Por favor, use este identificador para citar o enlazar este ítem: http://dspace.utpl.edu.ec/handle/123456789/19012
Título : An approach for diagnosability analysis and sensor placement for continuous processes based on evolutionary algorithms and analytical redundancy
Autor : Aguilar Castro, J.
Palabras clave : Bipartite graph
Diagnosability
Genetic algorithm
Sensors placement
Structural analysis
Fecha de publicación : 1-ene-2015
Editorial : Applied Mathematical Sciences
Resumen : In this work we propose to use an approach based on genetic algorithms to obtain analytical redundancy relations to study the diagnosability property on a given con-tinuous system, and if this not fulfill, our approach allows studying the sensor place-ment problem in order to fulfill it. The redundancy relations are based on the mini-mal test equation support and in a structural analysis over a bipartite graph. The faults analysis is studied using a multi-objective fitness function in two genetic al-gorithms which describe the different constraints to be covered in order to reach the diagnosability property on the system. Additionally, our approach allows studying the sensors placement problem on systems that do not fulfill the detectability or isolability properties, using another genetic algorithm. © 2015 Rubén Leal et al.
URI : http://dspace.utpl.edu.ec/handle/123456789/19012
ISBN : 1312885X
ISSN : 1312885X
Otros identificadores : 10.12988/ams.2015.52122
Aparece en las colecciones: Artículos de revistas Científicas

Ficheros en este ítem:


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.