Por favor, use este identificador para citar o enlazar este ítem:
http://dspace.utpl.edu.ec/handle/20.500.11962/26711
Título : | Aplicación de un modelo de minería de datos para predecir el posible consumo de drogas |
Autor : | Valdiviezo Díaz, Priscila Marisela Rivadeneira Cajas, Yoder Omar |
Palabras clave : | Minería de datos. Algoritmos.- Ingeniero en sistemas informáticos y computación.- |
Fecha de publicación : | 2020 |
Citación : | Rivadeneira Cajas, Yoder Omar. (2020). Aplicación de un modelo de minería de datos para predecir el posible consumo de drogas. (Trabajo de Titulación de Ingeniero en Sistemas Informáticos y Computación ). UTPL, Loja. |
Descripción : | Resumen: El presente trabajo de titulación está enfocado en la aplicación de técnicas de minería de datos para predecir el posible consumo de drogas, se trabajó sobre información recolectada y proporcionada por el proyecto CEPRA XII: Técnicas de procesamiento automático aplicadas al análisis y predicción del consumo de drogas , la cual contiene datos relacionados alconsumo de tabaco y otras drogas, esta información está organizada en variables de salud, variables sociodemográficas, tests y cuestionarios estandarizados, se realizó un tratamiento de datos aplicando distintos tipos de normalización, para la creación delos modelos se seleccionó los algoritmos de aprendizaje supervisado: Decisión_tree, GaussianNB y Logistic_regression, se realizó experimentaciones con los datos sometidos a distintos tipos de normalización, se aplicó las métricas: Accuracy, Recall, F1-score y error cuadrático medio para evaluar los resultados de cada modelo. Finalmente se desarrolló un prototipo web con la finalidad de cargar los datasets y visualizar los resultados de cada modelo.Se demuestra que es factible aplicar técnicas de minería de datos para predecir el consumo de tabaco sobre la información proporcionada por el proyecto CEPRA, pues el algoritmo Logistic_regresion y Decision_tree obtuvieron resultados bastante significativos, así mismo se comprueba que los resultados de cada modelo varían acorde al tipo de normalización a la que fueron sometidos los datos. |
URI : | http://dspace.utpl.edu.ec/handle/20.500.11962/26711 |
Aparece en las colecciones: | Ingeniero en Sistemas Informáticos y Computación |
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.