Please use this identifier to cite or link to this item: http://dspace.utpl.edu.ec/jspui/handle/123456789/18954
Title: Human impacts and aridity differentially alter soil N availability in drylands worldwide
Authors: Cabrera Cisneros, H.
Espinosa íñiguez, C.
Keywords: Aridity
Depolymerization
Global change
Human impacts
Mineralization
N cycle
metadata.dc.date.available: 2017-06-16T22:02:40Z
Issue Date: 1-Jan-2016
Publisher: Global Ecology and Biogeography
Abstract: Aims: Climate and human impacts are changing the nitrogen (N) inputs and losses in terrestrial ecosystems. However, it is largely unknown how these two major drivers of global change will simultaneously influence the N cycle in drylands, the largest terrestrial biome on the planet. We conducted a global observational study to evaluate how aridity and human impacts, together with biotic and abiotic factors, affect key soil variables of the N cycle. Location: Two hundred and twenty-four dryland sites from all continents except Antarctica widely differing in their environmental conditions and human influence. Methods: Using a standardized field survey, we measured aridity, human impacts (i.e. proxies of land uses and air pollution), key biophysical variables (i.e. soil pH and texture and total plant cover) and six important variables related to N cycling in soils: total N, organic N, ammonium, nitrate, dissolved organic:inorganic N and N mineralization rates. We used structural equation modelling to assess the direct and indirect effects of aridity, human impacts and key biophysical variables on the N cycle. Results: Human impacts increased the concentration of total N, while aridity reduced it. The effects of aridity and human impacts on the N cycle were spatially disconnected, which may favour scarcity of N in the most arid areas and promote its accumulation in the least arid areas. Main conclusions: We found that increasing aridity and anthropogenic pressure are spatially disconnected in drylands. This implies that while places with low aridity and high human impact accumulate N, most arid sites with the lowest human impacts lose N. Our analyses also provide evidence that both increasing aridity and human impacts may enhance the relative dominance of inorganic N in dryland soils, having a negative impact on key functions and services provided by these ecosystems.
metadata.dc.identifier.other: 10.1111/geb.12382
URI: http://dspace.utpl.edu.ec/handle/123456789/18954
ISBN: 1466822X
Other Identifiers: 10.1111/geb.12382
Other Identifiers: 10.1111/geb.12382
metadata.dc.language: Inglés
metadata.dc.type: Article
Appears in Collections:Artículos de revistas Científicas



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.