Please use this identifier to cite or link to this item:
http://dspace.utpl.edu.ec/handle/123456789/30969
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Rohoden Jaramillo, Katty Alexandra | es_ES |
dc.contributor.author | Carrión Herrera, María de los Ángeles | es_ES |
dc.date.accessioned | 2022-09-02T11:56:29Z | - |
dc.date.available | 2022-09-02T11:56:29Z | - |
dc.date.issued | 2022 | es_ES |
dc.identifier.citation | Carrión Herrera, María de los Ángeles. Rohoden Jaramillo, Katty Alexandra.(2022). Predicción de rendimiento de redes LTE con técnicas de Machine Learning . Universidad Técnica Particular de Loja | es_ES |
dc.identifier.other | 1355143 | es_ES |
dc.identifier.uri | http://dspace.utpl.edu.ec/handle/123456789/30969 | - |
dc.description | Resumen: Predecir el rendimiento de una red móvil celular, es uno de los principales desafíos que se presentan al evaluar la calidad deservicio de cualquier operador de telefonía móvil. Esta predicción permite al operador estar al tanto de los escenarios futuros de la red y de esta manera tomar acciones correctivas antes de que éstas ocurran. Los algoritmos de aprendizaje automático respaldados por grandes cantidades de datos en escenarios reales proporcionan a los operadores de las redes móviles celulares una garantía de eficiencia en el funcionamiento de la red. El presente trabajo, utiliza técnicas de Machine Learning para la predicción del rendimiento de la red LTE, para ellos e construyó una base de datos de una red móvil celular usando una aplicación en Android. Se utilizo la metodología CRISP-DM para efectuar la minería de datos y planteamos diferentes escenarios en donde se entrenaron los modelos de Machine Learning, finalmente estos modelos se evaluaron con una partición 70:30 (entrenamiento: testeo), haciendo uso de métricas estadísticas que permitieron establecer elmodelo que mejor se adapta a los escenarios planteados. | es_ES |
dc.language.iso | spa | es_ES |
dc.subject | Análisis de datos | es_ES |
dc.subject | Telecomunicaciones | es_ES |
dc.subject | Ingeniero en electrónica y telecomunicaciones | es_ES |
dc.subject | Tesis y disertaciones académicas | es_ES |
dc.title | Predicción de rendimiento de redes LTE con técnicas de Machine Learning | es_ES |
dc.type | bachelorThesis | es_ES |
Appears in Collections: | Maestría en Educación mención Innovación y Liderazgo Educativo |
Files in This Item:
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.