Please use this identifier to cite or link to this item: http://dspace.utpl.edu.ec/handle/123456789/19012
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAguilar Castro, J.es_ES
dc.date.accessioned2017-06-16T22:02:47Z-
dc.date.available2017-06-16T22:02:47Z-
dc.date.issued2015-01-01es_ES
dc.identifier10.12988/ams.2015.52122es_ES
dc.identifier.isbn1312885Xes_ES
dc.identifier.issn1312885Xes_ES
dc.identifier.other10.12988/ams.2015.52122es_ES
dc.identifier.urihttp://dspace.utpl.edu.ec/handle/123456789/19012-
dc.description.abstractIn this work we propose to use an approach based on genetic algorithms to obtain analytical redundancy relations to study the diagnosability property on a given con-tinuous system, and if this not fulfill, our approach allows studying the sensor place-ment problem in order to fulfill it. The redundancy relations are based on the mini-mal test equation support and in a structural analysis over a bipartite graph. The faults analysis is studied using a multi-objective fitness function in two genetic al-gorithms which describe the different constraints to be covered in order to reach the diagnosability property on the system. Additionally, our approach allows studying the sensors placement problem on systems that do not fulfill the detectability or isolability properties, using another genetic algorithm. © 2015 Rubén Leal et al.es_ES
dc.languageIngléses_ES
dc.subjectBipartite graphes_ES
dc.subjectDiagnosabilityes_ES
dc.subjectGenetic algorithmes_ES
dc.subjectSensors placementes_ES
dc.subjectStructural analysises_ES
dc.titleAn approach for diagnosability analysis and sensor placement for continuous processes based on evolutionary algorithms and analytical redundancyes_ES
dc.typeArticlees_ES
dc.publisherApplied Mathematical Scienceses_ES
Appears in Collections:Artículos de revistas Científicas



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.