Please use this identifier to cite or link to this item: http://dspace.utpl.edu.ec/handle/123456789/18993
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCarbo Dorca, R.es_ES
dc.date.accessioned2017-06-16T22:02:45Z-
dc.date.available2017-06-16T22:02:45Z-
dc.date.issued2015-09-13es_ES
dc.date.submitted13/09/2015es_ES
dc.identifier10.1007/s10910-015-0516-4es_ES
dc.identifier.isbn2599791es_ES
dc.identifier.other10.1007/s10910-015-0516-4es_ES
dc.identifier.urihttp://dspace.utpl.edu.ec/handle/123456789/18993-
dc.description.abstractCollective distances in quantum multimolecular polyhedra, which can be set as a scalar index associated to the variance vector, enhance the role of the pair density similarity matrix. This paper describes a simplified but efficient algorithm to compute triple, quadruple or higher order density similarity hypermatrices via an isometric decomposition of the pair similarity matrix. Such possibility opens the way to use these similarity elements in quantum QSAR and in the description of scalar condensed vector statistical like indices, for instance skewness and kurtosis. This might lead the way to describe the collective structure of quantum and classical multimolecular polyhedra. © 2015, Springer International Publishing Switzerland.es_ES
dc.languageIngléses_ES
dc.subjectCollective distanceses_ES
dc.subjectCollective similarity indiceses_ES
dc.subjectDensity functions discrete isometric representationes_ES
dc.subjectQuantum molecular similarityes_ES
dc.subjectQuantum multimolecular polyhedraes_ES
dc.subjectQuantum object setses_ES
dc.titleAn isometric representation problem in quantum multimolecular polyhedra and similarityes_ES
dc.typeArticlees_ES
dc.publisherJournal of Mathematical Chemistryes_ES
Appears in Collections:Artículos de revistas Científicas



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.