adecuado mantener un reciclo de 7.

Coeficiente de transferencia de calor

Coeficiente nuclear de ebullición h_{nb} [W/m²°C] = 3158,4 Presión critica de la mezcla líquido - vapor P_c [atm] = 83,01 Fracción de vapor producido = x = 0,3077 Viscosidad del vapor [Ns/m²] = 1,58E-05 Densidad del vapor que deja el intercambiador kg/m³ = 0,61 Capacidad calorífica del líquido C_p [J/kgK] = 2405,13 Conductividad térmica del líquido K [W/mK]= 0,312 El coeficiente de convección = $h_i=h_{fc}$ [W/m²°C] = 85.48 El coeficiente nuclear de ebullición corregido es h´_{nb}[W/m²°C] = 2589,86 El coeficiente convectivo de ebullición hcb [W/m²°C] = 4384,9

Asumiendo que la variación del coeficiente de transferencia de calor el lineal a lo largo del tubo, el coeficiente promedio es igual a:

Coeficiente promedio = [coeficiente a la entrada $_{(todo el líquido)}$ + coeficiente a la salida $_{(líquido + vapor)}]/2 = 2238,77 W/m^{20}C$

Coeficiente de transferencia de calor a la entrada: $h_i [W/m^{20}C] = 92,6$

Coeficiente de condensación al exterior de los tubos

El vapor de agua saturado se emplea a las mismas condiciones en todos los hervidores.

Fluido: Vapor de agua saturado

 $h_c[W/m^{20}C] = 7014,28$

Coeficiente global de transferencia de calor: $U_0 [W/m^{20}C] = 1697,103$

Diámetro de coraza

Un solo paso por los tubos y uno por la coraza

Arreglo triangular con espacio entre tubos $P_t = 1,25d_0 = 37,5$ mm Diámetro del haz de tubos D_h [mm] = 156.7

Número de tubos en la fila central

Tubos en la fila central= $D_b/P_t = 4$

Usando un intercambiador de tubo fijo, desde la figura 12.10 [22] se obtiene el diámetro limpio de haz de tubos.

Diámetro limpio de haz de tubos 10mm

Dónde Ds = Db + diámetro limpio de haz de tubos =166,7 mm

El tamaño de tubo estándar más cercano para la coraza sería 168,3 mm [22],

Deflectores:

Espacio entre deflectores I_B [mm] =Ds [22] = 166.7

Número de deflectores:

$$N = \frac{L}{l_{p}} + 1 = 16$$

Según la tabla 7.1 [40] el diámetro de boquilla es 50,8 mm

Hervidor de la columna DESTILL.

Intercambiador tipo caldera. **Fluido Frío** = Mezcla Presión [atm] = 0,00098692Punto de burbuja [°C] = 152,6

Fluido caliente = Vapor de agua. Presión [bar] = 22,0 T_{sat} [°C] = 217

Cantidad de calor [J/s] Q = 779931

Cantidad de vapor de agua en W_s [kg/s]. $Q = W_s H_{vs}$ W_s [Kg/s] = 0.42 H_{vs} [J/Kg] = 1869553,9 Máximo calor necesitado, añadiendo el 5% por pérdidas de calor Q`[J/s]. $Q` = Q^*1,05$ Q` = 818927,8

> El valor de U asumido es: U [W/m²°C] = 79,32

Temperatura media logarítmica ΔT_m [°C] :

Asumiendo ambas corrientes como isotérmicas. $\Delta T_m[^oC] = 64,4$

Área de transferencia de calor requerida: A $[m^2] = 160,20$

Tubos de 25mm de d_i, 30mm de diámetro de d_o y 4,8 m de longitud.

Área de un tubo en U:

$$A_t [m^2] = 0,45$$

Número de tubos U:

$$N_t = \frac{A}{A_t} = 354$$

Arreglo al cuadrado, espacio entre tubos $p_t [mm] = 1,5d_o$ Dibujar un diagrama de trazado tomando como el mínimo radio de curvatura $1,5d_o$ Radio de curvatura $[mm]=1,5d_o = 45$

Diámetro de haz de tubos $D_b[mm] = 1389$ El diagrama propuesto da 344 tubos U. Número de perforaciones = 688

Coeficiente de ebullición:

Usando la ecuación de MostinsKi [22]. Flujo de calor basado sobre al área estimada. $q=Q'/A = 5111.91 \text{ W/m}^2$

Presión crítica de la mezcla.

$$P_{c}$$
 [bar] = 12,14

Presión de operación.

P[bar] = 0,001

$$h_{nb} = 0.104(P_c)^{0.69}(q)^{0.7} \left[1.8 \left(\frac{P}{P_c} \right)^{0.17} + 4 \left(\frac{P}{P_c} \right)^{1.2} + 10 \left(\frac{P}{P_c} \right)^{10} \right]$$

$$h_{nb}[W/m^{20}C] = 83.6$$

Tomar como el coeficiente de condensación del agua como 8000 W/m²°C y el coeficiente de incrustación como 5000 W/m²°C.

El factor de incrustación de la mezcla tomarla como 5000 W/m² C. Material de construcción acero al carbón $K_w[W/m^{\circ}C] = 51,19$

Coeficiente global de transferencia de calor.

$$\frac{1}{U_o} = \frac{1}{h_o} + \frac{1}{h_{od}} + \frac{d_o \ln\left(\frac{d_o}{d_i}\right)}{2k_w} + \frac{d_o}{d_i} \times \frac{1}{h_{id}} + \frac{d_o}{d_i} \times \frac{1}{h_i}$$

h_i=h_c [W/m²^oC] Coeficiente de transferencia de calor en el interior de los tubos

Verificación del flujo de calor por m² permisible.

Usando la ecuación modificada de Zuber se calcula el máximo flujo de calo por m² permisible [22].

$$q_{cb} = K_b \left(\frac{p_t}{d_o}\right) \left(\frac{\lambda}{\sqrt{N_t}}\right) \left[\sigma g(\rho_L - \rho_v)\rho_v^2\right]^{0.25}$$

 $q_{cb}[W/m^2] = 1944,83$ $K_b=$ para arreglo cuadrado de tubos es 0,44

Aplicando un factor de 0,7 [22] $q_{cb}[W/m^2] = 1361,38$

Calor latente de vaporización λ [J/kg] = 237215,6 Tensión superficial σ [N/m] = 0,0209

Entalpía de vaporización estimada

 $\begin{array}{l} x_i = Composición másica del líquido que deja el hervidor. \\ H_v[J/kg] = Entalpía de vaporización del componente puro \\ \rho_L[kg/m^3] = 873,3 \\ \rho_v[kg/m^3] = 0,0079 \end{array}$

TABLA A8.2. Determinación del calor latente de vaporización de la mezcla.

Componente	Xi	H _v	x _i (H _v)
TRIPALMI	0,090	47930,19	4315,94
METPAL	0,418	252802,00	105569,77
TRIOLE	0,092	42158,99	3896,93
METHY-01	0,397	298244,00	118371,63
GLYCEROL	0,000	858954,00	159,84
METHANOL	0,001	866953,00	762,93
WATER	0,002	2112160,00	4138,52
			237215,57

Fuente: Los autores Elaborado: Los autores

Diámetro de coraza.

 $D_{s}=1,5D_{b}=2083,5$ mm

Altura del líquido desde la base = 1500 mm. Espacio libre de líquido [mm] = D_s - 1500 = 584 es satisfactorio. El espacio libre de líquido debe ser al menos 0,25 m [22].

Desde el diagrama el ancho del líquido es igual a 1,871 m Área superficial del líquido $[m^2] = 1,871 \text{ m} * 2,4 \text{ m} = 3,12 \text{ m}^2$ Cantidad de vapor producido [kg/s] = 1,198Velocidad volumétrica del agua $[m^3/s] = 150,97$ Velocidad actual lineal del agua [m/s] = 33,62

Velocidad máxima permitida:

Criterio de aceptación:

$$\hat{u}_v < 0.2 \left[\frac{\rho_L - \rho_v}{\rho_v} \right]^{1/2}$$

u = 66,351
33,62 m/s < 66,35 m/s

La actual velocidad es menor que la máxima velocidad permitida, cumpliéndose a cabalidad ésta restricción.

Condensador de la columna MEOHREC1

Condensación dentro de los tubos

Vapor a condensar: Metanol Fluido de enfriamiento: Agua

Orientación del condensador: Vertical [22]

t₁ [ºC]	Temperatura de entrada del líquido frío.
$t_2 [\circ C]$	Temperatura de salida del líquido frío.
T₁[ºC]	Temperatura de entrada del vapor.
$T_2[^{\circ}C]$	Temperatura de salida del vapor.
W _c [Kg/s]	Flujo másico del metanol.
W _s [Kg/s]	Flujo másico del agua.
Cp _s [J/Kg ^o C]	Capacidad calorífica del agua.
ΔP [Kpa]	Caída de presión.
U [W/m ² °C]	Coeficiente global de transferencia de calor.
ΔT _m [⁰C]	Temperatura media logarítmica.
f _t	Factor de corrección de la temperatura.
A [m ²]	Área de transferencia de calor.
d _o [mm]	Diámetro externo de un tubo.
d _i [mm]	Diámetro interno de un tubo.
L [m]	Longitud de un tubo.
A _t [m ₂]	Área longitudinal de un tubo
Nt	Número de tubos
D _b [mm]	Diámetro de haz de tubos
D _s [mm]	Diámetro de coraza
l _B [mm]	Espacio entre deflectores
Ν	Número de deflectores
H _{v2} [KJ/kg]	Entalpía de vaporización del vapor de metanol
T _{pm1} [⁰C]	Temperatura promedio del líquido frío
K _w [W/m,K]	Conductividad térmica del acero al carbono
ρ∟ [kg/m³]	Densidad del vapor condensando
K _L [W/m⁰C]	Conductividad térmica del vapor condensado
T _{sat}	Temperatura de saturación del vapor
C _{pL} [J/kgK]	Capacidad calorífica del líquido a presión constante
Pr	Número de Prandt
$A_c [m^2]$	Area seccional de un tubo
W _s [kg/s]	Flujo másico en el lado de la coraza
Wc[kg/s]	Flujo másico en el lado de los tubos
G _s [kg/m ² s]	Velocidad másica en el lado de la coraza
ρ₅[kg/m³]	Densidad del agua
µ₅ [Ns/m²]	Viscosidad del agua
d _e [m]	Diámetro equivalente de la coraza
N _p	Número de pasos de los tubos
H _{vs} [KJ/kg]	Entalpía de vapor del fluido del lado de la coraza

Flujo en contracorriente

 $\begin{array}{l} t_1[\ ^{o}C] = 25 \\ t_2[\ ^{o}C] = 35 \\ T_1[\ ^{o}C] = 64,54 \\ T^2[\ ^{o}C] = 40 \\ \Delta t_1[\ ^{o}C] = t_2 - t_1 = 10 \end{array}$

 $\begin{array}{l} \Delta T_2[^{o}C] = T_1 - T_2 = 24,54 \\ C_{ps} \left[J/kg \ ^{o}C \right] = 3895,601 \\ \Delta P \ maximo \ permitido \ [Kpa] = 68,94 \\ H_{v2}[KJ/kg] = 1097,05 \\ W_c[kg/h] = 1150 \\ K_w[W/m,K] = 51,19 \\ \end{array}$ Balance de energía

$$\begin{aligned} & \text{Qcedido}[J/s] = \text{Qganado} \ \text{Q}_g \left[J/s\right] \\ & 350445,95 = \text{Q}_g = W_s \text{C}_{ps} \Delta t_1 \end{aligned}$$

Agua de enfriamiento.

$$W_s, kg/s = \frac{Qg}{Cp_s\Delta t_1} = 9$$

Ecuación general para transferencia de calor.

 $Q = UA\Delta T_m$

El coeficiente global de transferencia de calor es: $U[W/m^{20}C] = 930.45$

Temperatura media logarítmica en un flujo en contracorriente

$$\Delta T_{m} = \frac{(T_{1} - t_{2}) - (T_{2} - t_{1})}{\ln \frac{(T_{1} - t_{2})}{(T_{2} - t_{1})}}$$
$$\Delta T_{\text{im}} \ [^{\circ}\text{C}] = 21,45$$

Probar un paso por la coraza y un paso por los tubos.

Corrección de la temperatura media logarítmica $\Delta T_m \, {}^{o}C = f_t \Delta T_{im} = 21,02$

El factor de corrección de la temperatura está en función de las temperaturas de los fluidos en la coraza y los tubos, se emplea dos relaciones adimensionales.

$$R = \frac{(T_1 - T_2)}{(t_2 - t_1)} = 2,4535$$
$$S = \frac{(t_2 - t_1)}{(T_1 - t_1)} = 0,2529$$

Según la figura 12.19 [22]

$$f_t = 0,98$$

Área provisional de transferencia de calor A $[m^2] = 17,91$

Especificaciones de los tubos

 $\begin{array}{l} d_o[mm] = 20 \\ d_i \ [mm] = 16 \\ L \ [mm] = 1,83 \\ \end{array} \\ \begin{array}{l} \text{Material} = \ \text{Acero al carbono} \end{array}$

Área de un tubo [m²]

$$A_{t} = \pi d_{0} L$$

 $A_{t} = 0,114982291$

Número de tubos

$$Np = 1$$
$$N_t = \frac{A}{A_t} = 156$$

Arreglo triangular con espacio entre tubos $1,25d_0$ $P_t \text{ [mm]} = 25$

Diámetro del haz de tubos

$$D_b = d_0 \left(\frac{N_t}{K_1}\right)^{\frac{1}{n}} = 360,2$$
mm

Dónde n y K1 son constantes obtenidas de la tabla 12.4 [22] n = 2,142 $K_1 = 0,319$

Número de tubos en la fila central
Tubos en la fila central =
$$D_b/P_t = 14$$

Usar un intercambiador de tubo fijo, desde la figura 12.10 [22] se obtiene el diámetro limpio de haz de tubos.

Diámetro limpio de haz de tubos 10 mm

Diámetro de la coraza.

Dónde
$$D_s = D_b + Diámetro limpio de haz de tubos $D_s[mm] = 371,20$$$

El tamaño de tubo estándar más cercano para la coraza sería 460,4 mm [22],

Deflectores
$$I_{B} [mm] = 0,5D_{s} [22]$$

 $I_{B} [mm] = 185,6$

Número de deflectores

$$N = \frac{L}{l_B} + 1 = 11$$

Según la tabla 7.1 [40] el diámetro de boquilla es 50,8 mm

Coeficiente de condensación del lado de los tubos

Propiedades del vapor a T_{sat}.

$$T_{sat}[^{o}C] = 64,535$$

 $\begin{array}{l} \mu_{\text{L}}[\text{Ns/m}^2] = 0,0004 \\ \mu_{\text{v}} \; [\text{Ns/m}^2] = 1,1011\text{E-}05 \\ \rho_{\text{L}} \; [\text{Kg/m}^3] = 774,829 \\ \rho_{\text{v}} \; [\text{Kg/m}^3] = 1,156 \\ \text{K}_{\text{L}}[\text{W/m}^{\text{o}}\text{C}] = 0,189 \\ \text{C}_{\text{p}}[\text{J/Kg}\;\text{K}] = 3567,703 \\ \text{Pr} = 8,44 \end{array}$

Tasa de condensado por perímetro de tubo vertical

$$\Gamma = \frac{Wc}{\pi d_i} = 6.36 \text{ kg/ms}$$

Número Reynolds en el lado del condensado.

$$\operatorname{Re}_{c} = \frac{41}{u_{L}} = 56905,0$$

Desde la figura 12.43 [22] el valor de

$$\frac{h_c}{K_L} \left[\frac{{u_L}^2}{\rho_L (\rho_L - \rho_v)g} \right]^{\frac{1}{3}} = 0,650$$

1

Coeficiente de condensación

$$h_c = 0.92 K_L \left[\frac{{u_L}^2}{\rho_L (\rho_L - \rho_v)g} \right]^{-\frac{1}{3}} = 5363,66 \text{ W/m}^{20}\text{C}$$

.

Coeficiente de condensación según el método BoyKo-Kruzhilin. Área seccional de un tubo $A_c[m^2] = (\pi d_i^2/4)N_t/N_p = 0,031365661$

Velocidad del fluido a condensación total.

$$u_l = \frac{W_c}{\rho_L A_c} = 0,013 \text{ m/s}$$

Número de Reynolds.

$$\operatorname{Re} = \frac{\rho_L u_l d_i}{u_L} = 364,77$$

Correlación usada por BoyKo-Kruzhilin[22].

$$h_i = 0.021 \left(\frac{K_L}{d_i}\right) \text{Re}^{0.8} \text{Pr}^{0.43} = 69,505$$

Coeficiente de condensación.

$$h_c = h_i \left(\frac{1 + \sqrt{\frac{\rho_L}{\rho_V}}}{2} \right) = 934,34 \text{ W/m}^{20}\text{C}$$
Valor tomado para el cálculo del coeficiente global de transferencia de calor

Coeficiente de transferencia de calor del lado de la coraza.

Área de cruce de flujo.

$$A_{s} = \frac{(p_{t} - d_{o})D_{s}l_{B}}{p_{t}}$$
$$A_{s} [m^{2}] = 0.013779621$$

Velocidad másica y velocidad lineal

$$G_s = \frac{W_s}{A_s}$$

$$G_s \text{ [kg/m2.s]} = 652,844$$

$$u_s = \frac{G_s}{\rho}$$

$$u_s \text{ [m/s]} = 0,658$$

$$Tp_{m1} = \frac{t_1 + t_2}{2}$$

 $T_{pm1} = 30^{\circ}C$

Propiedades físicas.

$$\rho_{s}[kg/m^{3}] = 992,83$$

 $\mu_{s} [Ns/m^{2}] = 0,0008$
 $k_{s} [W/m K] = 0,61$

Diámetro equivalente por el lado de la coraza.

$$d_e = \frac{4\left(\frac{p_t^2 - \pi d_o^2}{4}\right)}{\pi d_o} = \frac{1.27}{d_o}(p_t^2 - 0.785d_o^2)$$

$$d_e[m] = 0.0164$$

Prandt

$$Pr = \frac{C_p \mu}{k_f}$$
$$Pr = 5,207$$

Reynolds

$$Re = \frac{G_s d_e}{\mu} = \frac{u_s d_e \rho}{\mu}$$

Re = 13059,665

Desde la figura 12.29 [22] con un corte de deflector de 0,25 se lee el valor de $j_{\rm h}$ para calcular el coeficiente de transferencia h_s de calor desde la fórmula.

$$j_{h} = 0,0055$$

 $Nu = \frac{h_{s}d_{e}}{k_{f}} = j_{h}RePr^{1/3} \left(\frac{\mu}{\mu_{w}}\right)^{0.14}$

Donde:

$$\left(\frac{\mu}{\mu_{\scriptscriptstyle W}}\right)^{0.14} \ {\rm es\ despreciable}$$

$$h_{s} [W/m^{20}C] = 4655,97$$

Coeficiente global de transferencia de calor:

Desde la Tabla 12,2 [22] el factor de suciedad h_{od} para el agua de río es 3000 W/m² C y para el metanol como líquido orgánico h_{id} es 5000W/m² C.

$$\frac{1}{U_o} = \frac{1}{h_o} + \frac{1}{h_{od}} + \frac{d_o \ln\left(\frac{d_o}{d_i}\right)}{2k_w} + \frac{d_o}{d_i} \times \frac{1}{h_{id}} + \frac{d_o}{d_i} \times \frac{1}{h_i}$$

 $\begin{array}{ll} 1/U_0 = & 0,001 \\ U_0[W/m^{20}C] = & 930,45 \\ h_o = & h_s \left[W/m^{20}C\right] & \text{Coeficiente de transferencia de calor fuera de los tubos} \\ h_{od} \left[W/m^{20}C\right] & \text{Factor de suciedad en el exterior de los tubos} \\ h_{id}[W/m^{20}C] & \text{Factor de suciedad en el interior de los tubos} \\ h_i = & h_c[W/m^{20}C] & \text{Coeficiente de transferencia de calor en el interior de los tubos} \\ \end{array}$

Caída de presión en el interior de los tubos:

Caída de presión permitida 35Kpa para un liquido condensado [22] Caída de presión para el condensado total es 0,5 de la calculada en las condiciones de entrada del vapor[22]

Velocidad lineal ut [m/s].

$$u_l = \frac{W_c}{\rho_v A_c} = 8,81$$

Reynolds.

$$\operatorname{Re} = \frac{u_{t} \rho_{v} d_{i}}{\mu_{v}} = 1,4799 \text{E} + 04$$

Usando la figura 12.24 [22] y el número de Reynolds se obtiene el factor de fricción. $j_f = 0.0045$

$$\Delta P_t = N_p \left[8j_f \left(\frac{L}{d_i}\right) \left(\frac{\mu}{\mu_w}\right)^{-m} + 2.5 \right] \frac{\rho u_t^2}{2}$$

Donde:

$$\left(\frac{\mu}{\mu_w}\right)^{-m}$$
es despreciable

N_p = Número de pasos por los tubos

$$\Delta p_t[N/m2] = 296$$

 $\Delta p_t [Kpa] = 0,30$
 $\Delta p_t/2 [Kpa] = 0,15$

Caída de presión en el exterior de los tubos:

Caída de presión permitida 35Kpa[22].

$$\Delta P_s = 8j_f \left(\frac{D_s}{d_e}\right) \left(\frac{L}{l_B}\right) \frac{\rho u_s^2}{2} \left(\frac{\mu}{\mu_w}\right)^{-0.14}$$

Donde:

$$\left(\frac{\mu}{\mu_w}\right)^{-0.14}$$
 es despreciable.

ΔP_s [N/m2] = 15083,34 ΔP_s [Kpa] = 15,01

Reynolds

Re = 13019,12

Desde la figura 12.30 [22] el valor de fricción j_f es: j_f = 0,048

Condensador de la columna GLYCERPU.

El proceso de cálculo para dimensionar el condensador de la columna GLYCERPU es idéntico al ejemplo anterior es por ésta razón que ha continuación se presenta un resumen simplificado de los resultados de las principales variables.

Especificaciones:

Condensación dentro de los tubos Vapor = Vapor de agua Líquido frío = Agua Orientación del intercambiador = Vertical [22] Flujo en contracorriente

 $\begin{array}{l} t_1[\ ^0C] = 25 \\ t_2[\ ^0C] = 35 \\ T_1[\ ^0C] = 100,00 \\ T_2[\ ^0C] = 40 \\ \Delta t_1[\ ^0C] = t_2 \ -t_1 = 10 \\ \Delta T_2[\ ^0C] = T_1 \ -T_2 = 60,00 \\ C_{ps}[\ J/kg\ ^0C] = 3895,601 \\ K_w[W/m,K] = 51,190 \end{array}$

Balance de energía.

Agua de enfriamiento.

Ecuación general para transferencia de calor.

$$Q = UA\Delta T_m$$

Según la figura 12.1 [22] el coeficiente global de transferencia de calor es: $U[W/m^{20}C] = 1175,61$

Temperatura media logarítmica en un flujo en contracorriente. $\Delta T_{\text{Lm}} \ [^{o}C] =$

Un paso por la coraza y uno por los tubos

Corrección de la temperatura media logarítmica.

$$\Delta T_{m} [^{o}C] = f_{t}\Delta T_{lm} \qquad 34,10$$

$$f_{t} = 1$$

Área provisional de transferencia de calor. A $[m^2]= 1,67$

Especificaciones de los tubos

Área de un tubo.

 $A_t [m^2] = 0,115$

Número de tubos.

Arreglo triangular con espacio entre tubos $1,25d_0$. $P_t [mm] = 25$

Diámetro del haz de tubos.

$$\begin{array}{l} Db[\mbox{ mm}] = 120,7\\ n = 2,142\\ K_1 = 0,319 \end{array}$$

Número de tubos en la fila central.

Tubos en la fila central= $D_b/P_t = 5$ Intercambiador de tubo fijo. Diámetro limpio de haz de tubos 10mm Diámetro de coraza D_s.

 $D_s = D_b$ + diámetro limpio de haz de tubos $D_s[mm] = 130,7$

El tamaño de tubo estándar más cercano para la coraza sería 114,3 mm [22],

Deflectores

 $I_{B}[mm] = 0,5Ds [22]$ $I_{B}[mm] = 65,36$

Número de deflectores.

N=29

Según la tabla 7.1 [40] el diámetro de boquilla es 50,8 mm

Coeficiente de condensación del lado de los tubos Propiedades del vapor a Tsat.

 $\begin{array}{l} T_{sat}[^{o}C] = 100,000 \\ \mu_{L}[Ns/m^{2}] = 0,0003 \\ \mu_{v} \ [Ns/m^{2}] = 1,3066E\text{-}05 \\ \rho_{L} \ [Kg/m^{3}] = 926,335 \\ \rho_{v} \ [Kg/m^{3}] = 0,595 \\ K_{L}[W/m^{o}C] = 0,634 \\ C_{p}[J/Kg\ K] = 2760,887 \\ Pr = 1,250 \end{array}$

Tasa de condensado por perímetro de tubo vertical. Γ [Kg/m,s] = 0,59

Número Reynolds en el lado del condensado. R_{ec} = 8167

Desde la figura 12.43 [22] el valor de.

$$\frac{h_c}{K_L} \left[\frac{u_L^2}{\rho_L(\rho_L - \rho_v)g} \right]^{\frac{1}{3}} = 0,410$$

Coeficiente de condensación.

$$h_c = 0.92 K_L \left[\frac{{u_L}^2}{\rho_L (\rho_L - \rho_v)g} \right]^{-\frac{1}{3}} = 27251,97 \text{ W/m}^{20}\text{C}.$$

Coeficiente de condensación según el método BoyKo-Kruzhilin.

Área seccional de un tubo.

 $A_c[m_2] = (\pi d_i^2/4)N_t/N_p = 0,003015929$

Velocidad del fluido a condensación total.

 $u_l = 0,011 \text{ m/s}$

Número de Reynolds.

Re = 544,46

Correlación usada por BoyKo-Kruzhilin $h_i = 141,37 \text{ W/m}^{20}\text{C}$

Coeficiente de condensación $h_c \left[W/m^{20}C\right] = 2859,63$

Valor tomado para el cálculo del coeficiente global de transferencia de calor Coeficiente del lado de la coraza

Área de cruce de flujo. $A_s [m^2] = 0,00171$

Velocidad másica y velocidad lineal.
$$\label{eq:Gs} \begin{split} G_s[Kg/m^2.s] = 1008{,}54\\ u_s\;[m/s] = 1{,}016 \end{split}$$

Temperatura media del agua lado de la coraza. $T_{pm1} [^{o}C] = 30$

Propiedades físicas.

 $\begin{array}{l} \rho_{s}[kg/m^{3}] = 992,83\\ \mu^{s}\;[Ns/m^{2}] = 0,0008\\ k_{s}\;[W/m\;K] = 0,61 \end{array}$

Diámetro equivalente por el lado de la coraza $d_{em} [mm] = 0,0164$

Prandt.

$$Pr = 5,207$$

Reynolds.

Re = 20175,080

Desde la figura 12.29 [22] con un corte de deflector de 0,25 se lee el valor de jh para calcular el coficiente de transferencia h_s de calor desde la fórmula.

j_h = 0,0043 h_s [W/m2°C] =5623,40

Coeficiente global de transferencia de calor

Desde la tabla 12.2 [22] el factor de suciedad h_{od} para el agua de río es 3000 W/m² C y para el metanol como líquido orgánico h_{id} es 5000W/m² C.

$$\frac{1}{U_o} = \frac{1}{h_o} + \frac{1}{h_{od}} + \frac{d_o \ln\left(\frac{d_o}{d_i}\right)}{2k_w} + \frac{d_o}{d_i} \times \frac{1}{h_{id}} + \frac{d_o}{d_i} \times \frac{1}{h_i}$$

h_i=h_c[W/m²°C] Coeficiente de transferencia de calor en el interior de los tubos

Caída de presión en el interior de los tubos

Caída de presión permitida 35 kpa para un liquido condensado [22] Caída de presión para el condensado total 0,5 de la calculada a las condiciones de entrada del vapor [22].

Velocidad lineal ut [m/s].

u_t =16,41

Reynolds

Re = 1,1955E+04

Usando la figura 12.24 [22] y el número de Reynolds se obtiene el factor de fricción.

 $\begin{array}{ll} j_{\rm f} = 0,0045 \\ L/d_{\rm i} = 114,375 \\ Np = & Número \ de \ pasos \ por \ los \ tubos \\ \Delta p_t [N/m^2] = 529,98 \\ \Delta p_t \ [Kpa] = 0,53 \\ \Delta p_t/2 \ [Kpa] = 0,26 \end{array}$

Caída de presión en el exterior de los tubos.

Caída de presión permitida 35Kpa [22].

$$\Delta P_{s} [N/m^{2}] = 30747,28$$

 $\Delta P_{s} [Kpa] = 30,7$

Reynolds.

Re = 20175,08

Desde la figura 12.30 [22] el valor de jf es: jf = 0,041

Condensador de la columna DESTILL

El proceso de dimensionamiento es idéntico al ejemplo anterior, por lo que a continuación se ilustra un resumen simplificado.

Especificaciones.

Condensación dentro de los tubos Vapor = Biodiesel Líquido frío = Agua Orientación = Vertical [22] Flujo en contracorriente $t_1[\ ^{\circ}C] = 25$ $t_2 \ [^{\circ}C] = 35$ $T_1[\ ^{\circ}C] = 150,73$ $T_2[\ ^{\circ}C] = 40$ $\Delta t_1[\ ^{\circ}C] = t_2 - t_1 = 10$ $\Delta T_2[\ ^{\circ}C] = T_1 - T_2 = 110,73$ $Cp_s \ [J/Kg\ ^{\circ}C] \ 3895,601$ $K_w[W/mK] = 51,19$ Balance de energía.

Qcedido[J/s] = Qganado[J/s]676480,12= $Q_g = W_sCp_s\Delta t_1$

Cantidad de agua de enfriamiento. $W_s[Kg/s] = 17,37$

Ecuación general para transferencia de calor.

$$Q = UA\Delta T_m$$

Según la figura 12.1 [22] el coeficiente global de transferencia de calor es: $U[W/m^{20}C] = 672,88$

Temperatura media logarítmica en un flujo en contracorriente: ΔT_m [°C] = 49,30

Un paso por la coraza y un paso por los tubos

Corrección de la temperatura media logarítmica: $\Delta T_m \ [^oC] = f_t \Delta T_{im} = 49,30$

El factor de corrección de la temperatura está en función de las temperaturas de los fluidos en la coraza y los tubos, se emplea dos relaciones adimensionales.

Según la figura 12.19 [22] $f_t = 1$

Área provisional de transferencia de calor. A $[m^2] = 20.39$

Especificaciones de los tubos.

d_o[mm] = 20 di [mm] = 16 L [mm] = 1,83 Material = Acero al carbono

Área de un tubo.

Número de tubos supuesto $N_n = 1$

$$N_t = 177$$

Número de tubos resultantes después de corregir la caída de presión $N_{t}=513\,$

Arreglo triangular con espacio entre tubos $1,25d_{0.}$ $P_t \text{ [mm]} = 25$

Diámetro del haz de tubos.

 D_{b} [mm] = 628,1

Dónde n y K_1 son constantes obtenidas de la tabla 12.4 [22]

$$n = 2,142$$

 $K_1 = 0,319$

Número de tubos en la fila centra.

Tubos en la fila central = D_b/P_t = 25

Usando un intercambiador de tubo fijo, desde la figura 12.10 [22] se obtiene el diámetro limpio de haz de tubos.

Diámetro limpio de haz de tubos 12mm

Diámetro de la coraza.

Dónde $D_s = D_b$ +Diámetro limpio de haz de tubos $D_s[mm] = 640,1$

El tamaño de tubo estándar más cercano para la coraza sería 711,2 mm [22],

Deflectores

 $I_{B} mm =0.3Ds [22]$ $I_{B} mm = 190.90$ Número de deflectores. N =11

Según la tabla 7.1 [40] el diámetro de boquilla es 50,8mm

Coeficiente de condensación del lado de los tubos

Propiedades del vapor a T_B. $T_B[^{o}C] = 151,095$ $\mu_L[Ns/m^2] = 0,0008$ $\mu_v [Ns/m^2] = 5,8450E-06$ $\rho_L [kg/m^3] = 829,344$ $\rho_v [kg/m^3] = 0,008$ $K_L[W/m^{o}C] = 0,093$ Cp[J/kg K] = 2088,416 Pr = 17,166

Tasa de condensado por perímetro de tubo vertical. Γ [kg/m,s] = 29,09

Número Reynolds en el lado del condensado. $R_{ec} = 152261,3$

Desde la figura 12.43 [22] el valor de valor de la siguiente fórmula es:

$$\frac{h_c}{K_L} \left[\frac{{u_L}^2}{\rho_L (\rho_L - \rho_v)g} \right]^{\frac{1}{3}} = 0,90$$

Coeficiente de condensación.

 $h_c [W/m^{20}C] = 1933,812$

Coeficiente de condensación según el método BoyKo-Kruzhilin. Área seccional de un tubo

 $A_{c}[m^{2}] = (\pi d_{i}^{2}/4)N_{t}/N_{p} = 0,10188$

Velocidad del fluido a condensación total. u_1 [m/s] =0,017

Número de Reynolds.

Re = 300,48

Correlación usada por BoyKo-Kruzhilin hi´= 39,78W/m²°C

Coeficiente de condensación. $h_c [W/m^{20}C] = 6490,79$

Valor tomado para el cálculo del coeficiente global de transferencia de calor

Çoeficiente del lado de la coraza.

Área de cruce de flujo. $A_s [m^2] = 0,0242$

Velocidad másica y velocidad lineal. $G_s[kg/m^2s] = 714,750$ $u_s [m/s] = 0,720$ Temperatura media del agua del lado de la coraza. $T_{pm1} \ ^{o}C = 30$ Propiedades físicas. $\rho_s[kg/m^3] = 992,83$ $\mu_s [Ns/m^2] = 0,0008$ $k_s [W/m K] = 0,61$ Diámetro equivalente por el lado de la coraza. $d_{em} = 0,0164$ Prandt. Prandt. Pr = 5,207 Reynolds. Re = 14298,05 Desde la figura 12.29 [22] con un corte de deflector de 0,25 se lee el valor de j_h para calcular el coeficiente de transferencia de calor desde h_s la fórmula.

$$j_h = 0,005$$

 $h_s [W/m^{20}C] = 4634,063044$

Coeficiente global de transferencia de calor

$$\frac{1}{U_o} = \frac{1}{h_o} + \frac{1}{h_{od}} + \frac{d_o \ln\left(\frac{d_o}{d_i}\right)}{2k_w} + \frac{d_o}{d_i} \times \frac{1}{h_{id}} + \frac{d_o}{d_i} \times \frac{1}{h_i}$$

 $1/U_0 = 0,001$ $U_0[W/m^{20}C] = 671,54$

Desde la tabla 12.2 [22] el factor de suciedad h_{od} para el agua de río es 3000 W/m2ºC y para el metanol como líquido orgánico h_{id} es 5000W/m2ºC.

Caída de presión en el interior de los tubos

Caída de presión para el condensado total de 0,5 del calculado a las condiciones de entrada del vapor [22].

Velocidad lineal ut [m/s].

Reynolds.

u_t = 1831,69 Re = 3,9292E+04

Usando la figura 12.24 [22] y el número de Reynolds se obtiene el factor de fricción. $j_f = 0,003$

$$\begin{split} Np &= N \dot{u} mero \ de \ pasos \ por \ los \ tubos \\ \Delta p_t [N/m2] &= 68950,01 \\ \Delta p_t \ [Kpa] &= 68,95 \\ \Delta p_t/2 \ [Kpa] &= 34,48 \end{split}$$

Corrección de la caída de presión en los tubos.

La caída de presión es proporcional a la velocidad lineal al cuadrado, y u es directamente proporcional al número de tubos. Entonces el número de tubos es igual a:

$$N_{t1} = N_t \left(\frac{\Delta P}{\Delta P_1}\right)^2$$

Donde:

 $N_{t1} = N$ úmero de tubos corregido. $\Delta P_1 = Caída de presión corregida.$ $N_{t1} = 493$

Área de transferencia de calor corregida. A $[m^2] = 59,46$

Caída de presión en el exterior de los tubos

Caída de presión permitida 35Kpa [22].

$$\Delta P_{s} [N/m^{2}] = 31388,07$$

 $\Delta P_{s} [Kpa] = 31,39$

Reynolds

Re = 14298,05

Desde la figura 12.30 [22] el valor de j_f es: $j_f = 0,050$

Diámetro óptimo económico de una tubería

Peters y Timmerhaus (Plant Design and Economics for Chemical Engineers, 4^a ed., Mc Graw Hill, New York, 1991, p 496), recomiendan las siguientes ecuaciones para determinar el diámetro óptimo económico de tuberías:

Para flujo turbulento (Re>2100 y 0.02≤µc≤20)

Para Flujo viscoso (Re<2100

y µc>20)

$$D_{i,opt}=3.9q_f^{0.45}\rho^{0.13}$$

 $D_{i,opt}=3q_{f}^{0.36}\mu_{c}^{0.18}$

Donde:

Di,opt = diámetro óptimo interno, in qf = flujo volumétrico, ft³/s ρ = densidad del fluido, ft³/s

Al utilizar la fórmula para flujo turbulento:

 $D_{i,opt} = 3.9(0.00432)^{0.45}(51.38)^{0.13} = 0.562$ in

Comprobando que sea flujo turbulento:

DIMENSIONAMIEMTO DE LA COLUMNA DE EXTRACCION LIQUIDA.

Se realizó el dimensionamiento de la columna de extracción líquida de acuerdo a la siguiente metodología [34].

Nomenclatura:

- u_D = Velocidad actual promedio de la fase dispersa
- u_c = Velocidad actual promedio de la fase continua
- U_D = Velocidad superficial de la fase dispersa
- U_c = Velocidad superficial de la fase continua
- Ø_D= Fracción volumétrica de la fase dispersa en la columna
- u_r = Aumento de velocidad relativa promedio de gota hacia la fase continua
- C = Parámetro de capacidad
- C_D = Coeficiente de obstáculo
- $\rho_M = Densidad$
- ρ_D = Densidad de la fase dispersa
- ρ_{C} = Densidad de la fase continua
- $f(1-\mathcal{O}_D) =$ Factor de efecto de obtaculización de otras gotas
- u_o = Características de aumento de velocidad por una gota
- μ = Viscosidad
- σ = Tensión interfacial
- A_c = Area seccional de la columna
- D_T = Diámetro de la columna
- g = Aceleración gravitacional
- M_D = Flujo másico de la fase dispersa
- M_c = Flujo másico de la fase continua
- ρ_{cD} = Densidad de cada compuesto de la fase dispersa
- σ_{fd} = Tensión superficial de cada componente de la fase dispesa
- F = Flujo másico de la alimentación kg/h
- E = Flujo másico del extracto kg/h
- R = Flujo másico del refinado kg/h
- e = Espaciado entre platos [39]

Propiedades físicas

Fase	Densidad [kg/m ³]	Flujo másico [Kg/h]		
Dispersa M _D	1272,46	409,90		
Continua M _c	962,32	4027,50		

Balance de materiales

F (kg/h)	+	S(kg/h)	=	E(kg/h)	+	R(kg/h)
4387,39944	+	50 =		409,896	+	4027,50
		4437,4 =		4437,4		

Cálculo de la razón de flujo desde la relación de flujos másicos y densidades.

$$\frac{U_{\rm D}}{U_{\rm C}} = \frac{M_{\rm D}}{M_{\rm C}} \frac{\rho_{\rm C}}{\rho_{\rm D}}$$
$$U_{\rm D}/U_{\rm C} = 0.13$$

Usando la figura 9 [34] y la razón de flujo se encuentra la capacidad total de la columna

 $(U_{C}+U_{D})_{f}/u_{0} = 0,42$

Tensión superficial de la fase dispersa

$$\sigma = 0,0722 \text{ N/m} = 72,20 \text{ Dina/cm}$$

Aumento de velocidad característico.

$$u_{o} = \frac{.01 \cdot \sigma \cdot (\Delta \rho)}{\mu_{c} \cdot \rho_{c}}$$
$$u_{o} = 0,012796 \text{ m/s}$$

Intervalo de densidad

$$\rho_{\rm D}$$
 - $\rho_{\rm c}$ = $\Delta \rho$ = 310 kg/m³

Velocidad superficial de inundación $(Uc+UD)f = u_o * 0,42$ $(Uc+U_D)f = 0,005374 \text{ m/s}$

Velocidad superficial al 50% de inundación $(Uc+U_D)f50\% = 9,67 \text{ m/h}$

Flujo volumétrico total.

$$Q_{total} = \left[\frac{M_D}{\rho_D} + \frac{M_C}{\rho_C}\right] = 4,50733 \text{ m}^3/\text{h}$$

Área seccional de la columna.

$$A_{c} = \frac{Q_{Total}}{(U_{c} + U_{d})_{50\%Flood}}$$
$$Ac = 0.4659 \text{ m}^{2}$$

Diámetro de la columna.

$$D_{T} = \left(\frac{4A_{c}}{\pi}\right)^{\frac{1}{2}}$$
$$D_{T} = 0,770 \text{ m}$$

Altura de la columna

Espaciado entre platos [39] = 0,4mh(m)= e(número de platos+1) = 2 h_c= altura por debajo del plato de cola h_d = altura por arriba del plato superior.

n = número de platos teóricos sin considerar los destinados al hervidor y condensador.

e = espaciado entre platos.

h = altura total de la columna.

n	2	2	2		
Parámetro	CR Metanol	CR biodie sel	CR.Glicerina		
h _c (m)	3,048	3,048	3,048		
h _d (m)	1,219	1,219	1,219		
e(m)	0,457	0,9144	0,152		
h(m)	4,724	5,181	4,419		
CR=Columna de re	cuperación	•			

Algoritmo de cálculo de potencia de una bomba

Todas las propiedades y variables en general para el diseño de los intercambiadores de calor y sus corroboraciones respectivas (coraza y tubos, condensador) se basaron en tablas y figuras de los siguientes textos:

- Procesos de Transferencia de Calor. DONALD KERN
- > Transferencia de Calor, J. P. HOLMAN.
- Chemical Engineers, COULSON & RICHARDSON'S

Equipo	Q [m³/h]	γ [Kgf/cum]	z2 [m]	L [m]	D [m]	A [m ²]	V [m/s]	μ [Kg/ms]	ρ[Kg/m³]	Re	f	hf [m]	hw [m]	Potencia [W]
B-1	0,94	287,19	10	20	0,0254	0,000506709	0,9374223	0,00023751	312,32	31310,2757	0,0015	0,05290042	30	65,27778
B-3	1,31	287,19	10	10	0,0254	0,000506709	0,9374223	0,00023751	312,32	31310,2757	0,0015	0,02645021	20	69,97863
B-6	0,38	709	10	25	0,0254	0,000506709	0,03837401	0,00070155	792,92	1101,645	0,053	0,00391523	35	26,38889
B-8	1,12	742,5	5	10	0,0195	0,000298648	0,2697338	0,00070155	742,5	5566,82819	0,014	0,0266235	5	74,07407
B-10	4,8	708,64	5	10	0,0195	0,000298648	1,13474221	0,00061027	708,64	25694,2215	0,0035	0,11779554	15	111,1111
B-12	4,25	708,64	10	15	0,0254	0,000506709	0,66880421	0,00061027	708,64	19725,8787	0,0047	0,06327824	25	101,772
B-15	3,39	691,74	5	25	0,0254	0,000506709	0,6304302	0,00060021	691,74	18454,8444	0,0047	0,09370854	30	94,16667
B-16	0,38	739,18	10	25	0,0254	0,000506709	0,48241615	0,00061027	739,18	14841,7033	0,0048	0,05603924	35	26,38889
B-18	2,79	373,82	10	30	0,0195	0,000298648	0,38134779	0,00023751	373,82	11704,0584	0,0049	0,05587611	40	69,19643
B-20	2,79	993,96	10	30	0,0195	0,000126677	0,10964003	0,0009922	993,96	1394,89838	0,06	0,08683766	40	69,19643
B-22	0,05	933,81	5	20	0,0254	0,000506709	0,11512204	0,0009922	933,81	2752,01932	0,05	0,02659403	25	34,72222
B-24	0,27	1140,43	5	15	0,0195	0,000298648	0,04650583	0,0006013	1140,43	1719,96427	0,042	0,00356141	20	18,75
B-26	0,03	897,27	5	10	0,0254	0,000506709	0,3015101	0,00023751	897,27	28931,8912	0,0035	0,00638468	15	20,83333
B-28	0,35	1140,43	5	10	0,0254	0,000506709	0,02741001	0,0006013	1140,43	1320,44501	0,054	0,0008141	15	24,30556
B-29	0,28	916,87	5	10	0,0254	0,000506709	0,03289201	0,0009922	916,87	772,027333	0,08	0,00173675	15	19,44444
B-30	0,25	916,87	5	20	0,0254	0,000506709	0,03289201	0,0009922	916,87	772,027333	0,08	0,00347351	25	17,36111

Capacidad de tanques, mezcladores y reactores.

El dimensionamiento de los tanques se los realizó en base a la norma API STANDARD 650 Onceava Edición (Junio, 2007), la cual se rige en el siguiente modelo matemático:

$$C = 0,785D^2H$$

En donde: $C = capacidad del tanque en m^3$.

D = diámetro del tanque en m.

H = altura del tanque en m.

Cálculo de potencia de mezclado

El cálculo de las potencias de los mezcladores fue determinado de acuerdo a los siguientes modelos matemáticos:

$$P = N_p D^5 N^3 \rho$$
$$Re = \frac{D^2 N \rho}{\mu}$$

Fuente: Coulson 2005

Donde:

P =potencia requerida, W.

 N_p = número de potencia (Fig. 10.58 Coulson 2005)

D = diámetro del agitador, m (Fig. 10.58 Coulson 2005)

N = velocidad del agitador, rps.

 ρ = densidad del líquido, kg/m³.

Re = número de Reynolds.

 μ = viscosidad del líquido, Ns/m².

Tabla. A9.17: Cálculo de la potencia requerida de los mezcladores.

			MEZCLADOR	RES	REAC	FORES	
		M-1	M-2	M-3	RX1	RX-2	
	Volumen del tanque [m ³]	7,070	38,000	38,000	10,000	0,350	
	Diámtero del tanque [m]	1,96	3,43	3,43	2,20	0,72	
Fig. 10.57 coulson \rightarrow	llson → Tipo de agitador	Turbina	Turbina	Turbina con	Liston	Turbina	
			. ai billa	cuchilla inclinada	helicoidal	i di Dirid	
	Viscosidad del líquido [Ns/m ²]	0,0007410	0,0004445	0,4980205	0,4980205	0,0095580	
	Densidad del líquido [kg/m³]	864,11	793,66	2438,38	2438,38	1261,36	
	Velocidad del agitador [rps]	3,00	3,00	3,00	3,00	10,00	
	D agi/ D tank	0,6	0,4	0,3	0,5	0,6	
	Díametro del agitador [m]	1,1748	1,3716	1,0287	1,099	0,432	
	Número de Reynolds	4828596,503	10077412,9	15543,62569	17740,6789	246286,467	
Fig. 10,58 coulson \rightarrow	Número de Potencia (N _p)	0,26	0,21	0,28	0,29	0,28	
	Potencia requerida (P) [W]	13574,50881	21845,1726	21235,68858	30609,1364	5313,94253	
	Potencia requerida (P) [KW]	13,57450881	21,8451726	21,23568858	30,6091364	5,31394253	

Elaborado: Los autores

ANEXO 10

Layout

ANEXO 11

EVALUACIÓN ECONÓMICA DEL PROYECTO

Costo de los principales componentes de los equipos.

Los costos de los principales componentes de los equipos fueron estimados de acuerdo a las figuras 6.3 a 6.7 y las tablas 6.2, 6.4 y 6.5 propuestas por Coulson., 2005 obteniéndose valores de precios para el año 2004, luego se procedió a actualizarlos al año presente, empleando la tasa anual de inflación publicada en la revista Chemical Engineering (Agosto 2009), a excepción del filtro centrifugo y extractor de aceite sus precios utilizados fueron valores de mercado.

Equipo	S[m³]	Montaje	Material	С	n	Се
TP-1	7,07	Vertical	AC	2400	0,6	7760
TO-2	25	Vertical	AI	2400	0,6	16557
TO-3	2,5	Vertical	AI	2400	0,6	4159
TA-1	153	Vertical	AC	2400	0,6	49094
TA-2	38	Vertical	AC	2400	0,6	21285
TB-1	38	Vertical	AI	2400	0,6	21285
TA-3	0,85	Vertical	AC	2400	0,6	2177
TA-4	0,85	Vertical	AC	2400	0,6	2177
TS-1	7,07	Vertical	AC	2400	0,6	7760
M-1	7,07	Vertical	AI	2400	0,6	7760
M-2	38	Vertical	AC	2400	0,6	21285
M-3	38	Vertical	AC	2400	0,6	21285
RX-1	10	Vertical	AI	2400	0,6	9555
RX-2	0,35	Vertical	AC	2400	0,6	1278
TC-1	10	Vertical	PE	2400	0,6	9555
TH+2-2	5	Vertical	PE	2400	0,6	6304
TS-1	7,07	Vertical	AC	2400	0,6	7760
AC:	Acero al carbón		AI:	Acero inoxidable		217036

Tabla A11.1: Costo de los tanques de proceso del año 2004.

AC: Acero al carbón

AI: Acero inoxidable

Tabla A11.2: Costo de los tanques de almacenamiento del año 2004.

Equipo	S[m³]	Montaje	Tipo de techo	Material	С	n	Ce
TG-1	102	Vertical	Cono	AC	2300	0,55	58545
TB-2	779	Vertical	Cono	AI	2300	0,55	179103
TW-1	38	Vertical	Cono	AC	2300	0,55	34013
TM-1	153	Vertical	Cono	AC	2300	0,55	73171
TO-1	1590	Vertical	Cono	AI	2300	0,55	265171
S - 1	1247	Vertical	Cono	AC	2300	0,55	115999
TH+2-1	10	Vertical	Cono	PE	2300	0,55	8161
PE: polietileno							734162

Costo total de tanques[\$] = Costo de tanques de almacenamiento[\$]+ Costos de tanques de proceso[\$]

Se emplea la siguiente ecuación para calcular los costos:

$$Ce = CS^n$$

Ce= Costo de compra del equipo[\$]

S= Capacidad det tanque[m³]

C= Costo constante del tanque desde tabla 6.2 [22]

n= Indice de costo para tanques

Para acero el costo de compra del equipo es multiplicado por 2

Equipo	Potencia[Kw]	Tipo de agitador	С	n	Ce
M-1	13,57	Turbina	3000	0,5	11051
M-2	21,84	Turbina	3000	0,5	14020
M-3	21,23	Turbina	3000	0,5	13823
RX-1	30,61	Turbina	3000	0,5	16598
RX-2	5,31	Turbina	3000	0,5	6913
					62405

Tabla A11.3: Costo de los agitadores del año 2004.

Se emplea la siguiente ecuación para calcular los costos de los agitadores:

$$Ce = CS^n$$

Ce = Costo de compra del equipo[\$]

S = Potencia requerida [kW]

C = Costo constante de los agitadores tabla 6.2 [22]

n= Índice de costo para los agitadores

Columna	Altura [m]	Diámetro [m]	Númer o de platos	Material	Factor del material	Factor por la Presión	Costo Cubierta [\$]	Costo del Tanque [\$]	Tipo de plato	Costo de un plato[\$]	Costo total de platos[\$]	Costo total de la columna
MEOHREC1	4,724	0,53	4	AC	1	1	9000	9000	Perforado	200	800	9800
GLYCERPU	4,419	0,40	4	AC	1	1	8000	8000	Perforado	200	800	8800
DESTILL	5,181	3,50	4	AC	1	1	30000	30000	Perforado	1400	5600	35600

Tabla A11.4: Costo de las columnas de destilación del año 2004

AC: acero al carbono

Costo de compra del tanque[\$] =Costo desnudo desde la figura 6.5*b* [22]*Factor por el material* Factor por la presión. Costo total por platos[\$] = Costo de un platos desde la figura 6.7*b* [22] * Factor por el material * Número de Platos Costo total[\$]= Costo del tanque[\$] + Costo de Platos [\$]

Equipo	Altura [m]	Diámetro [m]	Número de platos	Material	Factor del material	Factor por la Presión	Costo Cubierta [\$]	Costo del Tanque [\$]	Tipo de plato	Costo de un plato[\$]	Costo total de platos[\$]	Costo total de la columna[\$]
CE.WASHC									Perforad			
OL	2	0,77	4	AC	1	1	8000	8000	0	260	1040	9040

CE: columna de extracción, AC: Acero Inoxidable

9040

54200

Costo de compra del tanque [\$] =Costo desnudo desde la figura 6.5*b* [22]* Factor por el material* Factor por la presión. Costo total por platos [\$] = Costo de un platos desde la figura 6.7*b* [22] * Factor por el material * Número de Platos Costo total [\$]= Costo del tanque [\$] + Costo de Platos [\$]

Equipo	Área de transferencia de calor [m ²]	Material	Tipo de intercambiador	Factor por el tipo	Factor por la presión	Costo desnudo[\$]	Costo de compra [\$]
HC MEOHREC1	192	AC	Tubo fijo	0,8	1	60000	48000
HC GLYCE RPU	1,3	AC	Tubo fijo	0,8	1	7000	5600
HC DESTILL	160	AC	Caldero	1,3	1	57000	74100

Tabla A11.6: Costo de los hervidores del año 2004.

HC: Hervidor de la columnas

127700

Costo de compra[\$]=Costo desnudo des de la figura 6.3b [22]*Factor por el tipo*Factor por la presión.

Tabla A11.7: Costo de los condensadores del año 2004.

Equipo	Área de transferencia de calor [m ²]	Material	Tipo de intercambiador	Factor por el tipo	Factor por la presión	Costo desnudo[\$]	Costo de compra [\$]
C MEOHREC1	17,91	AC	Tubo fijo	0,8	1	10000	8000
C GLYCERPU	1,67	AC	Tubo fijo	0,8	1	7000	5600
C DESTILL	59	AC	Tubo fijo	0,8	1	22000	17600
C: condensador							31200

C: condensador

Costo de compra [\$]=Costo desnudo desde la figura 6.3b [22]*Factor por el tipo*Factor por la presión.

El precio de los eyectores de vapor para el año 1990 se los obtuvo de acuerdo a la figura 14.44 (Peters,1991) y éste fue actualizado hasta el año 2008 empleando los índices de costo de planta de ingeniería química publicados en la revista *Chemical Engineering* [Agosto 2009] y el costo hasta el año 2009 se obtuvo usando la tasa de inflación promedio de los últimos 7 años.

Tabla A11.8: Costo de los eyectores de vapor del año 1990.

Equipo	Número	Material	Capacidad de extracción de aire[lb/h]	Costo año 1990 [\$]
Inyector de vapor	4	AC	10	18000

Ac: Acero al carbono

Desde la figura 14.44 [37] se obtiene el costo de los inyectores de vapor

Año Equipo		Costo año 1990 [\$]	Índice	Costo [\$]	
1990	Evector de vapor	18000	382	18000	
2008		10000	575	27113	

Tabla A11.10: Inflación promedio de los últimos 7 años

Año	Indice	Inflación promedio
2001	394,3	
2002	396	1,7
2003	402	6
2004	444,2	42,2
2005	468,2	24
2006	499,6	31,4
2007	525,4	25,8
2008	575,4	50
	Promedio	26

Tabla A11.10: Costo de los eyectores del año 2009

Equipo	Costo año 2008 Ca [\$] i		n	Costo actual[\$]	
Eyector de vapor	27113	0,26	1	34128	

Para calcular el costo hasta el año 2009 actual se emplea la siguiente fórmula.

Ce=Ca (i)ⁿ Ce = Costo actual [\$] Ca = Costo anterior [\$] i = Inflación promedion = Número de periodos

Equipo	Proveedor	Capacidad [kg/h]	Cantidad de semilla a extraer Kg/h	Número de equipos	Costo/equipo [\$]	Costo total [\$]
Extractor de aceite GX-130	Global Extent Srl	520	8320	16	7850	125600

Tabla A11.11: Costo de los extractores de aceite del año 2009.

Tabla A11.12: Costo del filtro centrífugo del año 2008

Año	Equipo	Costo promedio año 2006 Ca [*] [\$]	Índices	Costos [\$]
2006	Filtro centrífugo de	100000	499,6	100000
2008	discos	100000	525,4	105164

* Valor bibliográfico[35]

Tabla A11.13: Costo del filtro centrífugo del año 2009.

Equipo	Costo año 2008[\$]	Incremento de costo	n	Ce año 2009[\$]			
Filtro centrífugo de discos	105164	0,26	1	132372			

Para calcular el costo actual se emplea la siguiente fórmula:

	Ce=Ca(i) ⁿ
Ce =	Costo actual[\$]
Ca=	Costo anterior[\$]
	Incremento de inflación
i=	promedio
n=	Número de periodos

Tabla A11.	14: Costo	de la	caldera	en a	al año	2004.
			00.00.0			

Equipo	Costo de la caldera Ce[\$]	Flujo de vapor de agua S[kg/h]	Presión del vapor[bar]	C	n
Caldera	40872	1838	22	100	0,8

Se emplea la siguiente ecuación para calcular el costo

$$Ce = CS^n$$

Ce= Costo de compra del equipo[\$]

- S= Cantidad de vapor a producir[kg/h]
- C= Costo constante del caldero desde Tabla 6,2[22]

n= Indice de costo para

Equipo	Área de transferencia de calor[m ²]	Material	Tipo de intercambiador	Factor por el tipo	Factor por la presión	Costo desnudo[\$]	Costo de compra [\$]
EXCHANG	52 52	AC	Tubo fijo	0,8	1	22000	17600

Tabla A11.15: Costo del enfriador en el año 2004

E, Enfriador

Costo de compra [\$]=Costo desnudo desde la figura 6.3b [22]*Factor por el tipo*Factor por la presión.

A continuación se procede actualizar los costos de los equipos:

Tabla A11.16: Costo de los principales implementos de los equipos del año 2004 en dólares americanos (PCE). Índice 2004: 444,2

Equipo	Costo [\$]
Tanques de proceso y almacenamiento	951198
Columna de extracción líquida	9040
Enfriador	17600
Condensadores	31200
Hervidores	127700
Columnas de destilación	54200
Agitadores	62405
Caldera	40872
	1294216

Tabla A11.17: Costo de los principales implementos de los equipos del año 2008 en dólares americanos (PCE). Índice 2008: 575,4

Equipo	Costo[\$]
Tanques de proceso y almacenamiento	1232147
Columna de extracción líquida	11710
Enfriador	22798
Condensadores	40415
Hervidores	165418
Columnas de destilación	70209
Agitadores	80837
Caldera	52944
	1676478

Tabla A11.18: Costo de los principales implementos de los equipos del año 2009 en dólares americanos (PCE).

Equipo	i	n	Costo[\$]
Tanques de proceso y almacenamiento	0,26	1	1550921
Columna de extracción líquida	0,26	1	14740
Enfriador	0,26	1	28697
Condensadores	0,26	1	50871
Hervidores	0,26	1	208214
Columnas de destilación	0,26	1	88373
Agitadores	0,26	1	101751
Caldera	0,26	1	66642
			2110207

Para estimar los el costo de inversión se considera factores propuestos por Coulson., 2005 que son mostrados a continuación:

f1 Construcción del equipo	0,4	
f ₂ Tuberías	0,7	
f3 Instrumentación	0,2	
f4 Instrumentación eléctrica	0,1	
f5 Construcciones	0,15	
f ₆ Utilidades	0,5	
f7 Almacenamientos	Se provee en PCE	
f8 Preparación del lugar de ubicad	ción del proyecto	0,05
f ₉ Construcciones auxiliares		0,15

Costo total físico de la planta (PPC)

 $PPC = (1 + f_1 + f_2 + f_3 + f_4 + f_5 + f_6 + f_8 + f_9)$

PPC = 7807496

f ₁₀ Diseño y Ingeniería	0,2
f ₁₁ Retribución al contratista	0,05

f₁₂ Contingencias 0,05

Capital fijo = PPC $(1+f_{10}+f_{11}+f_{12})$

Capital fijo = 10149745

Capital de trabajo (\$) = 1014975

Permitir el 10% del capital fijo [22]

Inversión requerida para el proyecto (\$)= Capital fijo + capital de trabajo = 11.164.720

Para calcular el costo de los materiales se estimó desde los valores obtenidos de la simulación del proceso los requerimientos con respecto a la semilla a procesar, de ésta manera se proyecta la cantidad materiales a utilizarse hacia los diferentes periodos de vida útil del proyecto, tal como se ilustra a continuación.

Componente	Cantidad[kg/h]	Requerimiento/kg de semilla
Semilla	8320	
NaOH	19	0,002
Metanol	298	0,036
Agua de lavado Ácido	50	0,006
sulfúrico	24	0,003

Tabla A11.19: Requerimiento de los materiales con respecto a la semilla

Para obtener el costo de los materiales hasta el año 2008 se empleó los índices Marshall & Swift Equipment Cost Index publicados por la revista *Chemical Engineering* (Agosto 2009) y con la tasa de inflación promedio de los últimos de los últimos 7 años se proyecto el costo a los diferentes periodos de vida útil del proyecto.

Año	Indice	Inflación promedio
2001	1093,9	
2002	1104,2	10,3
2003	1123,6	19,4
2004	1178,5	54,9
2005	1244,5	66
2006	1302,3	57,8
2007	1373,3	71
2008	1449,3	76
		51

Tabla A11.20: Inflación promedio para productos químicos.

Tabla A	11.21:0	Costo d	del metanol	en el	año 2008.
i uniu i i			aonnoi		uno 2000.

Año	Componente	Proveedor	Costo año 2006 [\$/ton] [*]	Índice	Costo año[\$/kg]
2006 2008	Metanol	Interquím S.A.	270	1302,3 1449,3	0,27 0,300

*Valor bibliográfico [36]

Tabla A11.22: Costo del	ácido sulfúrico e	n el año 2008
-------------------------	-------------------	---------------

Año	Componente	Costo año 2005 [\$/ton]*	Índice	Costo año [\$/kg]	
2005	Ácido	00	1244,5	0,09	
2008	sulfúrico	90	1449,3	0,105	

*Valor bibliográfico [36]

Tabla A11.23: Costo del Hidróxido de sodio en el año 2008.

Año	Índice	Costo NaOH[\$/kg]
1998*	1093,9	2,6
2008	1449,3	3,44

A continuación se muestran los precios de los compuestos que deben actualizarse hasta los

periodos de vida del proyecto.

Para calcular el costo actual se emplea la siguiente fórmula.

Ce=Ca(i)ⁿ

Ce = Costo actual[\$]

- Ca= Costo anterior[\$]
- i= Incremento de inflación promedio
- n= Número de periodos

Año	Semilla [Kg]	Requerimiento/ kg de semilla	Cantid ad de NaOH Kg/año	Costo NaOH [\$/kg] año 2008	n	i	Costo NaOH [\$/kg]	Costo NaOH [\$/año]
1	15130442	0,002	34553	3,44	1	0,51	4	135449
2	31991631	0,002	73058	3,44	2	0,51	6	431795
3	33821367	0,002	77236	3,44	3	0,51	9	688259
								109704
4	35755753	0,002	81654	3,44	4	0,51	13	8
								174863
5	37800775	0,002	86324	3,44	5	0,51	20	7
0	00000700	0.000	04004	0.44	0	0.54	04	278723
6	39962760	0,002	91261	3,44	6	0,51	31	4
7	42249200	0.002	06491	2 11	7	0.51	46	444270
'	42240399	0,002	30401	3,44	1	0,51	40	∠ 708143
8	44664762	0.002	101999	3 44	8	0.51	69	1
Ũ	11001102	0,002	101000	0, 11	Ũ	0,01		112874
9	47219328	0,002	107833	3,44	9	0,51	105	25
								179915
10	49920000	0,002	114000	3,44	10	0,51	158	55

Tabla A11.24: Costo actual del hidróxido de sodio.

Tabla A11.25: Costo actual del ácido sulfúrico.

Año	Semilla [kg]	Requerimi ento/kg de semilla	Cantidad de ácido sulfúrico [kg/año]	Costo ácido sulfúrico año 2008 [\$/kg]	n	i	Costo ácido sulfúrico [\$/kg]	Costo ácido sulfúrico [\$/año]
1	15130442	0,003	43646	0,105	1	0,51	0,136	5922
2	31991631	0,003	92284	0,105	2	0,51	0,205	18880
3	33821367	0,003	97562	0,105	3	0,51	0,308	30094
4	35755753	0,003	103142	0,105	4	0,51	0,465	47968
5	37800775	0,003	109041	0,105	5	0,51	0,701	76459
6	39962760	0,003	115277	0,105	6	0,51	1,057	121871
7	42248399	0,003	121870	0,105	7	0,51	1,594	194256
8	44664762	0,003	128841	0,105	8	0,51	2,403	309633
9	47219328	0,003	136210	0,105	9	0,51	3,623	493539
10	49920000	0,003	144000	0,105	10	0,51	5,463	786675

Año	Semilla [kg/año]	Requerimiento/k g de semilla	Cantidad de ácido metanol [kg/año]	Costo Metanol año 2008[\$/k g]	n	i	Costo metano I [\$/kg]	Costo metanol [\$/año]
1	15130442	0,036	541932	0,300	1	0,51	0,4	220611
2	31991631	0,036	1145854	0,300	2	0,51	0,6	703285
3	33821367	0,036	1211390	0,300	3	0,51	0,9	1120998
4	35755753	0,036	1280675	0,300	4	0,51	1,4	1786812
5	37800775	0,036	1353922	0,300	5	0,51	2,1	2848083
6	39962760	0,036	1431358	0,300	6	0,51	3,2	4539693
7	42248399	0,036	1513224	0,300	7	0,51	4,8	7236029
8	44664762	0,036	1599772	0,300	8	0,51	7,2	11533845
9	47219328	0,036	1691269	0,300	9	0,51	10,9	18384336
10	49920000	0,036	1788000	0,300	10	0,51	16,4	29303654

Tabla A11.26: Costo actual del metanol.

La estimación del costo de la semilla se muestra a continuación:

Tabla A11.27: Estimación del costo de la semilla.

Contenedor	Capacidad [lb]	Capacidad[kg]	\$/saquillo	\$/Kg
Saquillo	100	45,45	4	0,088

Tabla A11.28: Proyección del costo de la semilla

Año	Semilla [Kg/año]	n	i*	Costo actual [\$/kg]	Costo semilla [\$/año]
1	15130442	1	0,05	0,088	1331479
2	31991631	2	0,05	0,098	3128115
3	33821367	3	0,05	0,115	3873316
4	35755753	4	0,05	0,141	5055509
5	37800775	5	0,05	0,184	6955507
6	39962760	6	0,05	0,252	10087288
7	42248399	7	0,05	0,365	15420622
8	44664762	8	0,05	0,556	24849129
9	47219328	9	0,05	0,894	42208728
10	49920000	10	0,05	1,514	75574480

* Inflación año 2008 Ecuador

Año	Costo total[\$]				
1	1693709				
2	4282628				
3	5713316				
4	7988142				
5	11629734				
6	17537529				
7	27295703				
8	43777239				
9	72379185				
10	123665125				

Tabla A11.29: Costo total de los materiales.

Utilidades:

El agua de enfriamiento, vapor de agua fueron estimados en función de los requerimientos por kilogramo de semilla, de ésta manera se proyectó la cantidad de servicios a utilizarle a los diferentes periodos de vida del proyecto.

Componente	kg/h	Requerimientos: Kg de semilla
Semilla	8320	1
Agua de enfriamiento	120614	14,50
Vapor de agua	2883	0,35

Año	Semilla [Kg/año]	Requerimiento agua de enfriamiento:semilla	Agua de enfriamiento/año	n	i*	Costo [\$/kg]	Costo \$/año
1	15130442	8,19	123918320	0	0,05	0,0027	337959
2	31991631	8,19	262011458	1	0,05	0,0029	753235
3	33821367	8,19	276996996	2	0,05	0,0032	884807
4	35755753	8,19	292839617	3	0,05	0,0037	1095592
5	37800775	8,19	309588347	4	0,05	0,0046	1429983
6	39962760	8,19	327295004	5	0,05	0,0060	1967409
7	42248399	8,19	346014388	6	0,05	0,0082	2853254
8	44664762	8,19	365804401	7	0,05	0,0119	4361821
9	47219328	8,19	386726296	8	0,05	0,0182	7028734
10	49920000	8,19	408844800	9	0,05	0,0292	11939007

Tahla A11 31.	Costo	del aqua	de	enfriamiento
Tabla A 11.51.	00510	uel ayua	ue	ennamento

* Tasa de inflación del año 2008 del Ecuador

El agua de enfriamiento para el proceso ha sido considerada a temperatura ambiente de 25°C, es por ésta razón que se ha considerado el precio de venta del agua potable del cantón Loja como un estimado inicial.

El precio del vapor de agua hasta el año 2008 se estimó usando los índices Marshall & Swift Equipment Cost Index, y con la tasa de inflación de los últimos 7 años mostrada en la *Tabla A11.30* se proyectó a los diferentes periodos de vida útil del proyecto.

Table A11 32. Costo del	vanor de agua en el año 2008
	vapul ue agua en el ano 2000

Componente	Año	Índice	Precio [\$/kg]
Vapor de	2004*	1178,5	0,006
agua	2008	1449,3	0,007

* Precio obtenido de la bibliografía [22]

A ñ o	Semilla [kg/año]	Requerimiento Vapor de agua:semilla	Vapor de agua/año	Costo año 2008[\$/kg]*	n	i	Costo actual [\$/kg]	Costo [\$/año]
1	15130442	0,35	5243247	0,0074	1	0,51	0,0111	58331
2	31991631	0,35	11086260	0,0074	2	0,51	0,0168	185953
3	33821367	0,35	11720330	0,0074	3	0,51	0,0253	296399
4	35755753	0,35	12390665	0,0074	4	0,51	0,0381	472444
5	37800775	0,35	13099340	0,0074	5	0,51	0,0575	753051
6	39962760	0,35	13848546	0,0074	6	0,51	0,0867	1200324
7	42248399	0,35	14640603	0,0074	7	0,51	0,1307	1913252
8	44664762	0,35	15477960	0,0074	8	0,51	0,1970	3049622
9	47219328	0,35	16363210	0,0074	9	0,51	0,2971	4860936
10	49920000	0,35	17299091	0,0074	10	0,51	0,4479	7748073

Tabla A11.33: Costo proyectado del vapor de agua.

Para calcular el costo del vapor de agua se empleó la tasa de inflación promedio de los últimos 6 trimestres obtenida desde la revista *Chemical Engineering (August 2009)*.

Tabla A11.34: Costo	de la electricidad.

Componente	Kw-h	Costo [\$/kwh] [*]	Costo [\$/día]	Cantidad[\$/año]	Costo [\$/año]
Electricidad	21,64	0,082	1,76	10560	10560

* Empresa eléctrica regional del sur.

Año	\$/año
1	406850
2	949748
3	1191766
4	1578596
5	2193594
6	3178293
7	4777066
8	7422003
9	11900230
10	19697641

Tabla A11.35: Costo total de utilidades.

Labor operativa.

Dentro de este rubro se ha considerado la mano de obra directa e indirecta y se detalla la remuneración que corresponde al personal de planta tal como lo dicta el código de trabajo de la república del Ecuador, además se determina el número de obreros por área de proceso.

Área de trabajo	Obreros/turno	Turnos⁄día	Obreros/día
Área de almacenamiento de materia Prima y extracción del aceite	2	3	6
Área de transformación de la materia prima	1	3	3
Área de destilación, lavado y almacenamiento de producto terminado	2	3	6
		Total	15

Tabla A11.36: Mano de obra directa por área de trabajo

Tabla A11 37 Deta	alle de remune	eración de la r	mano de obra	a directa
1001011111011000		naoion ao ia i	nano do obre	an oota.

.

	Año	1	Año2		
DETALLE	Valor Mensual	Valor Anual	Valor Mensual	Valor Anual	
Sueldo Unificado	300,00		300,00		
Componente salarial Decimo tercera					
Remuneración	25,00	300,00	25,00	300,00	
Décimo cuarta Remuneración	18,17	218	18,17	218	
Fondos de reserva			12,50	300,00	
Total	343,17		355,67		

Tabla A11.38: Detalle de remuneración de la mano de obra indirecta en el primer año de operación del proyecto.

	Secre	taria	Gerente General		Gerente de producción	
DETALLE	Valor	Valor	Valor	Valor	Valor	Valor
	Mensual	Anual	Mensual	Anual	Mensual	Anual
Sueldo Unificado	350,00		500,00		450,00	
Componente salarial						
Décimo tercera						
Remuneración	29,17	350,00	41,67	500,00	37,50	450,00
Décimo cuarta						
Remuneración	18,17	218	18,17	218	18,17	218
Total	397,33		559,83		505,67	

<i>Tabla A11.39</i> : Detalle de remuneración de la mano de obra indirecta en el segundo	año de operación del
proyecto.	

	Secretaria		Gerente	General	Gerente de producción	
DETALLE	Valor Mensual	or Valor Valor Valor sual Anual Mensual Anual		Valor Mensual	Valor Anual	
Sueldo Unificado	350,00		500,00		450,00	
Componente salarial						
Décimo tercera						
Remuneración	29,17	350,00	41,67	500,00	37,50	450,00
Décimo cuarta						
Remuneración	18,17	218	18,17	218	18,17	218
Fondo de reserva	14,58	350,00	20,83	500,00	18,75	450,00

Supervisión

	Año	1	Año 2			
DETALLE	Valor Mensual	Valor Anual	Valor Mensual	Valor Anual		
Sueldo Unificado	400,00		400,00			
Componente salarial						
Décimo tercera						
Remuneración	33,33	400,00	33,33	400,00		
Décimo cuarta						
Remuneración	18,17	218	18,17	218		
Fondos de reserva			16,67	400,00		
Total	1354,50		1404,50			

Tabla A11.40: Detalle de remuneración de supervisión.

Tabla A11.41: Costo anual de la mano de obra indirecta

AÑO	No. Obreros/turno	Horas Iab./turno	Turnos/día	Obreros/día	Costo Anual (US\$)	Costo Mensual (US\$)
1	5	8	3	15	61770	5148
2	5	8	3	15	64020	5335
3	5	8	3	15	64020	5335
4	5	8	3	15	64020	5335
5	5	8	3	15	64020	5335
6	5	8	3	15	64020	5335
7	5	8	3	15	64020	5335
8	5	8	3	15	64020	5335
9	5	8	3	15	64020	5335
10	5	8	3	15	64020	5335

Considerando un financiamiento de la inversión requerida del 60% se procede a amortizar el crédito recibido:

AMORTIZACIÓN DEL PRESTAMO										
		CAPITAL	5480862	dólares						
Interés Anual [%]	9,41	PLAZO:	5	Años						
Interés Semestral[%]	4,705	GRACIA:	1	Año						
Semestral Amortización capital		Interés por semestre	Dividendo semestral	Capital Reducido	Pago por año de interés					
1	-	257875	257875	5480862	515740					
2	-	257875	257875	5480862	515749					
3	304492	257875	562367	5176370	501 422					
4	304492	243548	548041	4871878	501425					
5	304492	229222	533714	4567385	44447					
6	304492	214895	519388	4262893	444117					
7	304492	200569	505061	3958401	206.01.2					
8	304492	186243	490735	3653908	300012					
9 304492		171916	476409	3349416	329506					

Tabla A11.42: Amortización del capital.

10	304492	157590	462082	3044924	
11	304492	143264	447756	2740431	272204
12	304492	128937	433430	2435939	272201
13	304492	114611	419103	2131446	214905
14	304492	100285	404777	1826954	214695
15	304492	85958	390451	1522462	157500
16	304492	71632	376124	1217969	137 390
17	304492	57305	361798	913477	100.295
18	304492	42979	347471	608985	100205
19	304492	28653	333145	304492	420.70
20	304492	14326	318819	0	42979
Total 2435939				Total a pagar	2177608
Tasa de interés∗		0,0941			

Según la tabla 6.6 propuesta por Coulson., 2005 se procedió a estimar los costos de producción.

Los costos fijos tales como: mantenimiento, laboratorio, supervisión, gastos fijos de planta y regalía y retribuciones fueron proyectados a los diferentes periodos de vida del proyecto empleando la tasa de inflación publicada por el Banco Central del Ecuador en el año 2008.

	Año									
Costos variable	1	2	3	4	5	6	7	8	9	10
Costo de materiales	1693709	4282628	5713316	7988142	11629734	17537529	27295703	43777239	72379185	123665125
Materiales diversos (10% del costo de materimiento)	101497	106988	112777	118878	125309	132088	139234	146767	154707	163077
Utilidades	406850	949748	1191766	1578596	2193594	3178293	4777066	7422003	11900230	19697641
Subtotal A[\$]	2202056	5339364	7017859	9685616	13948638	20847910	32212003	51346009	84434122	143525842
Costos Fijos Mantenimiento(10% del capital fijo)	1014975	1069885	1127765	1188777	1253090	1320883	1392342	1467668	1547069	1630765
Labor operativa	67838	70313	70313	70313	70313	70313	70313	70313	70313	70313
Costos de laboratorio(20% de la labor operativa)	13568	14302	15075	15891	16751	17657	18612	19619	20680	21799
Supervisión	16254	16854	16854	16854	16854	16854	16854	16854	16854	16854
Gastos fijos de planta(50% de la labor operativa)	33919	35754	37688	39727	41876	44142	46530	49047	51701	54498
Íntereses	515749	501423	444117	386812	329506	272201	214895	157590	100285	42979
Depreciaciones(10% del capital fijo)	1014975	1014975	1014975	1014975	1014975	1014975	1014975	1014975	1014975	1014975
Aseguramiento de planta(1% del capital fijo)	101497	106988	112777	118878	125309	132088	139234	146767	154707	163077
Regalías y retribuciones (1% del capital fijo)	101497	106988	112777	118878	125309	132088	139234	146767	154707	163077
Subtotal B[\$]	2880272	2937481	2952341	2971105	2993983	3021200	3052990	3089599	3131290	3178336
Costo directo de producción A+B [\$]	5082328	8276845	9970200	12656720	16942621	23869111	35264993	54435609	87565412	146704178
Volumen de producción [Litro/año]	5148439	10885800	11508405	12166619	12862479	13598138	14375873	15198090	16067332	16986291
Costo de producción biodiesel [\$/Litro]	0,99	0,76	0,87	1,04	1,32	1,76	2,45	3,58	5,45	8,64

Tabla A11.43: Costo de producción

Ingresos y punto de equilibrio.

El precio unitario de venta se fijo considerando el costo unitario de producción para 10 años de vida del proyecto, al cual se le adiciona un margen de utilidad del 20% del costo unitario.

									Punto de equilibrio			
Año	Producción	Costos variables	Ventas Totales	Ingresos Totales	Costos Fijos	Costo	PV	C _{vu}	Producción		Comprob ación	Porcent aje
	[Litros/año]	[\$/año]	[\$/año]	[\$/año]	[\$/año]	[\$/Litro]	[\$/Litro]	[\$/Litro]	Litros⁄año	\$/año	[\$/año]	de capacid ad
1	5148439	2202056	6098793	20121802	2880272	0,99	1,2	0,43	3805467	4507921	4507921	22
2	10885800	5339364	9932214	15498308	2937481	0,76	0,9	0,49	6962307	6352416	6352416	41
3	11508405	7017859	11964240	17659099	2952341	0,87	1,0	0,61	6869009	7141083	7141083	40
4	12166619	9685616	15188064	21204648	2971105	1,04	1,2	0,80	6569493	8200954	8200954	39
5	12862479	13948638	20331145	26849470	2993983	1,32	1,6	1,08	6033686	9537178	9537178	36
6	13598138	20847910	28642933	35779691	3021200	1,76	2,1	1,53	5270376	11101448	11101448	31
7	14375873	32212003	42317992	50002229	3052990	2,45	2,9	2,24	4342910	12784143	12784143	26
8	15198090	51346009	65322731	73008577	3089599	3,58	4,3	3,38	3359587	14439801	14439801	20
9	16067332	84434122	105078495	111088376	3131290	5,45	6,5	5,26	2437055	15938059	15938059	14
10	16986291	143525842	176045013	176045013	3178336	8,64	10,4	8,45	1660194	17206164	17206164	10

Tabla A11.44: Ingresos y punto de equilibrio
Tabla A11.45: Flujo de caja del proyecto financiado.

PROYECTO CON											
FINACIAMIENTO		5480862									
Aporte propio		5683857									
Concento				•		Años					•
ooncepto	0	1	2	3	4	5	6	7	8	9	10
Inversiones											
Capital fijo	-10149745										
Capital de trabajo	-1014975	-1014975									
				1196424			2864293				
Ingresos		6098793	9932214	0	15188064	20331145	3	42317992	65322731	105078495	176045013
F		5000000	0070045	0070000	40050700	400 40 004	2386911	05004000	54405000	07505440	4 40 70 44 70
Egresos		5082328	8276845	9970200	12656720	16942621	1	35264993	54435609	87565412	146704178
Utilidad Bruta		1016466	1655369	1994040	2531344	3388524	4773822	7052999	1088/122	1/513082	29340836
Partic. Trabaja.15%		152470	248305	299106	379702	508279	716073	1057950	1633068	2626962	4401125
Util. Desp.			4407004	400 400 4	0454040	0000040	10577.10	500 50 40	0054054	4 40 00 400	04000740
Particip.		863996	1407064	1694934	2151642	2880246	4057749	5995049	9254054	14886120	24939710
Impuesto Renta		215999	351766	423734	537911	720061	1014437	1498762	2313513	3721530	6234928
Utilidad Neta		647997	1055298	1271201	1613732	2160184	3043312	4496287	6940540	11164590	18704783
Pago deuda		304492	304492	304492	304492	304492	304492	304492	304492	304492	304492
Depreciaciones		1014975	1014975	1014975	1014975	1014975	1014975	1014975	1014975	1014975	1014975
Flujo operativo		1358478	1765779	1981682	2324213	2870666	3753793	5206768	7651022	11875072	19415264
Recuper. Capital											
Trab.											2029949
Crédito	5480862										
Aporte propio	-5683857										
Flujo Neto											
Efectivo	-11367714	1358478	1765779	1981682	2324213	2870666	3753793	5206768	7651022	11875072	21445213

La tasa mínima actual de rendimiento TMAR se calcula mediante el empleo de la siguiente fórmula:

$$TMAR = i + PR + (i * PR)$$

Dónde:

PR = premio al riego = 8,00%

i = Tasa de inflación = 5,41%

Tabla A11.46: Indicadores	financieros	del	l proyecto.
---------------------------	-------------	-----	-------------

TMAR	13,84%
VAN (US\$)	10115606
TIR	26,77%
B/C	1,26

Tabla A11.47: Ingresos y costos actualizados.

Tasa de descuento	25%				
		Ingresos			
AÑO	Ingresos	Act.	Costos	Costos - depr	Costos Act.
1	6098793	5082328	5082328	4067353	3266950
2	9932214	6407777	8276845	7261871	4685002
3	11964240	6199791	9970200	8955226	4640540
4	15188064	6321571	12656720	11641746	4845524
5	20331145	6796966	16942621	15927646	5324819
6	28642933	7691329	23869111	22854136	6136895
7	42317992	9127242	35264993	34250018	7387123
8	65322731	11316432	54435609	53420634	9254527
9	105078495	14621424	87565412	86550438	12043289
10	176045013	19675701	146704178	145689203	16282979
		93240561			73867648

Relación beneficio/costo = Ingresos actualizados/Costos actualizados.

Para calcular el periodo de recuperación del capital se procede a obtener los flujos netos acumulados y se verifica a que intervalo nuestra inversión es recuperada.

Año	Flujos netos[\$]	Flujos netos acumulados [\$]
1	1358479	1358479
2	1765780	3124259
3	1981683	5105942
4	2324214	7430156
5	2870666	10300822
6	3753794	14054616
7	5206769	19261384
8	7651022	26912407
9	11875072	11875072
10	21445214	33320286
Inversión		
requerida	11164720	

Tabla A11.48: Flujo netos acumulados

Periodo de recuperación de la inversión = 5 años

ANEXO 12

ESTIMACIÓN DE LAS PROPIEDADES FÍSICAS DE LA TRIPALMITINA, TRIOLEINAY METIL PALMITATO EN ASPEN PLUS 2006.5

1. Abrir Aspen Plus.

- 1.1. Hacer click en el botón inicio de Windows, luego en All Programs y abra las siguientes carpetas en su respectivo orden: Aspen Tech, Aspen Engineering Suite, Aspen Plus 2006.5.
- 1.2. Abrir el software a través de Aspen Plus User Interface.
- 1.3. En el cuadro de diálogo Aspen Plus Startup, seleccione Template, haga click en OK.
- 1.4. Seguido le aparece el cuadro de diálogo NEW, en el tipo de corrida (Run Type) seleccione Property Estimation y haga click en OK
- 1.5. Dentro del cuadro de diálogo Connect to Engine el Server type debe estar seleccionado en Local PC, finalmente hacer click en OK.

2. Especificación del componente.

2.1. En la sección izquierda del Data Browser seleccione la carpeta Components, en la columna Component ID que se encuentra en la pestaña Selection teclee la palabra TRIPALMI y presione enter, así como lo muestra la siguiente figura.

📃 Components Specifications - Data B	rowser	• 🗙
🔮 Specifications 🗸 🖻 🔡		0 ×
🕀 📲 Setup	Selection Petroleum Nonconventional VDatabanks	
Components	Define components	_
Light-End Properties	Component ID Type Component name Formula	
Henry Comps	TRIPALMI Conventional	
Moisture Comps		
Polymers		
Attr-Scaling		
Flowsheeting Options		
😥 📲 📕 Results Summary		
		- I
	Find Elec Wizard User Defined Heorder Heview	
	Formula. See Help.	vame or
	J	
Input Complete		

Fig. A12.1: Creación del ID de la Tripalmitina. *Elab orado:* Los autores.

- 2.2. Dentro de la misma sección izquierda del Data Browser seleccione la carpeta Properties/ Estimation y la forma de las carpetas le cambiará de 🗟 a 🗟.
- 2.3. De igual forma en la carpeta Properties seleccione la subcarpeta Molecular Structure e introduzca la estructura molecular de la Tripalmitina (*Tabla A12.1*), dentro de la pestaña General.

Atom1		Atom2		Bond type
Number	Туре	Number	Туре	
1	С	2	С	Single bond
2	C	3	C	Single bond
3	C	4	C	Single bond
4	C	5	C	Single bond
5	C	6	C	Single bond
6	C	7	C	Single bond
7	C	8	C	Single bond
8	C	9	C	Single bond
9	C	10	C	Single bond
10	C	11	C	Single bond
11	C	12	C	Single bond
12	C	13	C	Single bond
13	C	14	C	Single bond
14	C	15	C	Single bond
15	C	16	C	Single bond
16	C	17	0	Double bond
18	0	16	C	Single bond
19	C	18	0	Single bond
20	C	19	C	Single bond
21	0	20	C	Single bond
22	0	23	C	Double bond
23	C	21	0	Single bond
24	C	23	C	Single bond
25	C	24	C	Single bond
26	C	25	C	Single bond
27	C	26	C	Single bond
28	C	27	C	Single bond
29	C	28	C	Single bond
30	C	29	C	Single bond
31	C	30	C	Single bond

Tabla A12.1. Estructura molecular de la Tripalmitina.

32	С	31	С	Single bond
33	С	32	С	Single bond
34	С	33	С	Single bond
35	С	34	С	Single bond
36	С	35	С	Single bond
37	С	36	С	Single bond
38	С	37	С	Single bond
39	С	20	С	Single bond
40	0	39	С	Single bond
41	0	42	С	Double bond
42	С	40	0	Single bond
43	С	42	C	Single bond
44	С	43	C	Single bond
45	С	44	C	Single bond
46	С	45	C	Single bond
47	С	46	C	Single bond
48	С	47	C	Single bond
49	С	48	C	Single bond
50	С	49	C	Single bond
51	С	50	C	Single bond
52	С	51	C	Single bond
53	С	52	C	Single bond
54	С	53	С	Single bond
55	С	54	С	Single bond
56	С	55	C	Single bond
57	С	56	C	Single bond

Elaborado: Los autores.

2.4. De la pestaña Functional Group de la subcarpeta Molecular Structure, coloque los grupos funcionales de la Tripalmitina (*Fig. A12.2*).

Properties Molecular Structure TRIPA	LMI - Data Browser	- • •
🗸 [TRIPALMI 🗸 🛍 📔		N> 🖄 🖉 🔀
Setup Components Properties Properties Property Methods Estimation Compare Results Compare Results Molecular Structure Parameters Data Advanced Flowsheeting Options Results Summary	General Functional Group Structure Enter functional groups in the molecule Method: / UNIFAC Group number Number of occurrences 1005 1 1010 41 1015 3 1500 3 *	
Input Complete		

Fig. A12.2: Grupos funcionales de la Tripalmitina. *Elaborado:* Los autores.

2.5. De la carpeta Properties seleccione la subcarpeta Parameters/ Pure Component; hacer click en New del Object Manager, en el cuadro de diálogo New Pure Component parameter seleccionar Scalar y hacer click en OK; insertar los datos termodinámicos como lo muestra la siguiente figura:

Fig. A12.3: Datos termodinámicos de la Tripalmitina. *Elaborado:* Los autores.

2.6. Guarde el archivo en una carpeta de sus documentos y proceda a correr la estimación de las propiedades haciendo click sobre el iconoo presionando la tecla F5 del teclado.

3. Estimación de las propiedades de la Trioleina y Metil palmitato.

3.1 Proceda a repetir los pasos de la sección 1 y 2 en archivos separados para la Trioleina y Metil oleato y guárdelos en la misma carpeta con la diferencias de las siguientes figuras y tablas:

Fig. A12.4: Creación del ID de la Trioleina. *Elaborado:* Los autores.

Atom1		Atom2		Bond type
Number	Туре	Number	Туре	
1	С	2	С	Single bond
2	C	3	C	Single bond
3	C	4	C	Single bond
4	C	5	C	Single bond
5	C	6	C	Single bond
6	C	7	C	Single bond
7	C	8	C	Single bond
8	C	9	C	Single bond
9	C	10	C	Double bond
10	C	11	C	Single bond
11	C	12	C	Single bond
12	C	13	C	Single bond
13	C	14	C	Single bond
14	C	15	C	Single bond
15	C	16	C	Single bond
16	C	17	C	Single bond
17	C	18	C	Single bond
18	C	19	0	Double bond

Tabla A12.2. Estructura molecular de la Trioleina.

20	0	18	C	Single bond
21	C	20	0	Single bond
22	C	21	C	Single bond
23	0	22	C	Single bond
24	C	23	0	Single bond
25	0	24	C	Double bond
26	C	24	C	Single bond
27	C	26	C	Single bond
28	C	27	C	Single bond
29	C	28	C	Single bond
30	C	29	C	Single bond
31	C	30	C	Single bond
32	C	31	C	Single bond
33	C	32	C	Single bond
34	C	33	C	Double bond
35	C	34	C	Single bond
36	C	35	C	Single bond
37	C	36	C	Single bond
38	C	37	C	Single bond
39	C	38	C	Single bond
40	C	39	C	Single bond
41	C	40	C	Single bond
42	C	41	C	Single bond
43	C	22	C	Single bond
44	0	43	C	Single bond
45	C	44	0	Single bond
46	0	45	C	Double bond
47	C	45	C	Single bond
48	C	47	C	Single bond
49	C	48	C	Single bond
50	C	49	C	Single bond
51	C	50	C	Single bond
52	C	51	C	Single bond
53	C	52	C	Single bond
54	C	53	C	Single bond
55	C	54	C	Double bond
56	C	55	C	Single bond
57	C	56	C	Single bond
58	C	57	C	Single bond
59	C	58	C	Single bond
60	C	59	C	Single bond

61	С	60	C	Single bond
62	С	61	C	Single bond
63	С	62	C	Single bond

Elaborado: Los autores.

Fig. A12.5: Grupos funcionales de la Trioleina. *Elab orado:* Los autores.

Properties Parameters Pure Compone	nt Pl	JRE-1 -	Data Browse	r				x
🔮 (PURE-1 🗸 🖻 🖹 M	etci	BAR	- +	<< [All	• >	> 🛄 🏙 🤇	9 N> 🖱 🧷	×
Compare Results Compare Results	^	√inp Pi	ut ire component	scalar parame	eters	(c	(C	
Molecular Structure			Parameters	Units	Data set	TRIOLE -		
Parameters		▶	TB	К	1	783		
		-	PC	K. bar	1	867 4.82		
CPLDIP-1	=	-	VC	cc/mol	1	3130		
KLDIP-1			OMEGA		1	1,73		
MULAND-1		<u> </u>	ZC		1	0,209	<u> </u>	
		<u>*</u>						
SIGDIP-1	*	Value	retrieved from	USER.				_
Input Complete		J.						

Fig. A12.6: Datos termodinámicos de la Trioleina. *Elaborado:* Los autores.

Atom1	l	Atom2	2	Bond type
Number	Туре	Number	Туре	
1	С	2	С	Single bond
2	C	3	C	Single bond
3	C	4	C	Single bond
4	C	5	C	Single bond
5	C	6	C	Single bond
6	C	7	C	Single bond
7	C	8	C	Single bond
8	C	9	C	Single bond
9	C	10	C	Single bond
10	C	11	C	Single bond
11	C	12	C	Single bond
12	C	13	C	Single bond
13	C	14	C	Single bond
14	C	15	C	Single bond
15	C	16	C	Single bond
16	C	17	0	Double bond
18	0	16	C	Single bond
19	C	18	0	Single bond

Tabla A12.3. Estructura molecular del Metil palmitato.

Elaborado: Los autores.

Properties Molecular Structure MET	PAL	Data Browser	
🖉 [METPAL 🗸 🖻 📘			N> 🐮 🖉 🗡
Setup Components Components Components Culpht-End Properties Culpht-End Properties Culpht-End Properties Culpht-End Properties Culpht-End Properties Culpht-End Properties Culpht-Scaling		✓ General ✓ Functional Groups in the molecule Enter functional groups in the molecule Method: ✓ UNIFAC ✓ Group number Number of occurrences 1010 13 1015 2 1500 1 ★	
Input Complete			

Fig. A12.9: Datos termodinámicos del Metil palmitato. *Elaborado:* Los autores.

CREACIÓN DE UNA SIMULACIÓN DE BIODIESEL

1. Abrir Aspen Plus.

- 1.1 Hacer click en el botón inicio de Windows, luego en All Programs y abra las siguientes carpetas en su respectivo orden: Aspen Tech, Aspen Engineering Suite, Aspen Plus 2006.5.
- 1.2 Abrir el software a través de Aspen Plus User Interface.
- 1.3 En el cuadro de diálogo Aspen Plus Startup, crear una nueva simulación seleccionando Blank Simulation, luego hacer click en OK.
- 1.4 El Server type debe estar seleccionado en Local PC, finalmente hacer click en OK.

2. Crear el Process Flowsheet.

2.1 Una vez definido el diagrama de flujo del proceso (*Fig. A12.10*), cerciórese de que la librería de Aspen esté activa, en caso de no ser así presione la tecla F10 del teclado.

Fig. A12.10: Diagrama de flujo. *Elab orado:* Los autores

- 2.2 Dentro de la pestaña Mixers/Splitters de la librería con ayuda del mouse arrastre tres MIXER hacia a la ventana Process Flowsheet Window.
- 2.3 De la pestaña Reactors de la librería arrastre un RCSTR y un RStoic.
- 2.4 De la pestaña Columns de la librería arrastre tres columnas RadFrac y una columna Extract.
- 2.5 Arrastre un Sep que se encuentra dentro de la pestaña Separators.
- 2.6 Coloque un bloque Heater en la ventana Process Flowsheet Window que se encuentran en la pestaña Heat Exchanger de la librería de Aspen Plus.
- 2.7 Haga click derecho sobre cada bloque de la ventana Process Flowsheet Window y seleccione Rename Block, coloque el nombre de los bloques o equipos de operación de acuerdo como se muestra en la *Fig. A12.10.*
- 2.8 Haga click en el ícono de la librería para crear las corrientes del proceso, llevar el puntero del mouse a la ventana de Process Flowsheet Window y unir los bloques insertados a través de las flechas rojas que aparecen en cada bloque.
- 2.9 Finalmente Haciendo click derecho sobre cada una de las corrientes seleccione Rename Stream y Color & Style..., edite las corrientes como se muestra en la *Fig. A12.10*.

3. Especificaciones Globales.

- 3.1 Haga click en el ícono 🧀 para abrir el Data Browser.
- 3.2 Seleccione Properties que se encuentra al lado izquierdo del Data Browser, en la pestaña Global dentro de Property methods & models realice las siguientes selecciones Process type: ALL; Base method: NRTL y PENG-ROB.

4. Especificación de componentes de la base de datos.

- 4.1 Abra el Data Browser.
- 4.2 Seleccione Components, dentro de la pestaña Selection haga click en Find para buscar los diversos componentes en la base de datos, coloque el nombre en idioma inglés o la fórmula de los diversos compuestos (, methyl oleate, glycerol, methanol, water, NAOH, NA2SO4 y H2SO4) luego haga click sobre Find now del cuadro de diálogo Find, seleccione el componente y finalmente añádelo haciendo click en Add.

5. Especificación de componentes con propiedades físicas estimadas.

Para insertar componentes que no se encuentran en la base de datos de Aspen Plus, debió haber estimado sus propiedades físicas como se indicó anteriormente. Luego debe importar el componente o sustancia realizando los siguientes pasos:

- 5.1 Haga click en File y seleccione Import..., le aparecerá un cuadro de diálogo llamado Import en donde debe seleccionar el archivo en el cual realizó la estimación de las propiedades físicas del compuesto, luego haga click en Open del mismo cuadro de diálogo.
- 5.2 Si le aparece un cuadro de diálogo "Resolve ID Conflicts", seleccione uno por uno de los conflictos que le aparecen enlistados en la columna Object y haga click en Edit ID, seguido le aparece el cuadro de diálogo Object Name, renombre el ID borrando o añadiendo letras para luego hacer click en OK.
- 5.3 El programa le mostrará la ventana del Data Browser, seleccione Setup que se encuentra en el lado izquierdo del Data Browser.
- 5.4 Seleccione la pestaña Global dentro del Global settings en la deslizadora de Run type seleccione Flowsheet.
- 5.5 En el Data Browser, seleccione Properties que se encuentra en el lado izquierdo y luego la carpeta Estimation.
- 5.6 En la pestaña Setup en la Estimation Options selleccione Do not estimate any parameters.

Al finalizar las secciones 4 y 5, los componentes para realizar la simulación deben estar como lo muestra la siguiente figura:

Components - Data Browser					
📸 🖸 Components 🛛 🗸 🛅		- + +	<< [All	• >> 📋 🏙 🥞) N> 10 / X
🗐 🔤 Setup	*	✓Selection P	etroleum Nonco	nventional Databan	ks
Bit Setup Components Specifications Assay/Blend Uight-End Properties Petro Characterization O Petro Characterization O Petro Characterization O Petro Characterization O Moisture Comps Moisture Comps O UINIFAC Groups O O O O O O O Polymers O O Properties Prowsheet O Streams Utilities Blocks O Compercence		Selection P Define compone Compone TRIPALMI TRIOLE METPAL TRIOLE METHANC WATER NAOH NA2S04 H2S04 # Find	Annormal and a set to be related	Component name Component name al al al al METHYL-OLEATE al METHANOL al WATER SODIUM-HYDROX SODIUM-SULFATE SULFURIC-ACID User Defined Reo	Formula C19H3602 C3H803 CH40 H20 NA0H NA2504 H2S04 H2S04 H2S04 H2S04
Flowsheeting Options		or Formula. See H	elp.		
😟 💼 Model Analysis Tools	Ŧ	ļ			
Input Complete					

Fig. A12.11: Diagrama de flujo. *Elaborado:* Los autores

6. Especificación de la composición de las corrientes.

Realice doble click sobre cada corriente de entrada: OIL, MEOH, NAOH, WATER y H2SO4; coloque las especificaciones como lo muestran las siguientes figuras dentro de Streams del Data Browser.

Fig. A12.12: Especificaciones de la corriente OIL. *Elaborado:* Los autores

Fig. A12.13: Especificaciones de la corriente MEOH. *Elab orado:* Los autores

Fig. A12.16: Especificaciones de la corriente H2SO4. *Elaborado:* Los autores

7. Especificación de la reacción de transesterificación.

- 7.1 Abra el Data Browser haciendo click en el ícono 600.
- 7.2 Seleccione Reactions que se encuentra al lado izquierdo del Data Browser, le aparecen dos carpetas: Chemistry y Reactions, haga click en la segunda.
- 7.3 Haga click en New, en el cuadro de dialogo Create new ID realice la siguiente selección Select type: POWERLAW, ejecute click en OK.
- 7.4 Ya está creada R-1, ahora haga clic en New y coloque la estequiometria de la transesterificación de la Tripalmitina como lo muestra la siguiente figura:

Reactants			Pro	ducts		
Component	Coefficient	Exponent		Component	Coefficient	Exponent
TRIPALMI	-1	2	_	METPAL	3	0
METHA-01	-3	0	_	GLYCE-01	1	0
*			*			
		N>		Close		

Fig. A12.17: Estequiometria de la reacción 1. *Elaborado:* Los autores.

7.5 En el mismo cuadro de diálogo mostrado en la *Fig. A12.17* realice click en el deslizador de Reaction No. que se encuentra en la parte superior izquierda y seleccione <New>, haga click en OK y coloque la estequiometria mostrada en la *Fig. A12.18*.

action No.: 🔽	-			Reaction type:	Kinetic	•
leactants			- Pro	oducts		
Component	Coefficient	Exponent		Component	Coefficient	Exponent
TRIOLEIN	-1	2	_	METHY-01	3	0
METHA-01	-3	0	-	GLYCE-01	1	0
ŧ			*			
		N≯	ſ	Close		

Fig. A12.18: Estequiometria de la reacción 2. *Elaborado:* Los autores.

7.6 Haga click en Close, nuevamente en su pantalla aparece la ventana Data Browser, por consiguiente diríjase a la pestaña Kinetic y coloque las especificaciones expuestas en las figuras A12.19 y A12.20.

Stoichiometry Kinetic Equilibrium Activity	Stoichiometry Kinetic Equilibrium Activity
1) TRIPALMI + 3 METHA-01 -> 3 METPAL + GLYCE-01	2) TRIOLEIN + 3 METHA-01> 3 METHY-01 + GLYCE-01
Reacting phase: Liquid Rate basis: Reac (vol)	Reacting phase: Liquid Rate basis: Reac (vol)
Power Law kinetic expression Kinetic factor⊨k[T/To] ⁿ e -[E/R][1/T-1/To]	Power Law kinetic expression Kinetic factor=k[T/Toj ⁿ e ⁻ [E/R][1/T-1/To]
k: 15807,2312 Edit reactions	k: 15807,2312 Edit reactions
n: 0	n: 0
E: 39255,2093 kJ/kmol 🕶	E: 39255,2093 kJ/kmol 🔻
To: F Solids	To: F Solids
[Ci] basis: Molarity -	[Ci] basis: Molarity 🗸

Fig. A12.19: Cinética de la reacción 1. Elaborado: Los autores.

Fig. A12.20: Cinética de la reacción 2. *Elaborado:* Los autores.

8. Especificación de operación de los equipos o bloques.

Para colocar las especificaciones de cada equipo debe hacer doble click sobre su respectivo bloque que se encuentra en la ventana Process Flowsheet Window.

- 8.1 Los mezcladores MIXER1 y MIXER2 no necesitan especificaciones de operación para llevar a cabo la simulación, solamente debe especificar la presión de 1 atm en el MIXER3 haciendo doble cilck sobre su bloque.
- 8.2 Las especificaciones de operación del intercambiador de calor EXCHANG2 son: Temperature: 50°C y Pressure: 1 atm.
- 8.3 Coloque las especificaciones de operación mostradas en la *Fig. A12.21* en el bloque REACTOR.

✓Specifications Street	ams VReaction	ns PSD Comp	onent Attr. 🔰 Utility 🔄 💽	Specifications Streams Reactions PSD Component Attr. Utility
Operating conditions Pressure Temperature	∎ ▼ 60	atm •		Select reaction sets to be included in the model Available reaction sets R-1 R-1
Holdup Valid phases: Li Specification type: R	iquid-Only esidence time		2nd Liquid	
Reactor		Phase		
Volume:	cum 👻	Phase:	v	
Resi. time: 90	min 👻	Volume:	cum 💌	Define activity
		Volume frac: Residence time:	hr 💌	Name Value

Fig. A12.21: Especificaciones de operación del reactor de transesterificación. *Elaborado:* Los autores

8.4 Haga doble click sobre el bloque NEUTRA, seleccione las pestañas Specification y Reactions, realice un clic en New y coloque las especificaciones de las *Fig.A12.22* y *Fig.A12.23*; realice click en Close.

Pressure	v 1	atm 🔻	
Temperature	▼ 50	C •	
emperature	▼ 50	L 🔹	
/alid phases	_		
√apor-Liquid	-		

1		Products	
Component	Loerricient	Lomponent	Loerricient
NAUH	-2	NA25U4	1
H2SO4	-1	WATER	2
ĸ		*	
) Molar extent:) Fractional conversion:	1 of c	component NAOH	×

Fig. A12.22: Condiciones de operación del NEUTRA *Fig. A12.23:* Estequiometria de la reacción de neutralización.

Elaborado: Los autores.

8.5 Realice doble click sobre cada columna y ponga las especificaciones mostradas en las

siguientes figuras:

. .

oningunation v ouroa									- APE DANE	
Setup options				Conliga	auon v stream	as • 11036			1 0111000	1
Calculation type:	Equilibrium 👻			Feed st	treams					
Number of stages:	4				Name	Stage	Convention			
Condenser:	Total	•		▶ PRC	DDUCTS	3 📮	Above-Stage			
Reboiler:	Thermosyphon	•								
Valid phases:	Vapor-Liquid	-	{							
Convergence:	Standard	-	{							
2	[Product	t streams					
Operating specification	\$				Name	Stage	Phase	Basis	Flow	
Distillate rate	▼ Mass ▼ 575	kg/hr	_	MEC	OH1	1	Liquid	Mole		kmc
Reflux ratio	▼ Mole ▼ 1		-	EST	FERES	4	Liquid	Mole		kmc
Free water reflux ratio:		Feed	1 basis			•				•
Free water reflux ratio:			l basis			<	ns] J Pressure	J.Condense	r d Beboile	► • 1 3-Pha
Free water reflux ratio:	reams VPressure	Condenser ↓ ✓ Rel	boiler 3-Phas	•	Configuration	 ✓ Stream 	ns∣ √ Pressure	✓Condense	r 🗸 Reboile	► r 3-Pha
Free water reflux ratio: Configuration SI View: Top /	reams Pressure	Condenser	I basis boiler 3-Phas		✓ Configuration ⊂ Condenser sp	 ✓ Stream → Stream 	ns 🗸 Pressure	✓Condense	r 🗸 Reboile	⊧ r] 3-Pha
Free water reflux ratio: Configuration St View: Top z	reams VPressure	Condenser VRel	d basis boiler 3-Phas	•	Configuration	 ✓ Stream ⇒ Stream ⇒ Stream 	ns 🗸 Pressure	✓Condense	r Reboile	r] 3-Pha
Free water reflux ratio: Configuration Stop View: Top x Top stage / Condense Stage 1 / Condense	reams √Pressure ✓ ⁷ Bottom → hser pressure tr pressure	Condenser ✓ Rel	d basis boiler 3-Phas	e	Configuration Condenser sp	Stream Stream Jecification ure: apor fraction	ns V Pressure		r Reboile	r 3-Pha
Tree water reflux ratio: Configuration ↓ ✓ St View: Top / Top stage / Conderse Stage 1 / Condense	rreams √Pressure √ ¹ Bottom ▼ nser pressure ar pressure: 1	Condenser ✔ Rel	boiler 3-Phas	e] [Configuration Condenser sp Temperatu Distillate v	Stream	ns VPressure on: Mass	✓Condense K s ▼ 0	r Reboile	⊧ r 3-Pha
Free water reflux ratio: Configuration ↓ St View: Top. Top stage / Conder Stage 1 / Condense Stage 2 pressure (o	rreams √Pressure √ / Bottom ▼ nser pressure # pressure: 1 ptional)	Condenser VRe	I basis boiler 3-Phas		Configuration Condenser sp Temperatu Distillate v Subcooling sp	Stream	ns VPressure on: Mass	✓Condense K s ▼ 0	r 🗸 Reboile	r 3-Pha
Free water reflux ratio: Configuration ↓ SI View: Top. Top stage / Conder Stage 1 / Condense Stage 2 pressure (o ● Stage 2 pressure	rreams √Pressure ✓ / Bottom ▼ iser pressure # pressure: 1 ptional)	Condenser VRei	J basis J boiler 3-Phas		Configuration Condenser sp Temperatu Distillate v Subcooling sp Subcooling sp	Stream	ns VPressure	✓Condense K s ✓ 0	r Reboile	r 3-Pha
Free water reflux ratio: Configuration ↓ SI View: Top. Top stage / Conder Stage 1 / Condense Stage 2 pressure (o ③ Stage 2 pressure ⑦ Condenser press	rreams √Pressure ✓ / Bottom ▼ iser pressure # pressure: 1 ptional) x ure drop:	Condenser VRe	J basis J boiler 3-Phas	e	Configuration Condenser sp Temperatu © Distillate v Subcooling sp Subcooled I	Stream pecification apor fractic pecification temperature	ns √ Pressure on: Mass e v 40	Condense K s V C	r Reboile	▶ r 3-Pha
Free water reflux ratio: Configuration ↓ SI View: Top. Top stage / Conder Stage 1 / Condense Stage 2 pressure (o ③ Stage 2 pressure ○ Condenser pressure	rreams √Pressure ✓ [/] Bottom ▼ inser pressure ar pressure: 1 ptional) x ure drop:	Condenser VRel	J basis J boiler 3-Phas	e	Configuration Condenser sp Temperatu Distillate v Subcooling sp Subcooled I Subcooled I	Stream Stream Stream certification apor fractic becification temperature and liquid	ns VPressure on: Mass e V 40 distillate are sul	Condense K 0 C bcooled	r Reboile	r 3-Pha
Free water reflux ratio: Configuration SI View: Top. Top stage / Conders Stage 1 / Condense Stage 2 pressure (o Stage 2 pressure Condenser press Pressure drop for re	reams VPressure V / Bottom • rser pressure r pressure: 1 ptional) :: ure drop: st of column (optional)	Condenser VRel	J basis J boiler 3-Phas	e] [Configuration Condenser sp Temperatu Distillate v Subcooling sp Subcooled I Both reflux Dinly reflux Dinly reflux	Stream Stream	ns ✓ Pressure m Mass n e → 40 distilate are sul	Condense K S C bcooled	r VReboile	r] 3-Pha
Free water reflux ratio: Configuration SI View: Top / Top stage / Condense Stage 2 pressure (o © Stage 2 pressure © Condenser press Pressure drop for re © Stage pressure of	reams VPressure V / Bottom reams ressure r pressure: 1 ptional) x ure drop: st of column (optional) drop:	Condenser VRel	J basis J boiler 3-Phas	e]	Configuration Condenser sp Temperatu Distillate v Subcooling sp Subcooling sp Subcooled I Both reflux Duly reflux Utility specific	Stream Stream	ns ✓ Pressure m Mass n e → 40 distillate are sul	Condense	r Reboile	r) 3-Pha

✓Configuration Streams Pressure C	ondenser √Reboiler 3-Phase
Thermosyphon reboiler options	
Specify reboiler flow rate	
 Specify reboiler outlet condition 	
Specify both flow and outlet condition	
Flow rate	Outlet condition
Mass 👻 kmol/hr 👻	Temperature 🔹
	194 C 🔻
Optional	
Reboiler pressure:	1 atm 💌
Reboiler return feed convention:	On-Stage 🔹
Utility:	

Soundaring a state	ams 🗸 Pressure 🗸 Condenser 🛛 🗸 Reboiler	3-Pha Configuratio	n VStreams	Pressu	re 🗸 Condens	er 🛛 🗸 Reboiler 🗎	
Setup options		Feed stream	ms				
Calculation type:	Equilibrium 👻		Name	Stage	Convention	1	
Number of stages:	4	▶ ESTER	2 8	1	Above-Stage		
Condenser:	Partial-Vapor-Liquid 🗸			I			
Reboiler:	Kettle 🔻						
Valid phases:	Vapor-Liquid 👻						
Convergence:	Standard 👻						
Operating specification	28	Product str	eams				
Beflux ratio	▼ Mole ▼ 1	-	Name	Stage	Phase	Basis	
Bottoms rate	Mass = 650 ka/br	OILREC	: 11		Liquid	Mole	
		BIODIE	SE 1		Liquid	Mole	
Free water reflux ratio:	Feed t	pasis	4				
Configuration ↓ ✓ Stream View: Top / Bo Top stage / Condenser Stage 1 / Condenser pr	ms √Pressure √ Condenser √ Reboiler 3.P Ittom v pressure essure: 100 Pa v	'hase ✓Configurati Condense ⊚ Tempe ◯ Distilla	on Streams er specification erature: te vapor fraction	Press ₄ ĸ	ure √Conder 0 C tole ▼	nser √Reboiler ▼	3-F
Configuration ↓ ✓ Stream View: Top / Bo Top stage / Condenser Stage 1 / Condenser pr	ms √Pressure √ Condenser √ Reboiler 3.P Ittom ▼ pressure essure: 100 Pa ▼ nall	Tempe Condense Tempe Distila	on Streams r specification rature: te vapor fraction g specification	Press 4 ∴ M	ure Conder	nser √ Reboiler	3-F
Configuration Stream View: Top / Bo Top stage / Condenser Stage 1 / Condenser pr Stage 2 pressure (option	ms √Pressure √ Condenser √ Reboiler 3 -P Ittom • pressure essure: 100 Pa • nal)	ihase Configurati Condense I Tempe Distilla Subcoolin Subcool	on Streams r specification rature: te vapor fraction g specification ed temperature	Press 4 ∴ M	ure Conder 0 C tole T	nser Reboiler	3-F
Configuration Stream View: Top / Bo Top stage / Condenser Stage 1 / Condenser pr Stage 2 pressure (option Stage 2 pressure: Condenser pressure	ms VPressure VCondenser VReboiler 3-P Ittom v pressure essure: 100 Pa v nal) drop: atm v	*hase Configurati Condense Image: Configurati Image: Configuration of the configuration Configuration Image: Configuration of the configuration Image: Configuration Image: Configuration Imag	on Streams respecification rature: te vapor fraction g specification ed temperature effux and liquid d fflux is subcoole	: Press 4 : M istillate are d	ure Conder 0 C tole V K e subcooled	rser Reboiler	3-F
Configuration Stream View: Top / Bo Top stage / Condenser Stage 1 / Condenser pr Stage 2 pressure (option Stage 2 pressure: Condenser pressure Pressure drop for rest of	ms VPressure VCondenser VReboiler 3-P Ittom v pressure essure: 100 Pa v nal) drop: atm v f column (optional)	'hase Configurati Condense Tempe Distilla Distilla Subcoolin Subcoolin Both re Only re	on Streams r specification rature: te vapor fraction g specification ed temperature effux and liquid d fflux is subcoole	4 istillate are	ure Conder 0 C tole V K e subcooled	rser Reboiler	3-F
Configuration ↓ Stream View: Top / Bo Top stage / Condenser Stage 1 / Condenser pr Stage 2 pressure (option	ms VPressure VCondenser VReboiler 3-P Ittom V pressure essure: 100 Pa V nal) drop: atm V f column (optional) : atm V	ihase Configurati	on ✓ Streams ar specification rature: te vapor fraction g specification ed temperature eflux and liquid d flux is subcoole	· Press	ure Conder 0 C tole V K e subcooled	ser ✓ Reboiler ✓	34

Fig. A12.25: Especificaciones de entrada de la columna DESTILL. Elaborado: Los autores

Configuration Streams	√ Pressure	✓Condenser	Reboiler	3-Pha	Configuration	√ Stream	s √ Press	ure 🗸 🗸 Condens	er 🗸 Reboiler	3-Phase
Setup options Calculation type: Number of stages: Condenser:	Equilibrium 4 Total	V V			Feed streams Na AQU3	me	Stage	Convention Above-Stage		
Reboiler:	Thermosyph	non								
Valid phases:	Vapor-Liqui	d			Product stream	ms				
Convergence:	Standard		•		Na	me	Stage	Phase	Basis	Flow
Operating specifications					WATERO	UT	1	Liquid	Mole	}
Distillate rate 🔹	Mass 🔻	53	ka/hr	-	GLYCERO	IL .	4	Liquid	Mole	}
Reflux ratio 🔹	Mole 🔻	1		-			•			
Free water reflux ratio:			Feed b	asis						
		Configuration View: Top stage / C Stage 1 / Cor Stage 2 press	Streams ✓F Top / Bottom Condenser pressu ndenser pressure: sure (optional)	Pressure ure	Condenser	✔Reboiler n	3-Phase			

Stage 2 pressure:	atm	•
Condenser pressure drop:	atm	Ŧ
Pressure drop for rest of column (op	tional)	
Stage pressure drop:	atm	•
Column prossure drop:		_

Fig. A12.26: Especificaciones de entrada a la columna GLYCERPU. *Elaborado:* Los autores.

In Key Concernents J. (Channel / December J. Hart Channel	k
• Specs • Rey Components • Streams • Pressure Heat Streams	✓Specs ✓Key Components ✓Streams ✓Pressure Heat Streams
Configuration Number of stages: 4 Specify temperature profi Specify heat duty profile Specify heat duty profile Feed streams Feed streams	1st liquid phase Available components TRIPALMI METPAL TRIDLE METHY-01 NA2S04 H2S04
Name Stage WATER 1 ESTER1 4	2nd liquid phase Available components GLYCEROL WETHANOL WETPAL WETPAL
AQU1 4 1st liquid kmol/ ESTER2 1 2nd liquid kmol/	NAOH NA2S04 H2S04 K
✓ Specs ✓ Key Components ✓ Streams ✓ Pressure Pressure profile Stage Pressure atm ↓ 1 ↓	

Fig. A12.27: Especificaciones de entrada de la columna WASHCOL. *Elab orado:* Los autores

8.6 Haciendo doble cilck sobre el bloque FILTER coloque las especificaciones de la Fig.

A12.28.

Specifications	Feed	Flash Outlet Fla	ish Utiliity			✓Specifications	√ Feed	Flash Outlet Fla	sh Utili	9	
Outlet stream c	onditions					Outlet stream c	onditions	s -			
Uutlet stream: Substream:	AQU3 MIXED	• • •				Substream:	MIXED	u +			
Compon	ent ID	Specification	Basis	Value	Units	Compon	ent ID	Specification	Basis	Value	Units
TRIPALMI		Split fraction				TRIPALMI		Split fraction		0	
METPAL		Split fraction				METPAL		Split fraction		0	
TRIOLE		Split fraction				TRIOLE		Split fraction		0	
METHY-01		Split fraction				METHY-01		Split fraction		0	
GLYCEROL		Split fraction				GLYCEROL		Split fraction		0	
METHANO	L	Split fraction				METHANO	L	Split fraction		0	
WATER		Split fraction				WATER		Split fraction		0	
NAOH		Split fraction				NAOH		Split fraction		1	
NA2SO4		Split fraction				NA2SO4		Split fraction		1	
H2SO4		Split fraction				H2SO4		Split fraction		1	

Fig. A12.28: Especificaciones de entrada del FILTER. *Elaborado:* Los autores

9. Creación de cálculos en la simulación.

- 9.1 Abra el Data Browser haciendo click en el ícono 40.
- 9.2 Seleccione Flowsheeting Options que se encuentra al lado izquierdo del Data Browser, le aparecen varias carpetas haga click en la carpeta Calculator.
- 9.3 Haga click en New en el cuadro de dialogo Object manager, seguido aparece el cuadro de diálogo Create new ID, dentro del Enter ID coloque con el teclado MEOHF y realice click en OK.
- 9.4 Ahora realice click en New dentro de la pestaña Define, en el cuadro de diálogo Create new variable teclee MEOH y realice las selecciones mostradas en la *Fig. A12.29.*

Ariable name: ✔MEOH ▼ Category All Blocks Streams Model Utility	Reference Type: Stream: Substream: Component: Units:	Mole-Flow MEOH MIXED METHANOL Ibmol/hr				
Physical Property Parameters Reactions Information flow Import variable O	xport variable	🔿 Tear variable				
EO input Open variable: Description:						
	Close Close					

Fig. A12.29: Definición de la variable MEOH. *Elaborado:* Los autores

9.5 En el mismo cuadro de diálogo Variable Definition, haga click en el desplazador de Variable name, seleccione New, teclee TRIPAL en el cuadro de diálogo New Item, realice click en OK para hacer las selecciones mostradas en la *Fig. A12.30*.

/ariable name: ▼TRIPAL ▼ Category ③ All ③ Blocks ③ Streams ④ Model Utility ◎ Physical Property Parameters ◎ Reactions	Type: Stream: Substream: Component: Units:	Mole-Flow OIL MIXED TRIPALMI Ibmol/hr
Information flow Import variable E0 E0 input Open variable: Description:	xport variable	Tear variable
		•

Fig. A12.30: Definición de la variable TRIPAL. *Elaborado:* Los autores

9.6 Repita el paso 9.5 realizando las siguientes especificaciones:

Variable Definition	Variable Definition
Select a variable category and reference Variable name: Image:	Select a variable category and reference Variable name: Reference Type: Mole-Flow Category Stream: MEDH1 Substream: Blocks Component: METHANDL Units: Model Utility Physical Property Parameters Reactions Substream:
Information flow Information flow Export variable F0 input	Information flow O Import variable Export variable Tear variable For insta
Open variable: Description:	Open variable: Description:

Fig. A12.31: Definición de la variable TRIPAL. *Elaborado:* Los autores

- 9.7 Una vez definida todas las variables haga click en close del cuadro de diálogo Variable Definition.
 - Calculator MEOHF Data Browser 🗸 🛍 🔡 ENG 🔹 >> 📋 🛄 🔮 N 🖄 🖉 🗙 🍓 MEOHF - <- - << 🗛 Setup
 Setup
 Components
 Properties . ✓Define ✓Calculate ✓Sequence Tears Stream Flash E0 Options Calculation method Flowsheet
 Streams
 Utilities Fortran C Excel Fortran Declarations Enter executable Fortran statements Blocks OIL = TRIOLE + TRIPAL MEOH = (OIL*9)-REFLUX Convergence ÷ 1 Flowsheeting Optior 🚮 🛛 Calculator H2SO4 👸 🛛 MEOHF row: 1 col: 1 Input Resul EO V; EO In
- 9.8 Seleccione la pestaña Calculate e introduzca las siguientes ecuaciones:

Results Available Fig. A12.32: Ecuaciones de cálculo para el flujo de metanol. Elaborado: Los autores

- 9.9 Finalmente a creado el cálculo de metanol requerido para el proceso, ahora cierre el Data Browser.
- 9.10 De forma semejante repita todos los pasos desde el 9.1 hasta el 9.9 realizando las siguientes figuras:

Variable Definition	x	Variable Definition	X
Select a variable category and reference Variable name:	ce Reference Type: Mole-Flow ▼ Stream: H2S04 ▼ Substream: MIXED ▼ Component: H2S04 ▼ Units: kmol/hr	Select a variable category and refere Variable name: NAOH Category All Blocks Streams Model Utility Physical Property Parameters Reactions	ence Reference Type: Mole-Flow ▼ Stream: AQU1 ▼ Substream: MIXED ▼ Component: NAQH ▼ Units: kmol/hr
Information flow Import variable ED input Open variable: Description: N Access a component mole flow. Also specif	oort variable Tear variable	Information flow Import variable E0 input Open variable: Description: Flowsheet variable name. Can be used or spreadsheet.	xport variable Tear variable

Calculator H2SO4 - Data Browser		
📸 🗄 H2SO4 🛛 👻 📔 🛛	MET	▼
🖅 🛅 Setup	-	✓Define ✓Calculate ✓Sequence Tears Stream Flash EO Options
Components Proportion		Calculation method
Flowsheet		Fortran C Excel Fortran Declarations
🗊 💼 Streams		
	Ξ	Enter executable Fortran statements
Blocks		H2SO4 = NAOH/2
Reactions Convergence		
E Flowsheeting Options		
📄 📕 Design Spec		
🖮 🛅 🖬 Calculator		w literature
⊟-tal H2SO4		
Results		row: 1 col: 1
EO Variables		
🚽 🖉 📕 EO Input		
B B MEOHF	-	
Input Changed		F

Variable Definition	X	Variable Definition	X
Select a variable category and referent Variable name: ✓ NADH Category ④ All Blocks ⑤ Streams Model Utility ○ Physical Property Parameters Reactions	nce Reference Type: Stream-Var ▼ Stream: NADH ▼ Substream: MIXED ▼ Variable: MASS-FLOW ▼ Units: Ib/hr	Select a variable category and refere Variable name: TRIPAL Category Category All Blocks Streams Model Utility Physical Property Parameters Reactions	nce Reference Type: Mass-Flow ▼ Stream: DIL ▼ Substream: MIXED ▼ Component: TRIPALMI ▼ Units: Ib/hr
Information flow Import variable E0 input Dpen variable: Description: N Access a non-component-dependent streat	port variable Tear variable Close m variable, such as temperature or total flow.	Information flow Import variable E0 input Open variable: Description: Flowsheet variable name. Can be used or spreadsheet.	xport variable Tear variable

Select a variable category and reference	Variable Definition	X	
Variable name: IREFERENCE Type: Mass-Flow Stream: Oll Substream: MixED Opponnent: TRIOLE Units: Ib/hr Information flow Import variable Import variable Export variable Tear variable Tear variable Description: Import variable Towsheet variable name. Can be used on Calculate and Sequence sheets, and on Excel Model Spreadsheet. Oppont	Select a variable category and refere Variable name: Category All Blocks Streams Model Utility Physical Property Parameters Reactions Information flow Flowsheet variable Information flow Information flow Flowsheet variable name. Can be used or spreadsheet.	nce Reference Type: Mass-Flow • Stream: OIL • Substream: MIXED • Component: TRIDLE • Units: Ib/hr Close Close	Calculator NAOHF - Data Browser Calculator NAOHF - Data Browser Calculator NAOHF Calculator Sequence Test: Stream Flash: EO Options Calculator method Fotam Calculator Model Fotam Calculator Calculator

Fig. A12.34: Creación del Calculator NAOHF. *Elaborado:* Los autores

Select a variable category and refere Variable name: VILREC V Category All Blocks Streams Model Utility Physical Property Parameters Reactions	Reference Type: Stream-Var • Stream: 0ILREC • Substream: MIXED • Variable: MASS-FLOW •	Select a variable category and reference Reference Variable name: Image: Category Category Stream: Oll2 Stream: Blocks Variable: Streams Units: Model Utility Physical Property Parameters Reactions Reference
Information flow Import variable ED input Description: Construction: Construc	xport variable Tear variable	Information flow Import variable ED input Description: Close Flowsheet variable name. Can be used on Calculate and Sequence sheets, and on Ex spreadsheet.

✓ Variable Definition Select a variable category and reference Variable name: ✓ Category Category ● All ● Blocks ● Streams ● Model Utility ● Physical Property Parameters ● Reactions Information flow ● Import variable ● Export variable ● Tear variable ● Description:	Image: Calculator OL - Data Browser Image: Calculato Browser
Flowsheet variable name. Can be used on Calculate and Sequence sheets, and on Excel spreadsheet.	Input Charged Statement

Fig. A12.35: Creación del Calculator OIL. *Elaborado:* Los autores

10 Corrida de la simulación.

- 10.1Finalmente para hacer correr la simulación haga click sobre el icono 🕨 o presione la tecla F5 del teclado.
- 10.2 Para ver el resultado de la simulación de un equipo o corriente haga click derecho sobre ésta y seleccione Results.
- 10.3 Guarde la simulación en la misma carpeta donde guardó los archivos de la estimación de las propiedades físicas.

ANEXO 13

PROPIEDADES FÍSICAS

TEMP	PRES			DENSIDAD [kg/m ³]				EN	ITROPÍA [cal/mol.K	(]	ENTALPÍA [kcal/mol]						
[°C]	[kg/cm ²]	Tripalmitina	Trioleina	Metil palmitato	Metil oleato	Glicerol	Tripalmitina	Trioleina	Metil palmitato	Metil oleato	Glicerol	Tripalmitina	Trioleina	Metil palmitato	Metil oleato	Glicerol	
0	1	2597,001	2986,649	1006,04	887,7121	1274,066	-1177,301	-1243,684	-404,1499	-461,5647	-150,3265	-500,9304	-450,7812	-181,9133	-176,5489	-160,6222	
5	1	2586,02	2973,314	1002,251	884,235	1270,896	-1174,208	-1240,153	-403,0061	-459,4533	-149,4902	-499,7037	-449,4324	-181,5462	-175,9494	-160,3969	
10	1	2575,022	2959,958	998,4501	880,7478	1267,713	-1171,032	-1236,537	-401,8347	-457,3613	-148,6706	-498,4468	-448,0507	-181,168	-175,3434	-160,1704	
15	1	2564,006	2946,581	994,6383	877,2501	1264,515	-1167,813	-1232,881	-400,6479	-455,2876	-147,8669	-497,1703	-446,6481	-180,782	-174,7306	-159,9426	
20	1	2552,972	2933,182	990,8151	873,7418	1261,304	-1164,557	-1229,192	-399,4476	-453,2311	-147,0778	-495,8753	-445,226	-180,3884	-174,1112	-159,7135	
25	1	2541,92	2919,76	986,9802	870,2228	1258,078	-1161,267	-1225,474	-398,2345	-451,1839	-146,2972	-494,562	-443,7845	-179,9872	-173,4845	-159,4827	
30	1	2530,848	2906,317	983,1336	866,6928	1254,838	-1157,945	-1221,727	-397,0095	-449,1396	-145,5233	-493,2306	-442,3238	-179,5785	-172,8503	-159,2502	
35	1	2519,758	2892,85	979,2751	863,1516	1251,582	-1154,595	-1217,954	-395,773	-447,0981	-144,7558	-491,8811	-440,844	-179,1622	-172,2084	-159,0159	
40	1	2508,648	2879,36	975,4044	859,599	1248,312	-1151,217	-1214,158	-394,5259	-445,0595	-143,9946	-490,5138	-439,3454	-178,7383	-171,5589	-158,7797	
45	1	2497,519	2865,846	971,5213	856,0348	1245,027	-1147,814	-1210,34	-393,2686	-443,0238	-143,2393	-489,1289	-437,8281	-178,3069	-170,9016	-158,5417	
50	1	2486,37	2852,308	967,6256	852,4588	1241,727	-1144,387	-1206,501	-392,0017	-440,991	-142,4897	-487,7265	-436,2923	-177,8679	-170,2366	-158,3018	
55	1	2475,2	2838,745	963,7171	848,8707	1238,41	-1140,939	-1202,645	-390,7257	-438,9611	-141,7456	-486,3067	-434,7382	-177,4214	-169,5638	-158,0599	
60	1	2464,01	2825,157	959,7956	845,2703	1235,078	-1137,471	-1198,771	-389,4411	-436,9344	-141,0068	-484,8697	-433,1659	-176,9673	-168,8832	-157,8162	
65	1	2452,799	2811,544	955,8608	841,6573	1231,73	-1133,984	-1194,883	-388,1483	-434,9108	-140,2732	-483,4157	-431,5756	-176,5056	-168,1947	-157,5705	
70	1	2441,566	2797,905	951,9126	838,0316	1228,365	-1130,481	-1190,98	-386,8478	-432,8904	-139,5445	-481,9448	-429,9674	-176,0364	-167,4984	-157,3229	
75	1	2430,311	2784,239	947,9506	834,3927	1224,984	-1126,962	-1187,064	-385,5399	-430,8734	-138,8205	-480,4572	-428,3416	-175,5597	-166,7943	-157,0733	
80	1	2419,034	2770,547	943,9746	830,7406	1221,586	-1123,428	-1183,137	-384,225	-428,8597	-138,1012	-478,9531	-426,6983	-175,0753	-166,0824	-156,8217	
85	1	2407,735	2756,827	939,9845	827,0748	1218,17	-1119,881	-1179,2	-382,9034	-426,8496	-137,3864	-477,4325	-425,0377	-174,5834	-165,3626	-156,5681	
90	1	2396,413	2743,078	935,9798	823,3951	1214,738	-1116,322	-1175,253	-381,5755	-424,8431	-136,676	-475,8956	-423,3599	-174,0839	-164,635	-156,3124	
95	1	2385,067	2729,302	931,9604	819,7013	1211,287	-1112,752	-1171,299	-380,2416	-422,8403	-135,9697	-474,3426	-421,6651	-173,5768	-163,8996	-156,0548	
100	1	2373,698	2715,496	927,9259	815,9929	1207,818	-1109,172	-1167,336	-378,9019	-420,8413	-135,2676	-472,7736	-419,9534	-173,0621	-163,1564	-155,7952	
105	1	2362,304	2701,661	923,8761	812,2698	1204,331	-1105,583	-1163,368	-377,5566	-418,8463	-134,5695	-471,1888	-418,225	-172,5398	-162,4055	-155,5335	
110	1	2350,886	2687,796	919,8107	808,5315	1200,825	-1101,986	-1159,393	-376,2061	-416,8552	-133,8753	-469,5882	-416,48	-172,0099	-161,6468	-155,2697	
115	1	2339,442	2673,899	915,7294	804,7777	1197,3	-1098,381	-1155,414	-374,8506	-414,8683	-133,1849	-467,9721	-414,7186	-171,4724	-160,8804	-155,004	
120	1	2327,973	2659,972	911,6318	801,0081	1193,756	-1094,77	-1151,431	-373,4903	-412,8856	-132,4982	-466,3405	-412,9409	-170,9272	-160,1063	-154,7361	
125	1	2316,478	2646,012	907,5177	797,2223	1190,192	-1091,152	-1147,444	-372,1253	-410,9072	-131,8152	-464,6936	-411,1471	-170,3744	-159,3246	-154,4663	
130	1	2304,956	2632,02	903,3867	793,42	1186,608	-1087,53	-1143,454	-370,7559	-408,9331	-131,1356	-463,0315	-409,3372	-169,8139	-158,5352	-154,1943	
135	1	2293,407	2617,995	899,2384	789,6007	1183,003	-1083,903	-1139,463	-369,3823	-406,9636	-130,4596	-461,3544	-407,5116	-169,2457	-157,7383	-153,9203	
140	1	2281,831	2603,935	895,0726	785,7641	1179,378	-1080,272	-1135,469	-368,0045	-404,9985	-129,7869	-459,6623	-405,6701	-168,6698	-156,9338	-153,6442	
145	1	2270,227	2589,841	890,8888	781,9097	1175,731	-1076,637	-1131,475	-366,6228	-403,0381	-129,1175	-457,9554	-403,8131	-168,0862	-156,1217	-153,3661	
150	1	2258,594	2575,711	886,6866	778,0371	1172,063	-1073	-1127,48	-365,2373	-401,0823	-128,4514	-456,2337	-401,9405	-167,4948	-155,3021	-153,0859	
155	1	2246,931	2561,546	882,4658	774,1458	1168,373	-1069,36	-1123,485	-363,8482	-399,1313	-127,7884	-454,4975	-400,0526	-166,8957	-154,4751	-152,8036	
160	1	2235,239	2547,343	878,2258	770,2355	1164,661	-1065,718	-1119,49	-362,4555	-397,1851	-127,1286	-452,7468	-398,1494	-166,2888	-153,6406	-152,5193	
165	1	2223,516	2533,103	873,9662	766,3055	1160,925	-1062,075	-1115,495	-361,0593	-395,2437	-126,4718	-450,9816	-396,2311	-165,674	-152,7988	-152,2328	
170	1	2211,763	2518,824	869,6867	762,3555	1157,166	-1058,431	-1111,502	-359,6599	-393,3072	-125,8181	-449,2022	-394,2977	-165,0515	-151,9495	-151,9443	
175	1	2199,978	2504,506	865,3867	758,3848	1153,384	-1054,786	-1107,51	-358,2572	-391,3756	-125,1672	-447,4086	-392,3494	-164,421	-151,0929	-151,6538	
180	1	2188,16	2490,148	861,0659	754,393	1149,577	-1051,141	-1103,52	-356,8513	-389,449	-124,5193	-445,6008	-390,3862	-163,7827	-150,2289	-151,3611	
185	1	2176,309	2475,749	856,7236	750,3794	1145,745	-1047,496	-1099,532	-355,4424	-387,5273	-123,8742	-443,779	-388,4082	-163,1364	-149,3577	-151,0664	
190	1	2164,425	2461,307	852,3595	746,3434	1141,888	-1043,851	-1095,546	-354,0305	-385,6107	-123,2319	-441,9433	-386,4155	-162,4822	-148,4791	-150,7696	
195	1	2152,507	2446,823	847,973	742,2846	1138,005	-1040,207	-1091,563	-352,6157	-383,6991	-122,5923	-440,0937	-384,4081	-161,8199	-147,5933	-150,4707	
200	1	2140,553	2432,295	843,5635	738,2021	1134,096	-1036,564	-1087,582	-351,1981	-381,7926	-121,9554	-438,2302	-382,3863	-161,1497	-146,7003	-150,1698	

TEMP	CAPACIDAD CALORÍFICA [cal/mol.K]						SCOSIDAD [cP]	CO	D TÉRMICA [TENSIÓN SUPERFICIAL [dyne/cm]										
	[kg/cm ²]	Tripalm itina	Trioleina	Metil palmitato	Metil oleato	Glicerol	Tripalmitina	Trioleina	Metil palmitato	Metil oleato	Glicerol	Tripalm itina	Trioleina	Metil palmitato	Metil oleato	Glicerol	Tripalmitina	Trioleina	Metil palmitato	Metil oleato	Glicerol
0	1	242,0598	266,1687	72,25807	119,2404	44,93695	40849,71	98223,59	15,48153	10,00066	9542,892	0,1075073	0,1057519	0,1139975	0,0892324	0,248474	21,72037	20,68144	30,60255	33,41703	64,60476
5	1	248,6368	273,3685	74,61216	120,5466	45,17899	27008,57	63572,35	13,32534	8,765135	5526,548	0,106803	0,1050281	0,1132446	0,0886599	0,2489615	21,53921	20,50271	30,30157	32,99644	64,29656
10	1	253,4415	278,5435	76,44591	121,8734	45,42755	18120,09	41782,44	11,53037	7,718111	3317,769	0,1060988	0,1043042	0,1124916	0,0880874	0,249449	21,35805	20,32398	30,00059	32,57585	63,98835
15	1	257,1548	282,475	77,96216	123,2185	45,68219	12326,35	27864,1	10,0274	6,826228	2058,702	0,1053945	0,1035803	0,1117386	0,087515	0,2499366	21,1769	20,14526	29,69961	32,15526	63,68015
20	1	260,8348	286,3705	79,4772	124,5819	45,97397	8496,044	18840,75	8,761995	6,062752	1316,893	0,1046903	0,1028564	0,1109857	0,0869425	0,2504241	20,99574	19,96653	29,39862	31,73467	63,37123
25	1	264,4817	290,2302	80,99119	126,0872	46,3268	5929,521	12907,78	7,690994	5,40613	866,3174	0,103986	0,1021326	0,1102327	0,08637	0,2509116	20,81458	19,7878	29,09764	31,31466	63,05371
30	1	268,0957	294,0543	82,50428	127,6062	46,68561	4187,694	8954,117	6,78	4,838885	584,8263	0,1032818	0,1014087	0,1094798	0,0857975	0,2513991	20,63342	19,60908	28,79666	30,89576	62,72542
35	1	271,677	297,8431	84,01667	129,137	47,05	2991,107	6285,622	6,001416	4,346768	404,3324	0,1025775	0,1006848	0,1087268	0,085225	0,2518867	20,45226	19,43035	28,49568	30,47799	62,38634
40	1	275,2258	301,5968	85,52852	130,6777	47,41957	2159,513	4462,53	5,332974	3,918095	285,7764	0,1018733	0,0999609	0,1079739	0,0846525	0,2523742	20,27111	19,25162	28,19469	30,06135	62,03649
45	1	278,7425	305,3157	87,04001	132,2266	47,79394	1575,167	3202,507	4,756606	3,543242	206,1449	0,1011691	0,099237	0,1072209	0,08408	0,2528617	20,08995	19,0729	27,89371	29,64586	61,67585
50	1	282,2272	308,9999	88,55132	133,7819	48,17275	1160,213	2321,977	4,257572	3,21424	151,5381	0,1004648	0,0985131	0,106468	0,0835076	0,2533493	19,90879	18,89417	27,59273	29,23153	61,30444
55	1	285,6802	312,6499	90,06263	135,3423	48,55564	862,5721	1700,125	3,823787	2,924458	113,3634	0,0997605	0,0977893	0,105715	0,0829351	0,2538368	19,72763	18,71544	27,29175	28,81835	60,92225
60	1	289,1019	316,266	91,57414	136,9062	48,94227	647,0197	1256,514	3,445293	2,668358	86,19386	0,0990563	0,0970654	0,1049621	0,0823626	0,2543243	19,54647	18,53672	26,99076	28,40635	60,52928
65	1	292,4926	319,8484	93,08603	138,4724	49,33231	489,4773	936,9951	3,113848	2,441293	66,53143	0,098352	0,0963415	0,1042091	0,0817901	0,2548119	19,36531	18,35799	26,68978	27,99554	60,12553
70	1	295,8526	323,3975	94,59849	140,0397	49,72546	373,3182	704,7266	2,822596	2,239347	52,07879	0,0976478	0,0956176	0,1034562	0,0812176	0,2552994	19,18416	18,17926	26,3888	27,58592	59,711
75	1	299,1822	326,9138	96,11173	141,607	50,12142	286,9493	534,3891	2,565814	2,059206	41,3002	0,0969435	0,0948938	0,1027032	0,0806451	0,2557869	19,003	18,00054	26,08782	27,1775	59,2857
80	1	302,4818	330,3975	97,62595	143,1734	50,51991	222,2118	408,4107	2,3387	1,898058	33,15189	0,0962393	0,0941699	0,1019503	0,0800727	0,2562745	18,82184	17,82181	25,78683	26,7703	58,84961
85	1	305,7519	333,8492	99,14134	144,7379	50,92068	173,3123	314,4827	2,137212	1,753507	26,91335	0,0955351	0,093446	0,1011973	0,0795002	0,256762	18,64068	17,64308	25,48585	26,36433	58,40274
90	1	308,9928	337,2693	100,6581	146,2998	51,32347	136,1018	243,9056	1,957935	1,623502	22,07991	0,0948308	0,0927221	0,1004444	0,0789277	0,2572495	18,45952	17,46436	25,18487	25,9596	57,9451
95	1	312,2049	340,6583	102,1765	147,8583	51,72806	107,5844	190,4781	1,79797	1,506284	18,29318	0,0941266	0,0919983	0,0996914	0,0783552	0,2577371	18,27837	17,28563	24,88389	25,55611	57,47668
100	1	315,3888	344,0166	103,6967	149,4129	52,13424	85,57985	149,7427	1,65485	1,400338	15,29534	0,0934223	0,0912744	0,0989384	0,0777827	0,2582246	18,09721	17,1069	24,5829	25,15389	56,99747
105	1	318,5448	347,3448	105,2189	150,963	52,54182	68,48913	118,4704	1,526466	1,304358	12,89865	0,0927181	0,0905505	0,0981855	0,0772102	0,2587121	17,91605	16,92818	24,28192	24,75294	56,50749
110	1	321,6736	350,6436	106,7434	152,5082	52,95061	55,13114	94,30383	1,411014	1,217209	10,96481	0,0920138	0,0898266	0,0974325	0,0766377	0,2591997	17,73489	16,74945	23,98094	24,35328	56,00673
115	1	324,7756	353,9134	108,2704	154,048	53,36045	44,62721	75,50946	1,306939	1,137909	9,39085	0,0913096	0,0891028	0,0966796	0,0760653	0,2596872	17,55373	16,57072	23,67996	23,95492	55,49519
120	1	327,8514	357,1548	109,8	155,5823	53,77119	36,3193	60,80351	1,212903	1,0656	8,099277	0,0906053	0,0883789	0,0959266	0,0754928	0,2601747	17,37257	16,392	23,37897	23,55787	54,97288
125	1	330,9015	360,3687	111,3327	157,1106	54,18271	29,71134	49,22874	1,127745	0,999532	7,031233	0,0899011	0,087655	0,0951737	0,0749203	0,2606623	17,19142	16,21327	23,07799	23,16214	54,43978
130	1	333,9266	363,5556	112,8685	158,633	54,59488	24,427	40,0667	1,050461	0,9390502	6,141589	0,0891969	0,0869311	0,0944207	0,0743478	0,2611498	17,01026	16,03454	22,77701	22,76776	53,8959
135	1	336,9273	366,7163	114,4078	160,1491	55,00761	20,17911	32,77477	0,9801772	0,8835785	5,395439	0,0884926	0,0862073	0,0936678	0,0737753	0,2616373	16,8291	15,85582	22,47603	22,37472	53,34125
140	1	339,9043	369,8516	115,9509	161,659	55,42079	16,7472	26,94061	0,9161299	0,8326097	4,765564	0,0877884	0,0854834	0,0929148	0,0732028	0,2621249	16,64794	15,67709	22,17504	21,98306	52,77581
145	1	342,8583	372,9622	117,4978	163,1627	55,83437	13,96106	22,24904	0,8576526	0,7856967	4,230568	0,0870841	0,0847595	0,0921619	0,0726303	0,2626124	16,46678	15,49836	21,87406	21,59278	52,1996
150	1	345,7899	376,0491	119,049	164,6601	56,24828	11,68859	18,45775	0,8041605	0,7424438	3,773507	0,0863799	0,0840356	0,0914089	0,0720579	0,2630999	16,28563	15,31964	21,57308	21,20389	51,61261
155	1	348,7001	379,1131	120,6047	166,1515	56,66248	9,826703	15,37946	0,7551397	0,7025004	3,38087	0,0856756	0,0833118	0,0906559	0,0714854	0,2635875	16,10447	15,14091	21,2721	20,81641	51,01484
160	1	351,5894	382,1551	122,1652	167,6367	57,07692	8,294559	12,86865	0,7101375	0,6655552	3,041806	0,0849714	0,0825879	0,089903	0,0709129	0,264075	15,92331	14,96218	20,97111	20,43037	50,40628
165	1	354,4589	385,1761	123,7307	169,1162	57,49159	7,02844	10,81163	0,6687544	0,6313309	2,747548	0,0842672	0,081864	0,08915	0,0703404	0,2645625	15,74215	14,78346	20,67013	20,04577	49,78696
170	1	357,3094	388,1772	125,3016	170,5899	57,90648	5,977888	9,119199	0,6306368	0,5995804	2,490967	0,0835629	0,0811401	0,0883971	0,0697679	0,2650501	15,56099	14,60473	20,36915	19,66262	49,15685
175	1	360,1417	391,1594	126,8782	172,0583	58,32159	5,102765	7,72097	0,595471	0,5700826	2,266232	0,0828587	0,0804163	0,0876441	0,0691954	0,2655376	15,37983	14,426	20,06817	19,28096	48,51596
180	1	362,9568	394,1239	128,4607	173,5215	58,73694	4,370995	6,561183	0,5629786	0,5426399	2,068548	0,0821544	0,0796924	0,0868912	0,068623	0,2660251	15,19868	14,24728	19,76718	18,90079	47,86429
185	1	365,7557	397,0718	130,0494	174,9798	59,15255	3,756837	5,595455	0,5329114	0,5170747	1,893952	0,0814502	0,0789685	0,0861382	0,0680505	0,2665126	15,01752	14,06855	19,4662	18,52214	47,20185
190	1	368,5394	400,0043	131,6448	176,4336	59,56846	3,239547	4,788303	0,5050482	0,4932276	1,739146	0,0807459	0,0782446	0,0853853	0,067478	0,2670002	14,83636	13,88982	19,16522	18,14502	46,52862
195	1	371,309	402,9227	133,2471	177,8834	59,98473	2,802337	4,111241	0,4791912	0,470955	1,601381	0,0800417	0,0775208	0,0846323	0,0669055	0,2674877	14,6552	13,7111	18,86424	17,76944	45,84462
200	1	374,0656	405,8284	134,8567	179,3294	60,4014	2,431573	3,541307	0,4551633	0,4501276	1,478347	0,0793374	0,0767969	0,0838794	0,066333	0,2679752	14,47404	13,53237	18,56325	17,39544	45,14984